
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Cloud Computing: Serverless

Arne Koschel
Faculty IV, Department of Computer

Science
University of Applied Sciences and

Arts Hannover
Hannover, Germany
akoschel@acm.org

Marc Schaaf
Institute of Information Systems
University of Applied Sciences

Northwestern Switzerland

Olten, Switzerland
marc.schaaf@fhnw.ch

Samuel Klassen
Faculty IV, Department of Computer

Science
University of Applied Sciences and

Arts Hannover
Hannover, Germany

samuel.klassen@stud.hs-hannover.de

Irina Astrova
Department of Software Science,

School of IT
Tallinn University of Technology

Tallinn, Estonia
irina@cs.ioc.ee

Kerim Jdiya
Faculty IV, Department of Computer

Science
University of Applied Sciences and

Arts Hannover
Hannover, Germany

kerim.jdiya@stud.hs-hannover.de

line 1: 6th Given Name Surname
line 2: dept. name of organization

(of Affiliation)
line 3: name of organization

(of Affiliation)

line 4: City, Country
line 5: email address or ORCID

Abstract—A serverless architecture is a new approach to

offering services over the Internet. It combines BaaS (Backend-

as-a-service) and FaaS (Function-as-a-service). With the

serverless architecture no own or rented infrastructures are

needed anymore. In addition, the company does not have to

worry about scaling any longer, as this happens automatically

and immediately. Furthermore, there is no need any longer for

maintenance work on the servers, as this is completely taken

over by the provider. Administrators are also no longer needed

for the same reason. Finally, many ready-made functions are

offered, with which the development effort can be reduced. As a

result, the serverless architecture is very well suited to many

application scenarios, and it can save considerable costs (server

costs, maintenance costs, personnel costs, electricity costs, etc.).

The company only must subdivide the source code of the

application and upload it to the provider’s server. The rest is

done by the provider.

Keywords—serverless architecture, cloud computing, scaling,

serverless functions, service models, BaaS (Backend-as-a-service),

FaaS (Function-as-a-service)

I. INTRODUCTION

Helmut Balzert described software architectures as “a
structured or hierarchical arrangement of the system
components and description of their relationships” [1]. The
components of these architectures can be grouped by tiers,
which are:

• Presentation tier: This tier is responsible for showing
the interface of the application to the user. To do this,
it calls the application tier. The input of the
presentation tier is typically made by the user.

• Application tier: This tier is often the biggest part of
an application and contains all the business logic. In
the application tier, the core features of an application
are implemented. The input comes either from the
presentation tier (the user) or from the data tier
(persistent data).

• Data tier: This tier contains the persistent data of an
application (e.g., user data, invoices, product
information for a web shop. etc.). The inputs of the
data tier typically come from the application tier and
are also retrieved by it afterwards. The data layer is
usually realized via one or more databases, but it can
also be realized via a simple text file.

The well-known classical software architectures are two-
tier and three-tier architectures.

A. Two-Tear Architecture

A two-tier architecture consists of two layers. One
represents the client side and the other the server side. A
typical distribution of the tiers is shown in Fig. 1.

Fig. 1. Typical distribution of tiers in two-tier architecture.

In this configuration, the client is a so-called “fat client”.
It contains the presentation and application tiers. This means
that the entire application logic is also executed on the client
and the client must have sufficient power to do this.
Otherwise, there is a possibility that the user experience will
be negatively affected. The server side only contains the data
tier and is therefore responsible for storing the data
persistently. Another aspect, which should be considered, are
malicious clients. Since the entire application logic is located
on the client, it is possible that the client will change it for its
own purpose. So the client can do things that are (probably)
not allowed and we should check the input from the client on
the server side. But this aspect is also a big advantage of this
architecture, because all the (computationally intensive)
calculations of the application logic are done by the client.
This leads to a reduction in server load and a more responsive
user experience. A further disadvantage is the weak
encapsulation, which means that each client must install an
update whenever the application logic needs to be updated [2].

B. Three-Tear Architecture

A three-tier architecture consists of three layers. One
represents the client side and the other two the server side. A
typical distribution of the tiers is shown in Fig. 2.

ak
Texteingabe
©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
doi: 10.1109/IISA52424.2021.9555534

Fig. 2. Typical distribution of tiers in three-tier architecture.

The main difference from the two-tier architecture is that
the application tier is part of the server side. In most cases, the
application tier resides on a separate server. Therefore, it is not
necessary that the clients have strong hardware to run the
application. However, this leads to an increased server load.
The three-tier architecture also makes it more difficult for the
clients to manipulate the application, since all the application
logic resides on the server. Nevertheless, the input of the
clients must be checked before processing them. Furthermore,
there is a stronger decoupling, which leads to better
maintainability. It is also possible to change the application
logic without the need for an update on the client side. The
data tier is located “behind” the application tier, which means
that direct accesses by the clients are not possible. Only the
application tier can access the data tier [2], [3].

C. Issues with Classical Architectures

The classic architectures described above have many
disadvantages. However, with the help of cloud computing,
the following disadvantages could be eliminated [4]:

• Purchase of servers: Servers can cost a lot of money,
but they are needed to provide services (e.g., websites,
APIs, file servers etc.) over the Internet. Assumptions
about their usage must be made to dimension the
servers accordingly. For this purpose, it is necessary to
know how many users will potentially use the
service(s) and how many resources each one of them
needs. Moreover, a question must be answered
whether the processes can be parallelized, but it is not
easy to answer this question prior to commissioning.

• Scaling: Besides the first purchase of servers, there is
a question of how much growth can be expected. Can
a constant load be expected or are there load peaks? If
there are any, will additional servers be needed, or will
a worse user experience be accepted because these
spikes are rare? And if more power is needed, is it
reasonable to scale horizontally or vertically?
Especially the decision about scaling can slow down
the growth of the company, because if the number of
users increases significantly and quickly, a negative
experience for them can be fatal for the company’s
reputation.

• Administration and maintenance: After the servers
have been purchased, they require continuous
maintenance. In addition, regular updates are
necessary, which must be coordinated with the running
applications and must be installed. Furthermore, there
is always the risk of hardware failures. Thus, the
hardware must be replaced quickly to avoid any risk of
downtime. All these things must be done by

employees. Therefore, in addition to the hardware
costs, there are ongoing employee costs. Depending on
the size of the company, the sum of these costs can be
a significant burden on the financial situation of the
company if it decides to operate its own servers.

II. SERVERLESS ARCHITECTURE

A serverless architecture is aimed at solving the drawbacks
of classical architectures. The main reason for those
disadvantages is that an own server must be administrated and
maintained. With the serverless architecture. the company
does not have to worry about the server, just because there is
no server.

A. Definition

A statement that is often read in the context of serverless
architecture is: “Run code, not server”. This is indeed the core
idea of serverless architecture. The focus of developers should
be more on code and business logic, than on managing and
administrating the infrastructure and resources around it.

To concentrate on the code and not on the server, third-
party services are used. These services help the company to
accomplish tasks, which are otherwise taken care of by
servers. Thus, there must be services that give the company an
abstraction of the backend and allow the company to develop
its application, without thinking about the required platform,
hardware or infrastructure. The company does not need a
server and it even does not need to think about the server [5].

B. Serverless in Cloud Computing

In cloud computing the term serverless has two different
definitions, which often confuse. Although the focus of this
paper will only be on one type of serverless, we describe both
definitions here for a better understanding.

• Backend-as-a-Service (BaaS) describes applications
that significantly uses third-party (cloud-hosted)
applications and services to manage server-side logic
and state. The business logic is then mostly in the
client. Such applications (e.g., single page applications
or mobile apps) are often called “rich client”
applications. An example for BaaS is FireBase. It is a
cloud-hosted database system, which can
communicate directly with the client. So there is no
webserver in between and the database system takes
care about all resources and management issues.

• Function-as-a-Service (FaaS) is the other definition
of serverless. The big difference with BaaS is the
possibility of deploying own code (called functions) in
the cloud. Thus, the company can use its own code,
without managing the hardware by its own. In other
words, FaaS is the concept of serverless computing via
a serverless architecture.

Since BaaS and FaaS are related in their operational
attributes (e.g., no ressource management), they are often used
together [4], [5].

C. Definition of FaaS

Amazon is one of the largest providers of cloud platforms,
like the FaaS platform. Their platform for FaaS is called
AWS Lambda. On the website of AWS Lambda, the
following definition of FaaS is given: “AWS Lambda lets you
run code without provisioning or managing servers. (1) With
Lambda, you can run code for virtually any type of application

or backend service (2) - all with zero administration. Just
upload your code and Lambda takes care of everything
required to run (3) and scale (4) your code with high
availability. You can set up your code to automatically trigger
from other AWS services (5) or call it directly from any web
or mobile app (6)” [6]. The following properties can be
deduced from this definition:

(1) FaaS allows the company to run its own code, without
managing its own server. Thus, it gives the developers a
complete abstraction of servers. The special thing about FaaS
is that functions are running in stateless compute containers.
This means that the state of the container, where the code is
running on, is not guaranteed. This is because of the nature of
functions. They are running for one request and are terminated
afterwards. Therefore, the state of the server, where they are
running on, can change between running functions. If
persistence is required, the state must be stored outside the
server (database, cross-application cache, network file store,
etc.). Monitoring is also difficult, as the functions do not
necessarily run on the same server [4].

(2) Code for FaaS does not depend on a specific
framework or library. The only dependency is the supported
programming language by the platform provider. Other
external dependencies can be chosen freely by the developers.

(3) To deploy the function’s code, the company only must
upload it. The provider does everything else that is necessary
to run it properly. Code modification effort and speed are
optimized, because only small functions that are isolated from
each other are modified and directly deployed.

(4) In case of many calls, the required horizontal scaling is
managed by the provider, automatically and elastically.
Furthermore, the billing is based on the consumption and
executions, not on the instance size of the server. However, it
must be noted that there is a maximum runtime for functions
(e.g., 5 mins for AWS Lambda).

(5) Functions in FaaS are typically invoked by triggered
events. These events are defined by the provider. Thus, the
company can call the functions from other services by the
provider with one of the defined events.

(6) As the company can invoke the functions from cloud
services, most providers allow the company to trigger the
functions as a response to inbound HTTP requests, e.g., from
an arbitrary client.

The following use cases result from the above definition
and the properties of FaaS [7]:

• Isolation of super high-volume transactions for better
scaling and performance.

• Functions that can run dynamically or burstable, e.g.,
once per day or month. There is no need to pay for a
server around the clock.

• Scheduled tasks are perfect to run a certain piece of
code on a schedule.

• Processing of a single web request as well as an
unexpectedly sudden high number of requests

• Processing individual messages from a message
queue, as well as an unexpectedly sudden high
number of requests.

• Manual triggering of a function.

D. Cloud Computing Service Models

There are three well-known service models of cloud
computing, namely, Infrastructure-as-a-Service (IaaS),
Platform-as-a Service (PaaS) and Software-as-a-Service
(SaaS). Each of the three models describes how cloud services
can look like and what kind of abstraction it can provide.

IaaS is the first level of abstraction and manages the whole
hardware. It provides running hardware, so the company does
not have to worry about it anymore. But for that the company
must take care of the whole software, from the operating
system to the application.

The next level of abstraction is PaaS. If there are no
special requirements for the runtime environment, an offered
runtime environment can be used. However, the necessary
application (including the data) must still be managed.

The full abstraction of the backend and the software is
offered with SaaS. These are complete applications that can
be used remotely, without any additional effort by the user.
The limitation, however, is that the company has no influence
on the application.

Now there are two further components, namely, BaaS and
FaaS, which can be summarized to the term Serverless. The
classification of Serverless in the service model is shown in
Fig. 3. Serverless must be before SaaS, because of the
possibility to deploy own code, because not everything is
taken over by the provider. In addition, the abstraction is
somewhat stronger with Serverless than with PaaS, because
the provider also takes over the administration of the data
(e.g., the state of the server).

Fig. 3. Differences between the service models [8].

One additional difference between PaaS and Serverless
is the characteristic of applications built for PaaS. Adrian
Cockcroft says: “If your PaaS can efficiently start instances in
20 milliseconds that run for half a second, then call it
serverless” [4]. Thus, one difference in the characteristics is
runtime. An application on PaaS is typically running for all
times. Functions on FaaS instead run only on demand.

Another big difference between FaaS and PaaS is scaling.
With PaaS the company still needs to think about how to scale.
With an FaaS application this is completely transparent. Entire

applications are no longer deployed on FaaS, but only
individual functions. It also follows from the above two
differences that FaaS is more accurately billed and therefore
often cheaper than a PaaS application.

E. Performance of FaaS

FaaS functions start very fast and run only for a short time.
However, the performance of a function is not always the
same and depends on the actual state of the function.

1) Cold start: This means that there is actually
no instance of the function. So first an instance must
be created before the function can be executed. How
quickly an executable instance can be created depends
on following aspects:

• The number of libraries: The more external libraries
are used and needed, the longer it takes to create an
instance.

• The amount of code: This can also negatively
influence the creation of an instance.

• The used programming language: For example, if
the Java programming language is used, the slow
JVM must be started first, which can extend the
cold start. A lightweight scripting language, e.g.,
Python could be executed directly and would not
delay the cold start.

• The configuration of the function: A bad
configuration can also negatively influence the
creation of an instance.

• The connection establishment to external
resources: If a connection to an external resource
must first be established, a cold start will take longer.

2) Warm start: Unlike the cold start, a warm start already
has a function instance from a previous function call. So
the company does not have to create an instance first. Rather,
the company can use the existing one directly. There is also
no need to start runtime environments or establish connections
to external resources.

The performance of creating a new instance can usually be
controlled by the developers, e.g., when few libraries or a
lightweight scripting language can be used. But, generally, the
performance is worse with a cold start than a warm start. Thus,
if a function is called regularly, there is rarely a cold start.
However, if calls are infrequent and quick responses are
required, the company should consider how to keep the
function alive. Or the company does not use a cloud service,
but its own server, so that the function runs around the clock
with few resources [4].

F. API Gateway

To better understand the architecture and the interaction of
all individual components in a serverless architecture, this
section describes a central, often used, component. This
component is called the API gateway, which is an HTTP
server that forwards requests to a specific function. Either the
function is called with the specified parameters in the request
or the request is forwarded as a JSON object. The API
gateway then forwards the function’s response back to the
caller as a HTTP response. This creates a loose coupling
between the client and the cloud backend.

An API gateway can have the following additional
functionalities:

• Authentication of users.

• Input validation of calls. Any kind of control and
limitation of calls.

• Caching of calls to be able to process further calls
faster.

• Logging of actions and calls to comprehend and
understand behavior.

• Aggregation of results for more efficient
communication and processing.

These additional functionalities can be used to perform
tasks that would otherwise be performed by a server.
However, since a server no longer exists, these tasks must be
performed by other components (e.g., the API gateway or the
client). In AWS, the API gateway is realized via BaaS that can
be easily configured by the developers or administrator. This
means that no additional development effort is required for
these functionalities [4], [9].

G. Migration Example

To understand the difference between a classical
architecture (viz., three-tier architecture) and a serverless
architecture, a practical example will be used. This example is
an online shop where articles for pets can be searched and
purchased. An authentication of the client is also carried out.
The rough architecture of this system is shown in Fig. 4.
Assuming the business logic on the server side is written in
Java and on the client side, HTML and Javascript are used.
Most of the business logic (authentication, page navigation,
searching, transactions) can be implemented on the server, so
we can have a very thin client.

Fig. 4. Example application with a three-tier architecture [4].

The result of transforming the three-tier architecture is
shown in Fig. 5 and next explained:

1) The first step is to handle the authentication of users
via an authentication service (e.g., Auth0). There can be
a direct communication with the authentication service
and there is no need for other services.

2) Then the database could be split. One database contains
the products, which can be accessed directly from the
client. We can also have different security profiles for the
client accessing the database than for server resources.
The other database contains the purchases and can only
be accessed via a special function. Both databases
are hosted on dedicated servers or via BaaS in the cloud.
They are not part of the functions.

3) Due to the direct database access, the authentication at
the authentication service and the missing application
server, a part of the business logic is shifted to the client.
In this way the client can quickly become a Single Page
Application.

4) Compute intensive tasks or accesses to a significant amount
of data should not be run on a mobile device
due to lack of resources. Therefore, it may make sense
to perform such tasks in a function in the cloud, that
runs only on demand. When AWS Lambda is used as
FaaS platform, there is also no need of rewriting the
function code, since Lambda supports Java - the original
implementation language.

5) Another reason for performing tasks in functions in the
cloud, are security aspects. If accesses to a database
are critical for safety reasons, the access should be
controlled by a function, rather than implementing it in
the client.

Fig. 5. Migration of the sample application to the serverless architecture
[4].

After this transformation the developers must fill the
database with products only, upload the code for both
functions and develop the client. The authentication is done
by the authentication service, the functions are scaled
automatically, and the hardware is managed by the provider.
This example demonstrates another very important point
about serverless architectures. In the original version, all
control and security flow were managed by the central server
application. In the serverless version, there is no central arbiter
of these concerns. Instead we see a preference for
choreography over orchestration, with each component
playing a more architecturally aware role – an idea also
common in a microservices approach.

There are many benefits to such an approach. Systems
built this way are often more flexible and amenable to change,
both as a whole and through independent updates to
components. There is a better separation of concerns and there
are also some significant cost benefits. Of course, such a
design is a trade-off: It requires better distributed monitoring
and more reliance on the security capabilities of the
underlying platform. More fundamentally, there are a greater
number of moving pieces to get our heads around than there
are with the monolithic application we had originally.
Whether the benefits of flexibility and cost are worth the
added complexity of multiple backend components is very
context dependent [4].

III. EVALUATION

In this section, the practical suitability is examined first.
Then the benefits and drawbacks of serverless architectures
are listed and described. Finally, some features are described
which are currently not available, but which would be
desirable in the future.

A. Practical Suitability

To determine whether serverless architectures are suitable
for a given application, the following aspects must be
considered [4]:

• Number of requests: The number of requests is
relevant if cold starts should be avoided. Depending
on the provider, a certain number of calls must be
reached within a fixed time interval to prevent the
application from being “frozen”.

• Traffic volume: The traffic volume must be
considered when deciding whether it makes more
sense, from a financial point of view, to run the
applications in a serverless architecture. If the traffic
volume is constant, this approach does not always
make sense because the servers can be dimensioned
accordingly to ensure efficient utilization. If load
peaks can be expected, on the other hand, it can really
make sense, since no additional server capacities are
required just for them.

• Confidentiality of data: Another aspect is the
confidentiality of data. Is the company allowed to
outsource the processing of data to external servers or
is it not allowed, e.g., due to data protection
regulations?

• Type of requests: It is also necessary to consider the
respective application. As described above,
serverless functions are (so far) stateless. Thus, it
would not make sense to use them with session-heavy
functions.

Use case 1: Inconsistent traffic – An example of
inconsistent traffic is a ticket shop. Most of the time it receives
an even number of requests. But as soon as a ticket pre-
purchase, e.g., from a famous band starts, the requests increase
rapidly. This leads to load peaks and usually in such a scenario
the servers would crash, and the customer gets an error
message. This circumstance is undesirable, because on the one
hand the ticket shop does not earn money from the customers
and they migrate to competing companies. And on the other
hand, this has a negative effect on the reputation of the
company if it is not able to serve the customers in such
situations (which often occur in a ticket shop).

One solution for the company could be to scale
horizontally or vertically to use the additional resources when
they are needed. The disadvantage of vertical scaling,
however, is that there is a fixed limit up to which scaling is
possible (e.g., because there is no stronger processor
available). With horizontal scaling, additional servers are
purchased, and the load is distributed. The additional servers
can be used in two ways:

• Keep the server running continuously: The
advantage here is that the servers are immediately
available during load peaks. This leads to an
immediate scaling and the customer does not notice
anything. The disadvantage, however, is increased
power and maintenance costs.

• Starting the server during load peaks: Another
possibility is to start the servers only when they are
needed. This reduces the costs during the time when
the servers are not needed. The disadvantage,
however, is that once they are needed, they take some

time to get up and running. In addition, servers are not
designed for frequent startup and shutdown, so this
solution also has a negative effect on the longevity of
the servers.

With serverless architectures, the functions that are
relevant in these situations could be outsourced via FaaS, so
the company no longer must worry about scaling. During peak
loads, more resources are simply allocated to these serverless
functions and scaling occurs automatically and immediately
[4].

Use case 2: Occasional requests – An example for
occasional requests could be a new website. For example, it
receives and answers a request every few minutes. The
website is hosted on a dedicated server and the average CPU
power required is below 5%. Most of the time, however, it is
in idle and only consumes power.

When using a serverless architecture, it could be hosted
on a dedicated server along with other similar applications,
sharing resources without being slowed down by them (due to
automatic scaling). This approach saves a considerable
amount of power and thus costs that are only incurred for the
actual use of resources with the serverless architecture [4].

B. Advantages

If the decision is made to use serverless architectures, there
are several benefits. The most important ones are [4]:

• Reduced operational costs: Since no more own
servers have to be purchased and the wage costs for
the administration and maintenance are eliminated,
the costs can be reduced significantly. This aspect is
particularly important for applications that must deal
with high load peaks and would require additional
hardware to handle them. In addition, sharing the
infrastructure leads to cost savings.

• Reduced development costs: Many infrastructure
providers offer additional functions that no longer
need to be implemented by the company. One
example is AWS Lambda’s authentication service
(AWS Cognito), which includes the registration of
new users as well as the login and management of
passwords [6].

• (Nearly) no scaling costs: The big advantage of
serverless architectures is the scaling. It happens
automatically and load peaks are simply cushioned.
The only cost to the company is paying for the
additional hardware resources which are then used.

• Performance optimization directly reduces costs:
Since the company pays for the hardware resources
they have really used, performance optimizations on
the source code have a direct effect on costs. For
example, if the runtime of an application is reduced
from 100 to 50 milliseconds by optimizations, the
costs to be paid are also halved.

C. Disadvantages

Serverless architectures also have some drawbacks. The
most important ones are [4]:

• Vendor control: Through vendor control, the
company must anticipate sudden failures, cost
changes, additional limitations, or the loss of
functionality.

• Vendor lock-in: The use of the additional (exclusive)
features (e.g., tools, architectures, libraries) of the
provider can be helpful. However, the use quickly
leads to a vendor lock-in, as a migration to other
providers becomes increasingly costly. One possible
solution would be the so-called “multi-cloud
approach”, in which the development of the
application is designed in such a way that the majority
is developed in-house and thus no reliance on the
provider is necessary. Of course, this approach
increases the cost of development, but in return
reduces the cost of a possible future migration of the
software.

• No in-server state (FaaS): For applications that must
deal with sessions, the use of serverless functions is
not recommended because they are (so far) stateless
(and for good reasons, such as efficiency).

• Limited execution duration: Another disadvantage
can be the limited execution time of individual
functions. For example, the limit for AWS Lambda is
5 mins.

• Cold starts: Cold starts occur if a function is not
called for a few minutes (depending on the provider).
As a result, the subsequent call takes longer and there
is an increased latency.

D. Security Aspects

An important part of the evaluation is also the listing
and description of the safety-relevant aspects. The following
aspects are of particular interest:

• Increased attack surface: If a software is distributed
on the infrastructure of several providers (e.g., due to
the use of special features, more independence, etc.),
this increases the attack surface of the application.
This is because each vendor has its own
implementation and therefore there is a greater risk
that one of them may contain a security problem and
thus serve as a gateway for attackers to get into the
application.

• BaaS database without protective application tier
barrier: As can be seen in the migration example, the
use of the serverless architecture leads to a division of
an application and the distribution of the individual
functions. This can also result in the client being able
to access the database server directly, so that access to
the database server cannot be controlled by the
application tier (as it is the case with the three-tier
architecture). For this reason, it may be necessary to
perform additional access control on the database
server (and other components of the application). This
significantly increases the complexity of the
application and can also lead to security problems.

• Loss of overview: An application can consist of many
individual functions. If serverless architecture is used,
this can quickly lead to a loss of overview of the
serverless functions and thus might lead quickly to
security and overall maintenance problems.

E. Other Aspects

Three important additional aspects to consider
when choosing serverless architecture are [4]:

• Testing: The testing of individual serverless
functions can be easily done via unit tests. However,
these and integration tests are more difficult if the
application has many dependencies.

• Debugging: Some providers support debugging
directly on the server. But many others do not (yet)
and this can lead to more complex debugging.

• Monitoring: Nowadays, monitoring the application
is very important to be able to create metrics. By
means of these metrics it is possible to identify and
optimize critical points of the application. In addition,
hard to find errors can be found. Unfortunately, many
vendors only offer basic metrics that the company
must use. Mostly these are not sufficient and more
information (e.g., via open APIs) would be desirable.

IV. FUTURE WORK

Serverless functions are still relatively new and immature.
They still lack some features to be used on a large scale. Some
of the most important features are [4]:

• Deploying groups of components: Currently, it is
possible to deploy functions individually. Since many
functions of an application are based on others, it
would be desirable if a collection of functions could
be deployed together.

• Remote debugging: Many providers do not offer
direct debugging of their servers. However, to test
functions and discover errors, this is a feature that
should not be missed.

• “Meta operations”: Many providers offer
management features for each individual deployed
serverless function. For large applications, however,
it would be more desirable if settings could be made
for self-defined groups of functions.

• State management: Many applications use sessions,
e.g., to store a user’s shopping cart for a longer period
of time. To implement such applications, serverless
functions should be no longer exclusively stateless in
the future. An alternative could be a dedicated “state
server” that manages the states and injects the
individual state before calling a function.

• Permanent availability: As soon as a serverless
function is not called for a longer period of time, it
will be frozen. This leads to a cold start next time it is
called. In the future, it would be desirable if serverless
functions were available permanently and without a
cold start.

• Patterns: Patterns represent a standardized solution
for similar problems. For serverless architectures,
however, relatively few such patterns exist. Patterns
that give a specification for the size of individual
serverless functions are desirable. If it is possible to
deploy groups of serverless functions in the future, a
pattern could also specify how to determine such
groups from the application. Furthermore, it would
make sense for monitoring that no log is created and

can be viewed for each function. Instead, it would be
more helpful if the logs of the individual functions
were aggregated in such a way that an overview of the
application could be obtained more quickly. Patterns
would be useful for the definitions of such
aggregations.

• Standardization: Currently, the offers of the
providers differ in almost all respects. This means that
before deciding on a provider, all features must be
examined and weighed against each other. A
standardization with a defined feature set would help
with this decision in the future. In addition, portability
can be estimated before using a provider, so that no
sudden extensive new developments would be
necessary, thus increasing the planning ability for a
company.

In the future, one more service model of cloud computing
could be evaluated, viz., Storage as a Service (STaaS) [10],
[11], [12].

REFERENCES

[1] H. Balzert, Lehrbuch der Softwaretechnik: Entwurf, Implementierung,
Installation und Betrieb, 3rd ed. Berlin Heidelberg New York:
SpringerVerlag, 2011.

[2] G. Reese, Database Programming with JDBC and Java, 2nd ed.
O’Reilly & Associates, 2000, relevant chapter available via
https://web.archive.org/web/20110406121920/http://java.sun.com/dev
eloper/Books/jdbc/ch07.pdf

[3] J. Dunkel, A. Eberhart, S. Fischer, C. Kleiner, and A. Koschel,
Systemarchitekturen fur Verteilte Anwendungen - Client-Server,
Multi-Tier, ̈ SOA, Event Driven Architectures, P2P, Grid, Web 2.0, 1st
ed. Munchen: ¨ Hanser, 2008.

[4] M. Roberts. Serverless Architectures, 2018, [Online]. Available:
https://martinfowler.com/articles/serverless.html

[5] B. Janakiraman. Serverless, 2016, [Online]. Available:
https://martinfowler.com/bliki/Serverless.html

[6] Amazon Cognito User Pools. [Online]. Available:
https://docs.aws.amazon.com/cognito/latest/developerguide/cognitous
er-identity-pools.html

[7] M. Watson. What Is Function-as-a-Service? Serverless Architectures
Are Here! [Online]. Available: https://stackify.com/function-as-a-
serviceserverless-architecture/

[8] G. Peipman. Short introduction to serverless architecture. [Online].
Available: https://gunnarpeipman.com/serverless-architecture/

[9] L. Rowekamp. Serverless Computing, Teil 1: Theorie und Praxis. ¨
[Online]. Available: https://www.heise.de/developer/artikel/Serverless
Computing-Teil-1- Theorie-und-Praxis-3756877.html?seite=2

[10] E. Zoumi, E. Skondras, N. Tsolis, A. Michalas, D. Vergados, “A
Storage as a Service scheme for supporting Medical Services on 5G
Vehicular Networks”, International Conference on Information,
Intelligence, Systems and Applications (IISA), Piraeus, Greece, July
15-17, 2020, pp. 1–6, doi: 10.1109/IISA50023.2020.9284339.

[11] E Skondras, A. Michalas, D. Vergados, “A Survey on Medium Access
Control Schemes for 5G Vehicular Cloud Computing Systems”, Global
Information Infrastructure and Networking Symposium (GIIS),
Thessaloniki, Greece, October 23-25, 2018, pp. 1–5, doi:
10.1109/GIIS.2018.8635661.

[12] E. Skondras, A. Michalas, N. Tsolis, A. Sgora, D. Vergados, “A
Network Selection Scheme for Healthcare Vehicular Cloud Computing
Systems”, International Conference on Information, Intelligence,
Systems and Applications (IISA), Larnaka, Cyprus, August 28-30,
2017, pp. 1–6, doi: 10.1109/IISA.2017.8316378.

