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Abstract - Technology scaling and process variation severely 

degrade the reliability of Chip Multiprocessors (CMPs), 

especially their large cache blocks. To improve cache reliability, 

we propose REMEDIATE, a scalable fault-tolerant architecture 

for low-power design of shared Non-Uniform Cache Access 

(NUCA) cache in Tiled CMPs. REMEDIATE achieves 

fault-tolerance through redundancy from multiple banks to 

maximize the amount of fault remapping, and minimize the 

amount of capacity lost in the cache when the failure rate is high. 

REMEDIATE leverages a scalable fault protection technique 

using two different remapping heuristics in a distributed shared 

cache architecture with non-uniform latencies. We deploy a 

graph coloring algorithm to optimize REMEDIATE's 

remapping configuration. We perform an extensive design space 

exploration of operating voltage, performance, and power that 

enables designers to select different operating points and 

evaluate their design efficacy. Experimental results on a 4x4 tiled 

CMP system voltage scaled to below 400m V show that 

REMEDIATE saves up to 50% power while recovering more 

than 80% of the faulty cache area with only modest performance 

degradation. 

Keywords- Fault-tolerant cache, Remapping, Aggressive 
voltage scaling 

I. INTRODUCTION 

Tiled CMP architectures, which are designed as arrays of identical 
or very similar basic blocks, are a design complexity scalable 
alternative to current small-scale CMP designs. A Tiled CMP with 
shared Last-level Cache (LLC) and Non-Uniform Cache Access 
(NUCA) organization logically shares the physically distributed 
cache banks among all its cores. Technology scaling and process 
variation has an increasing impact on the resilience of CMOS 
circuits including Tiled CMPs [I]. Due to large size of LLC in CMPs, 
we are increasingly challenged by the often-conflicting constraints of 
reliability, manageable power, and temperature in design of such 
architectures. Operating in reduced-V dd (e.g., near-threshold) 
voltage is a common solution to reduce LLC power consumption. 
However, aggressive voltage scaling of SRAMs increases the effect 
of process variation. So it results in a high incidence of failure, to the 
point that it can overwhelm traditional error correction techniques 
(e.g., SECDED) [5]. 

There is a large body of previous work on fault-tolerant design of 
cache memories. Section II summarizes some of those fault-tolerant 
techniques. Most of them have been primarily proposed for uniform 
cache access (UCA) in a single core architecture. Additionally, most 
of them are not efficient for high failure rates. More importantly, 
they do not address the challenges of a shared NUCA cache design in 

CMP architecture like multiple access points, concurrent banks 
accesses, non-uniform latency, variation in fault-rate, and criticality 
of different banks. For instance in a fault-tolerant NUCA design, 
access latency, network traffic, network power, and effective 
capacity are all sensitive to the location of the spare block or 
redundancy used for protection of a faulty data, relative to the 
requesting core and the accessed line. 

In this work, we propose REMEDIATE, a scalable fault-tolerant 
architecture for low-power design of shared LLC with non-uniform 
latencies, distributed banks, and multiple access points in a multicore 
architecture. REMEDIATE leverages a flexible fault protection 
technique while considering the implications of two different 
remapping heuristics in the presence of cache banking, non-uniform 
latency, and interconnects. Furthermore, it uses the opportunity to 
remap faulty lines across different distributed banks in a shared 
NUCA cache. Thus, a faulty block can be remapped to anywhere in 
the existing NUCA LLC. REMEDIATE's remapping policies aim to 
achieve a balance between the conflicting goals of minimizing 
latency, minimizing power, maximizing capacity, and minimizing 
network traffic for NUCA caches. 

The main contributions of this paper are that we: 1) Introduce 
REMEDIATE, a scalable and highly reconfigurable architecture that 
can be leveraged to protect large shared NUCA LLC in tiled CMPs 
against permanent faults I; 2) Propose two scalable remapping 
policies for efficient fault tolerance of distributed shared NUCA 
cache banks in tiled CMPs; and 3) Perform design space exploration 
of various cache design configurations at 65nm to demonstrate the 
efficacy of REMEDIATE. To the best of our knowledge, 

REMEDlATE is the first design to address the fault tolerance of 

distributed NUCA caches for CMP architectures. 

II. RELATED WORK 

Several researches on improving SRAM reliability in face of 
process variation-induced faults at low voltage operation have been 
proposed in different levels of system hierarchy from circuit 
level [13][14][26] to system level [27][28][29][30]. At the system 
level, a variety of Error Detection Code (EDC) and Error Correcting 
code (ECC) techniques have been used. ECC is proven as an 
effective mechanism for handling soft errors [22]. However, in a 
high-failure rate situation, most coding schemes are not practical 
because of the strict bound on the number of tolerable faults in each 
protected data chunk. In addition, using ECC incurs a high overhead 
in terms of storage for the correction code, large encoding latency, 
and slow and complex decoding [17][18]. 

I While REMEDIATE can also be modified to address soft failures, in this work our 
focus is on permanent failLLres which for instance could be the result of process variation, 
aggressive voltage scaling and aging effects. 



Several architectural techniques have also been proposed to 
improve reliability of on-chip cache and/or lower the minimum 
achievable voltage scaling bound by using redundancy. Wilkerson et 
al. [24] proposed two schemes called Word-disable and Bit-fix. The 
first scheme combines two consecutive cache blocks into a single 
cache block, thereby reducing the capacity by 50%. The second one 
sacrifices a functional cache block to repair defects in three other 
cache blocks, thereby reducing the capacity by 25%. Bit-Fix method 
also adds three cycles of latency to the cache access time. Roberts et 
al. [19] proposed a block grouping (pairing) scheme to form a new, 
fully working logical block. RDC-Cache [5] replicates a faulty word 
by another clean word in one way of the next cache bank in a chain 
of cache banks. The salvage cache [4] uses a single non-functional 
block to repair several other blocks in the same set. A similar idea 
has been proposed independently in [20]. Ansari et al. [10] deployed 
a fault-tolerant cache that groups faulty cache sets together and 
sacrifices a different cache set to recover failures. The sets are 
grouped together in such a way that the sacrificial set and the data 
sets reside in different banks. They improved their technique in 
another work, named Archipelago [11], that uses a modified version 
of minimum clique covering algorithm to cluster the cache into 
different groups. A similar but more flexible method was proposed in 
FFT-Cache[ 12], where a flexible defect map is used to configure the 
cache architecture using a portion of faulty cache blocks/sets as 
redundancy to tolerate other faulty cache blocks/sets. All these 
techniques rely on two banks and a single fault map that tracks the 
fault-tolerance information of both banks. Wang et. al [6] proposed a 
utility-driven address remapping technique at a coarser-grain (bank 
level) to tackle the capacity loss in NUCA cache of NoC-based CMP 
architectures. BanaiyanMofrad et al. 0 proposed a scalable design to 
protect LLC banks in a NoC-based CMP which leverages the 
interconnect network to implement a remapping-based fault-tolerant 
technique. 

Unfortunately all these previous efforts are neither scalable nor 
flexible to be leveraged for protection of NUCA caches with 
distributed banks in CMP architectures. Since CMP architectures 
have more than one core that can access one or different distributed 
banks simultaneously, fault mapping and protection needs to be 
scalable and distributed. Furthermore, existing fault-tolerant 
techniques typically use a single fault map and a centralized fault 
protection scheme which cannot be scaled for large NUCA CMP 
architectures: as a result each access needs to go through the fault 
map first, and no parallel cache accesses are allowed. Another 
difference for NUCA architectures is that the access latency, failure 
rate, and criticality of distributed banks are different depending on 
the location of each cache bank and type of NUCA (SNUCA or 
DNUCA). Therefore, the fault-tolerant technique needs to be 
scalable and configurable to address these issues. However, all 
previous fault-tolerant methods have been designed for at most two 
banks within a UCA architecture which are not configurable. 
Moreover, they use a unified remapping technique to protect all 
faulty blocks without considering differences among different banks. 
In contrast to previous efforts, REMEDIATE leverages a scalable 
architecture allows efficient remapping across multiple banks in a 
NUCA cache. It uses a flexible fault mapping and fault protection 
scheme which results in higher cache reliability. REMEDIATE uses 
a configurable fine-grained remapping technique using graph 
coloring to match the target (redundant) blocks to a group of original 
accessed blocks/sets in a multi-bank cache architecture. 
REMEDIATE's configuration algorithm attempts to minimize the 
number of target blocks by considering the variation of probability of 
failure and available space of different cache banks. 

III. BASELINE ARCHITECTURE 

We experiment on a tiled CMP architecture, where each tile 
comprises a processor core, caches, and network router/switch. Tiles 
are interconnected as a 2D mesh via a network-on-chip (NoC). Fig. 1 
shows our Baseline 16-tile configuration, where each tile includes 
private L 1 data and instruction caches and a shared L2 bank. The L2 
bank is a portion of the larger distributed shared LLC. Each L2 bank 
includes mUltiple cache sets, with a set of lines (blocks with the same 
index) all mapped to the same bank. The baseline design assumes a 
NUCA [2] LLC. With multiple banks within the LLC, we have the 
choice of either always putting a block into a designated bank (static 
mapping) or allowing a block to reside in one of multiple banks 
(dynamic mapping). We consider static mapping in our baseline 
design and model static NUCA policy for CMP architectures 
(CMP-SNUCA) [3]. CMP-SNUCA statically partitions the address 
space across cache banks connected via a 2D mesh interconnection 
network. 

Fig. 1 .  Baseline Tiled CMP architecture. 

IV. REMEDIATE MECHANISM 

REMEDIATE attempts to sacrifice the minimal number of cache 
lines to minimize cache capacity loss and tolerate the maximum 
amount of defects. This is done by using line-level replication in the 
same set or among multiple sets between different banks. In 
REMEDIATE, the information of faulty locations in each LLC bank 
is kept in a small Permanent Fault Map (PFM) inside that bank, 
which is then used to configure the address remapping. Instead of 
maintaining explicit additional cache space to replace faulty lines, it 
exploits the lines already marked as faulty to provide redundant 
storage to mask faults in other lines. This has a critical advantage: 
while a static redundancy technique is based on worst-case estimates 
of faults, our approach sacrifices no more space than is absolutely 

needed for redundancy. This is particularly useful for a cache that 
might be used at multiple voltage levels, as we automatically adjust 
the level of redundancy according to the errors manifested at a 
particular voltage. 

REMEDIATE divides each line (block) of LLC into mUltiple 
sub-blocks, that defines the granularity at which failures are 
identified and remapped. A sub-block is labeled faulty if it has at 
least one faulty bit, as determined by Built-In Self Test (BIST) 
analysis during boot-up of the system. Thus, a smaller sub-block 
minimizes the number of bits lost due to a single fault, but increases 
the hardware overhead of reconstructing lines. If two lines have 
faults in the same sub-block, we say they conflict and one cannot be 
used to mask the faults in the other one. When a line is detected as 
faulty, the system attempts to remap faulty portions of the line 
(Original line) to another line (called the Target line) that has already 
been marked as faulty and does not conflict with the original line. It 
then sacrifices and disables the target line to replicate all faulty 
sub-blocks of the original line. Thus, the correct line can be 
reconstructed from a combination of the two lines; i.e., the original 



line together with the target line. 
In REMEDIATE cache architecture, each cache access in low 

power mode which expected to be error-prone, first accesses the 
PFM. Based on the fault information of the accessed line, we either 
read one or two lines fTom one bank (the same set), or one line from 
the original bank and one line from the target bank (different sets), as 
specified by the target line information in the PFM of the original 
bank. In many cases, a good choice of the target is another line in the 
same set, referred to as a local target line, since both original and 
target lines can be read in a single access. Barring this case, we 
should always select target lines from a different bank, so that both 
lines can be read without two serialized accesses to the same bank. 
We refer to this target line as a remote target line. In this case, the 
latency of the access is the maximum of the two bank access 
latencies that determined by the farther bank from the core. Because 
the two original and target line are known not to have sub-block 
conflicts, and we know which sub-blocks contain errors, the cache 
controller can always reconstruct the original line using single bank 
multiplexing techniques. 

A. Reconstructing Cache Lines 

Fig. 22 shows both the conventional and modified architecture of 
a tile with a core and a 2-way set associative LLC bank where the 
ways (blocks) are further divided into 2 sub-blocks. Figure 2(b) 
illustrates the architecture of the REMEDIATE multiplexing layer 
responsible for reconstructing correct lines. The new modules 
(MUXs and PFM) added to the conventional cache are highlighted in 
the figure. 
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Fig. 2. Architecture details of (a) a conventional tile and (b) the modified tile 
in REMEDlATE Cache with PFM and 2 sub-blocks per line. 

REMEDIATE requires two additional levels of multiplexing to 
compose the final fault-free line, based on either multiple lines 
within a set or between two or more sets in different banks. The first 
multiplexing layer, In-Cache MUXing is added on the cache bank 
side to perform the remapping within a set. Note that this layer 
replaces the original block-level multiplexer, available in 
set-associative caches (Fig. 2.a). The second mUltiplexing layer, 
in-Core MUXing is added on the core side to perform remapping 
between sets in original (local) and target (remote) banks. 

The total number of n-to-I ss-bit multiplexers required in cache 
side to compose the final fault-free line is k x b, where n is the 
number of ways (associativity), ss is sub-block size, k is the number 

of sub-blocks in a line, and b is the number of banks. Also, a 2-to-J 
block-level multiplexer is required for each core. For instance, for a 
16-core tiled processor with 16 banks of 4-way set associative LLC, 
with 64-byte blocks which composed of 32 16-bit sub-blocks, its 16 
4-to-l 64-byte original multiplexers would be replaced by a total of 
512 4-to-1 16-bit multiplexers in cache banks. Also, it needs extra 16 
2-to-l 64-byte multiplexers in core side. For the described cache, the 
PFM size will be less than 9% of total cache area. For a quantitative 
comparison, we synthesized the multiplexing layer and output logic 
of the REMEDIATE, as well as the multiplexer and output driver of 
a conventional cache (CC) using the Synopsys Design Compiler for 
TSMC 65nm standard cell library. The area and delay of various 
multiplexers are used to estimate the overall area/delay overhead of 
the multiplexing network in REMEDIATE and the CC under 
nominal V dd. We found out that the delay of REMEDIATE output 
logic increased by only 5% compared to the conventional cache 
output MUX network while area and power consumption are 
increased by less than I % compared to a CC MUX network. These 
overheads are modeled in our experiments. 

B. PFM Configuration 

We use a heuristic graph-coloring algorithm which is a 
modification of the Saturation Degree Ordering (SDO) 
algorithm [16] to optimize selection of a remote target line for a 
group of faulty lines that have no conflict with each other. We call a 
graph coloring problem solvable, if for a graph G we can find an 
integer K ::: 0 such that the nodes of G can be colored with K colors 
while no edge exists between the same colored nodes. We construct a 
graph based on the conflicts between lines of different entries in the 
PFM. Each node in this graph represents either a target line or a 
faulty entry (representing an entire one set) in the PFM. The edges 
represent a conflict between a pair of lines or between a line and a 
set. For example, the two nodes connected by an edge represent two 
lines, two sets, or one line and a set that have a conflict. 

We modify the above graph coloring algorithm based on the 
following constraints: 1) We force the algorithm to color nodes from 
at least two different banks; 2) We force the algorithm to first pick up 
line nodes and try to color them with set nodes of other banks; 3) We 
force the algorithm to consider the PFM configuration settings 
during its coloring process. 

We apply the modified graph coloring algorithm to our graph to 
find a solution such that neighboring nodes are not assigned the same 
color. Therefore, after completion of coloring algorithm, nodes with 
the same color are guaranteed to have no edges between them; 
implying that the corresponding cache sets/lines have no conflicts 
between them. We set all nodes with the same color in a group and 
set one of them as Remote Target for other nodes in the group. 

Now, we describe the configuration process for REMEDIATE 
cache. Initially, a raw fault map is generated at boot time; using the 
memory BIST unit to test the LLC cache under low voltage 
conditions. The output of the BIST is used to initialize the PFM of 
each bank. If there are multiple operating points for different 
combinations of voltage, temperature and frequency, the BIST 
operation is repeated for each of these settings. The obtained fault 
map is then modified and configured based on architecture settings 
like type of NUCA, location of banks, and criticality of some 
specific banks. After initialization of PFM in low power mode, the 
processor switches back to high power mode and constructs the 
conflict graph and solves the graph coloring problem. This solution 
contains the remapping information that is required to be stored in 
the PFM. This configuration information can be stored on the system 
memory storage and is written to the PFM during the next system 
boot-up. In addition, in order to protect the defect map and the tag 
arrays, we use the stable 8T SRAM cells [13] that can operate at 
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Fig. 3 .  An example of PFM configuration and remapping for a given distribution of faults in a 4-way set associative cache. 

ultra-low voltages (below 400mv) without failing. Since the defect 
map and tag arrays are relatively small, we are able to tolerate the 
�30% area overhead for these larger cells. 

In contrast with some of the previous approaches[ 10][ 11], PFM 
size is fixed and it does not depend on the failure rate. It has one 
entry for each cache set. Each PFM entry includes multiple 
configuration bits, the defect bitmap of each line in the set, status of 
each line and the address of the target line, if any. Each bit in the 
defect map section represents the fault state of a sub-block. Line 
status bits represent the status of each line in a cache set. The status 
of each cache line can be one of the followings: 1) Non-Faulty, 2) 
Faulty, 3) Global, 4) Local Target, and 5) Remote Target. Initially, 
the status of all lines in the cache is Non-Faulty, representing the 
absence of any faulty sub-blocks. If a line contains at least one faulty 
sub-block, its status will be set as Faulty. A line used as a target line 
for other lines in the same set gets the status of Local Target. A line 
that has a conflict with other lines in a set and cannot be used as a 
local target line, gets the status of Global. A Global line can be used 
as a target line of another set, and becomes a remote target line and 
gets the status of Remote Target. We define the Max Global Line 

(MGL) parameter as the maximum number of lines in a set that can 
be set as Global lines; the remaining lines can then be composed as a 
group of lines without conflict, which allows them to find a Global 
line and set it as their Remote Target line. 

We categorize the cache sets based on the number of conflicts 
among the lines inside each set to four groups: 

- min-faulty: if the number of faulty lines in a set is 
lower than the predefined MGL 
- no-conflict: if there is no conflict between faulty lines 
in the set 
- low-conflict: if the number of conflicts between the 
lines within a set is lower than the predefined MGL 
- high-conflict: if the number of conflicts between 
lines within a set is higher that the predefine MGL 
Figure 3 shows an example of the PFM configuration for a given 

distribution of faults in 10 sets of a 2-banked 4-way set associative 
cache with 4 sub-blocks in each line and MGL=I. As shown in the 
figure, set 1 is clean, without any faulty lines. Set 2 is a member of 
the min-faulty group while its faulty line is configured as a Remote 
Target line for set 9. Set 7 is another member of this group and its 
single faulty line is set as a Global line. Set 3 is an example of a 
no-conflict group in which the first line (way 1) is set as a Local 
Target line to be sacrificed for fault-tolerance of the other faulty lines 
in the set. Set 6 is another member of this group with one of its lines 
(way 4) set as a Local Target Line. Set 4 is a member of the 
low-conflict group which one of its lines (way I) is set as a Global 
line, since it has a conflict with other lines. The first line of set 9 is 
set as Remote Target line for this set (set 4). Set 5 is a member of the 
high-conflict group with two conflicts between its lines where way 1 

has conflict with way 3 and way 2 with way 4. All lines of this set 
are configured as Remote Target line for both low-conflict sets 8 and 
10. 

V. REMAPPING FOR NUCA CACHES 

There are several challenges to applying REMEDIATE in a 
distributed shared NUCA LLC with multiple access points. The 
mapping of lines to cache banks in a NUCA cache has a significant 
impact on performance and power. Adding REMEDIATE remapping 
on top of that gives another dimension to the problem. Thus the 
REMEDIATE remapping policy must balance several conflicting 
goals, including: 

I. Minimizing the maximum distance from core to either original 

or target bank. Cache latency will be determined by the maximum 
distance to the original and target banks. We cannot always predict 
what core will access the data, but if the target bank is near the host 
bank, then it is more likely the maximum distance will not be 
inflated significantly. 

2. Minimizing the distance from original bank to target bank. 

Power and traffic congestion and, as a result, latency are minimized 
by minimizing the distance of between original and target banks. 

3. Maximizing total cache capacity. The more freedom we have to 
select target lines from different banks, and the host lines that map to 
those target lines, the fewer total lines will be sacrificed. 

Since the cache bank access pattern depends on the application 
that each core is running and dynamically changes with program 
behavior at run-time, a one-solution-fits-all approach may not deliver 
optimal results. Instead, we propose two heuristics for REMEDIATE 
remapping policies which are simple but scalable and aimed at 
achieving a different balance of these goals. The first policy attempts 
to minimize access latency by exploiting adjacency while the second 
one places highest priority on preserving cache capacity. 

A. Adjacent Mapping Policy 

In this remapping policy, the highest priority for placing the target 
line is given to LLC banks in adjacent tiles. This attempts to 
minimize cache access latency and network traffic, particularly in the 
case where we cannot predict the requester core. Based on the 
number of allowed hops (tiles in the NoC) to reach the target bank 
from original bank, we can define different modes where a faulty 
line is being remapped into any configuration of a single up to 
multiple adjacent banks. For instance, we can have a mode that 
allows remapping to only one target bank that can be reached at one 
hop (mode MI). Alternatively we can have a different mode that 
allows remapping to at most two banks that each can be reached with 
at most one hop (mode M2). Fig. 4(a) shows an example of M2 
mode for all banks in CMP. Other modes are also possible based on 
the number of target banks and maximum hops to reach them. 



(a) (b) 
Fig. 4. Example showing the (a) Adjacent mapping scheme (b) Global 

mapping scheme. 

B. Global Mapping Policy 

The adjacent remapping policy potentially sacrifices cache 
capacity (i.e., prevents the technique from finding the optimal 
mapping by limiting it to just adjacent banks) for latency or traffic 
considerations. However, when the cache lost capacity induces a 
miss, it can have far greater impact on both performance and power 
than a suboptimal line target mapping. This remapping policy thus 
imposes no location restrictions for the mapper, and the target lines 
can be selected from LLC banks in any tiles in CMP. However, this 
policy gives priority to the banks of adjacent tiles, and if the target 
line is not found in adjacent banks, it examines other banks. Fig. 4 
(b) represents an example in which LLC bank of TileO can has five 
target banks in different distances and LLC bank of Tile15 can be 
target of five different banks. Note that in both policies the 
remapping information is stored in the PFM inside of each bank. 

C. Remapping Comparison with Recent Techniques 

In this section we compare efficiency of remapping for fault 
recovery in REMEDIATE against state-of-the-art remapping-based 
techniques including RDC-Cache [5], Salvage Cache [4], Ansari [10], 
Archipelago [11], and FFT-Cache [12]. In Fig. 5 we report the 
relative effective cache size for each of these techniques and across 
various voltage levels. These results obtained using failure rates 
reported in [13] for a 65nm technology. The results reported in Fig. 
5(a) are based on a 1000-run Monte Carlo simulation for a 8MB 
8-way set associative LLC cache with two banks and 64 bytes block 
size. To have a fair comparison, for all these techniques including 
REMEDIATE, we assume the fault map area overhead is at most 9% 
of the cache size which equals to the overhead of REMEDIATE with 
sub-block size of 16-bit. Based on this assumption and to meet the 
overhead constraint, the Archipelago and FFT-Cache use 16-bit 
sub-block size. RDC-cache and Salvage-cache use sub-block size for 
128-bit and 64-bit, respectively. The results show in Fig. 5(a) show 
that in ultra-low voltage region (below 400mv) as the failure rate 
increases, the more flexible remapping methods like FFT-Cache and 
REMEDIATE result in smaller cache capacity loss. 

In Fig. 5(b) we report the results for the same cache configuration 
but double the number of banks to evaluate the effect of increasing 
the number of banks on the effective cache size. Some techniques, 
such as REMEDIATE, benefit from increasing the number of banks 
while others such as RDC-Cache do not. In fact for the RDC-Cache 
and Salvage cache the effective cache size for the two bank and four 
bank cases are fairly similar. For the Salvage cache this is mainly 
due to its intra-bank remapping style, where additional banks do not 
provide any more opportunity for remapping. For the Ansari, 
Archipelago and FFT-Cache techniques that are more scalable than 
other methods, the improvement is small: comparing two and four 
banks cases, only up to 5% effective cache size improvement is 
achieved across different voltage points. For REMEDIATE, we 

achieve up to 13% improvement in effective cache size compared to 
the two bank case. In addition, in the Ansari and Archipelago 
techniques, the fault map area increases noticeably as we reduce the 
voltage below 375mv. To achieve same effective cache size as 
REMEDIATE's at such voltage points, Ansari, Archipelago, and 
FFT-Cache techniques need to rely on a sub-block size of 4-bit or 
lower, which incurs an overhead of more than 20% for their fault 
map. Note that Archipelago and Ansari's fault map size is 
proportional to the number of faulty sets while for REMEDIATE, the 
amount of fault map area overhead is fixed at 9% across all voltage 
points. Overall, these previous techniques have noticeably lower 
flexibility compared to REMEDIATE, where all banks can 
participate in remapping. 
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Fig. 5. Effective cache size for different remapping techniques with (a) two 

banks and (b) four banks of LLC. 

VI. EXPERIMENTAL SETUP 

We use SMTSIM simulator [7] for our performance simulations. 
To simulate accurate behavior of a NUCA cache architecture and 
memory network we integrate it with HORNET [8] NoC simulator 
that simulates NoC architectures with high accuracy and detailed 
latency, network traffic, and power analysis. To enable power 
analysis, HORNET combines a dynamic power model based on 
ORION [23] with a leakage power model. Table I summarizes the 
configuration parameters used in our study. We use CACTI 6.5 [9] to 
obtain cache bank access latencies and energy. The dynamic energy 
consumed by the NUCA cache network within the chip was modeled 
with the HORNET tool-set. The extra network traffic introduced by 
our proposal is also taken into account and accurately modeled in the 
simulator. For estimating cache failure probabilities for different 
voltage levels, we use the data for failure probability of each SRAM 
cell for 65nm from [13]. We use same fault model as previous works 
in remapping-based fault-tolerant cache design [10][11][12]. 



TABLE T Baseline Configuration 

Processor Cores 16 dual issue cores (out-of-order), 2 GHz 

LI Instruction/Data Cache 8KB, 4-way (LRU), 64 B Blocks, 2 cycle 

L2 Cache 64KB, 4-way (LRU), 64 B Block, I 0 cycle 

8 MB NUCA, 16 banks, 8-way (LRU), 64 
L3 cache--LLC (shared) bytes Blocks, 16-bit subblocks, 20 cycle 

latency (per bank) 

Memory Latency 250 cycles 

NoC of 2D mesh (4x4 for 16 banks and 
1 6  cores) 32-byte links (2 flits per 

Interconnect 
memory access), I -cycle link latency, 
2-cycle router, XY routing 

A. Workload characterization 

We compose mUlti-program workloads consisting of 16 threads. 
The applications are selected from the SPEC2000 and SPEC2006 
benchmark suites, by using a mix of memory-intensive and 
compute-intensive benchmarks. The sixteen-thread groupings are 
selected randomly to avoid bias. Table II summarizes our workload 
mixes. For each application in the mix we fast-forward to skip the 
initialization phase and then simulate until all threads execute 200 
million instructions. 

TABLE II. Workload Mix 

Workloads Benchmarks 

WLl sphinx3 _ 06, facerec, applu, sixtrack,astar _ 06 _rivers, applu, 
fma3d, gromacs_06, vortex_3 , milc_06, equake, gobmk_06, 
bzip2 source,vpr route, cactusADM 06, sop lex 06 ref 

WL2 art _470, sjeng_ 06, perl bench _06_ checkspam, mesa, 
povray_06, omnetpp_06, eon_rushmeier, swim, soplex_06, 
fma3d, art_ 470, eon_rushmeier, h264reC06_sss_encoder, 
facerec,vpr route, lucas 

WL3 bwaves_06, leslie3d_06,omnetpp_06, mesa, libquantum_06, 
vortex_3 ,crafty, perlbench_06, namd_06, povray_06 
hmmer 06 nph3,sixtrack, sjeng 06,swim, apsi,applu, 

WL4 galgel, apsi, lucas,omnetpp _06, eon _rushmeier, parser, 
swim,bzip2 _source,mgrid, perl bench _ 06, namd _ 06,milc _06, 
equake, bzip2 source,vpr route, cactus adm 06 

WL5 h264reC 06 _sss _encoder_main, hmmer _06_ nph3 , 
gap,lbm _ 06,art_ 470, sjeng_ 06, perl bench _ 06, 
swim,bzip2 _source, art_ 470, sjeng_ 06, sjeng_ 06, mesa, 
perl bench 06 checkspam, hmmer 06 nph3,sixtrack 

WL6 applu, fina3d, gromacs_06, swim,soplex_06_ref, 
Ieslie3d_06,omnetpp_06, facerec, galgel, gcc_06, 
gzip log,parser,gzip log,bwaves 06, vortex 3 ,crafty 

WL7 gobmk_06_nngs, galgel,equake, gap, Ibm_06, apsi, 
astar_06_rivers,milc_06, mesa, povray_06, gcc_06, 
gzip log,equake, bzip2 source, leslie3d 06, omnetpp 06 

B. Design Space Exploration 

We study various design parameters to show how REMEDIATE 
can be effective in improving the fault tolerance for various cache 
designs. The main design parameters considered in our study 
include: remapping policy and remapping mode (as discussed in 
Sections VA and V.B), bit failure rate of memory SRAM cell for 
various operating voltage levels, and memory network 
configurations. The major network configuration parameters we 
consider include: the number of virtual channel (VC), number of 
crossbar ports (CP), and bandwidth (BW) of NoC routers. We 
assume XY routing and study three network configurations based on 
the router parameters: I) low-performance (VC=2, BW=I, CP=I), 2) 
mid-performance (VC=4, BW=2, CP=2), and 3) high-performance 
(VC=8, BW=4, CP=4). We run our simulation process for eight 

different failure rates, two proposed remapping policies, and three 
different network configurations. Note that for all of these 
simulations we use the baseline configuration as in Table I with 
16-bit sub-block size. 

VII. RESULTS 

In this section we evaluate the impact of REMEDIATE remapping 
on performance and power in the presence of aggressive voltage 
scaling. For each workload we report performance in terms of 
normalized IPC, weighted speedup [25], and LLC network traffic 
statistics. For normalized IPC and weighted speedup measurements, 
we use the CMP architecture in which the LLC is operating at 
nominal Vdd with no fault-tolerant mechanism as the baseline. We 
also report total power consumption of LLC banks and NoC 
components (links and routers) for various REMEDIATE remapping 
policies. In all figures presented in this section we use the following 
abbreviation for different REMEDIATE mapping techniques, po: 
Adjacent Remapping, PI: Global Remapping, Mode MI: one target 
bank at one hop adjacency, M2: two target banks at one hop 
adjacency, M3: three target banks at up to two hops adjacency, and 
M4: four target banks at up to two hops adjacency. 

Table III shows the relative disabled cache area after applying our 
fault-tolerant method. As shown for high probability of failure (low 
operating voltage), Global policy is far more effective than all 
adjacent policy modes in preserving cache capacity. For instance, at 
450mv, Global Policy reclaims more than 85% of lost cache capacity 
(i.e., from 99% loss down to 10.5% loss). This is expected since 
global mapping imposes no location restrictions that would limit the 
REMEDIATE mapper. Therefore more cache capacity can be saved 
as more candidates for remapping are available to the REMEDIATE 
mapper. The same reasoning explains why M4 achieves the highest 
capacity savings among all adjacent policy modes. 

TABLE III. Percentage of disabled cache area using REMEDIATE 
Bit failure rate (Voltage) 

Policy Mode 7e-8 2e-6 3e-5 3e-4 7e-4 1.5e-3 3e-3 6e-3 
(0.6) (0.55) (0.5) (0.45) (0.425) (0.4) (0.375)(0.35) 

MJ 0.8 6.4 10.9 13.8 22.5 49.2 55.1 78.4 
Adjacent M2 0.8 6.3 9.8 11.4 17.5 47.5 56.4 70.4 

(PO) M3 0.8 6.3 9.6 11.7 17.0 38.4 45.3 65.3 
M4 0.8 6.3 9.6 11.6 16.1 35.0 41.7 62.0 

Global (Pl) - 0.7 5.4 7.3 10.5 14.5 20.5 24.2 45.2 
No Remap - 11.8 71 94 99 100 100 100 100 

A. Overheads 

Figure 6 summarizes the overheads of our scheme over baseline, 
no matter which remapping policy has been selected. The power 
overhead in this figure is for the nominal Vdd (0.7V). We account for 
the overheads of using 8T SRAM cells [13] for protecting the tag 
and defect map arrays in low-power mode. To reduce the effect of 
leakage and dynamic power consumption of PFM in high-power 
mode, we assume clock gating and power gating is applied in the 
PFM array. Therefore, the main source of dynamic power in nominal 
Vdd relates to bypass MUXs. As shown in this figure it is trivial and 
less than I %. As evident in Fig. 6, the fault map area is the major 
component of area overhead. The total area overhead is less than 
12%. In REMEDIATE, the PFM and MULTIPLEXING layer are on 
the critical path of LLC cache access. Based on our timing analysis, 
we consider 2 additional cycles as LLC access latency overhead. 
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B. Performance Analysis 

In Fig. 7 we report performance metrics in terms of the weighted 
speed up and normal arithmetic mean IPC for various workloads and 
policies in Vdd=O.4V. We observe that PI demonstrates the worst 
performance among all polices. We know that this policy saves more 
cache capacity than other policies (Table III) and also increases the 
network traffic and access latency as depicted in Fig.8(b). In fact, at 
this voltage network latency and traffic have more impact on 
performance than cache capacity. Also, we observe that in adjacent 
remapping policy (PO), by increasing the number of target blocks 
from one to three (Ml to M3) which comes with saving more cache 
capacity (Table III), both IPC and speedup are increased. However, 

-+-P1 ___ POM1 ........ POM2 -+-POM3 �POM4 

(a) 
� 

45 

� � 40 

� ,J:. ....... ..... .... � 
� 35 � " .c 
§ 30 z 

"-� 25 � ..: 
u 20 

0.35 0.4 0.45 0.5 055 0.6 

VddlV) 

-+-P1 ___ POM1 ........ POM2 "";'-POM3 �POM4 

(e) c. 
� 1 

� ......,j � 0.95 

./ � 0.9 

� � 0.85 
.� ...." ;: 0.8 
"C V .� 0.75 

� 0.7 

<; 0.35 0.4 0.45 0.5 0.55 0.6 z 

VddlV) 

-+-P1 ___ POM1 ........ POM2 "";'-POM3 �POM4 

(e) 
18 

16 

14 ........ 
! 12 --

10 

3 � .... 8 
a 

6 ......... "" 
4 

2 

0 

0.35 0.4 0.45 0.5 055 0.6 

VddlV) 

there is a falloff in performance for POM4 that similar to PI policy, 
at this point the impact of network traffic and latency is more 
affecting the performance than cache capacity (Fig. 7). 
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Fig. 7. Normalized performance results of four selected policies for different 
workloads in V dd=400m V. 

Figure 8(a) shows the number of LLC accesses for different 
policies. Obviously, the policies that have more target options for 
remapping have higher accesses. Also, decreasing the voltage causes 
more remapping which leads to higher cache accesses. However, 
going below 0.4 V causes a large section of the cache to be disabled 
which leads to decrease in the number of accesses. 

In Fig. 8(b) we report the average packet latency (excluding LLC 
bank hit latency) across different voltage levels. A clear trend seen in 
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Fig. 8. (a) LLC average number of accesses, (b) Average flit latency (excluding LLC bank latency), (c) Normalized miss rate, (d) Weighted 
speedup, (e) Total power (network + LLC banks), (f) EDP for various REMEDIATE policies and across different voltage levels. 



this figure is the increase in flit latency as the voltage scales down 
below 0.50 V. Above that point there is not a noticeable difference in 
flit latency as the probability of failure and the lost cache capacity 
due to voltage scaling is pretty small (results in Table III). Fig. S(c) 
shows the normalized speedup results as performance evaluation of 
different policies. As we can see, performance across various 
workloads and policies drops significantly for voltage lower than 
0.45V because of large cache capacity loss and higher access latency. 
Another interesting observation is how the various policies impact 
performance at different voltage levels. In mid-range voltages 

(0.4-0.45V), POM4 impacts performance more than other adjacent 
policies. In fact, although POM4 saves more cache capacity 
compared to POMI-POM3, it degrades performance as it increases 
network traffic and the total number of LLC accesses, as reported in 
Fig. Sea). So, different modes of PO policy represent a tradeoff 
between effective cache capacity and network traffic and latency. 

At the lowest voltage level we observe a different behavior; PI 
policy can save larger cache capacity compared to other policies and 
has the lowest impact on the miss rate. However, the network 
overhead in terms of number of LLC bank access and average flit 
latency, in this policy is higher than other policies. For the mid-range 

voltages we observe a large variation in network traffic (Fig.S(a) and 
(b» for various policies. For high voltages (above 0.450V) and low 

voltages (below O.4V) we observe a small variation in network 
traffic. This can be explained as follows: for high voltages there is 
not much opportunity for REMEDIATE remapping as the probability 
of failure is small. For low voltages, due to very high probability of 
failure, a large portion of LLC cache is being disabled, which gives a 
small remapping opportunity for REMEDIATE. Overall, global 
mapping policy (PI) results in highest capacity savings and lowest 
LLC cache miss rate (reported in Fig. S(d». However, it comes with 
highest number of LLC accesses and network latency. For adjacent 
policies (POMI-POM4), as we allow more banks available for 
remapping, a higher cache capacity is saved (Table III) which results 
in lowering the LLC miss rate and increasing the network overhead. 

C. Power and Energy-Delay Analysis 

In Fig.S(e), we report total power include both memory and 
network power for various voltage levels and policies. Reducing the 
voltage comes with exponential increase in failure rate. Therefore, 
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reducing voltage causes more remapping of faulty areas by 
REMEDIATE and leads to higher network traffic and a larger 
number of LLC cache accesses (Fig.S(a) and (b» . In spite of that, the 
overall power reduces, as dynamic power is reduced quadratically 
and leakage power reduces linearly with voltage scaling. Unlike 
memory banks, the network power does not change noticeably. Since 
the cache banks are major source of power consumption in LLC, the 
voltage scaling is only applied to the banks and not the interconnect 
subsystem. Moreover, applying the voltage scaling to the 
interconnect network is more complex and comes with non-trivial 
performance degradation. As we lower the voltage below 0.450 V, 
the policies with higher network traffic and higher number of LLC 
cache accesses dissipate slightly higher power than others. 

The energy-delay product (EDP) results are shown in Fig.S(t). For 
high voltages, EDP reduces significantly as voltage scales down. For 
low voltages, EDP increases as the performance degrades 
significantly. For mid-range voltages, we observe a good trade-off 
between power saving and performance loss (Fig.S(d) and (e», 
achieving the lowest energy delay product. 

D. Network Analysis 

In this section we analyze the impact of network configuration on 
power and performance of our proposed policies. We report the 
results for three separate router configurations, including 
High-Performance (HP), Moderate-Performance (MP) network (our 
baseline), and Low-Performance (LP) as explained in Section VI.B. 
Figure 9 shows the effect of router configuration on performance and 
power results for PI policy. As we lower the voltage, we observe 
smaller performance impact in MP and HP network. In fact, these 
routers have higher capacity to tolerate higher network traffic. For 
voltage points in 0.375-0.425V, the performance gap in terms of 
weighted speedup and average packet latency between low 
performance and high performance network is widening. This is 
expected since in this voltage range applying REMEDIATE 
remapping policies results in highest network traffic as shown in Fig. 
9(a). Hence, a low performance network can severely degrade 
performance. The power results reported in Fig. 9( c), indicate the 
network with high performance routers has higher power dissipation 
as compared to other network configurations. 
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Fig. 9 .  (a) Average flit latency (excluding LLC bank latency); (b) Weighted speedup; (c) Total power (network + LLC banks); (d) EDP for 
various network configurations and across different voltage levels. 



E. Quantitative Comparison to Alternative Techniques 

In order to illustrate the benefits of our design, we quantitatively 
compare REMEDIATE with the baseline 6T SRAM cell, two recent 
multi-bit ECC-based techniques (2D ECC [18] and MS-ECC [17]), 
three recent remapping-based techniques (Ansari [I 0], 
FFT-Cache[12], and Archipelago[II]), and two other state of the art 
works (Bit-fix[24] and lOT SRAM cell[14]). Table IV summarizes 
this comparison based on the minimum achievable Vdd, area 
overhead for the caches, power overhead, normalized IPC, and 
normalized power. In order to have a fair comparison, the remapping 
configuration and coding granularities are set so that the coding 
overheads of the ECC-based techniques are equal/comparable to 
disabled capacity of other methods (i.e 25%). In this table, different 
techniques are sorted based on their minimum achievable Vdd, when 
targeting 99.9% yield for on-chip caches. 

TABLE IV. Comparison of different cache protection Schemes 

Scheme 
Vdd-min Area Power Norm. Power norm. tu 

(mV) over. (%) over. (%) [PC REMEDIATE 

6T cell 660 0 0 1 .0 4 .5 1 

)D ECC [ 1 8] 470 6 .5  15  0 .96 1 . 82 

MS-ECC [ 1 7] 440 6 1 0  0 .90 1 .6 1  

Bit-fix [24] 420 8 20 0 .89 1 .4 1  

Ansari [ 1 0] 4 1 0  1 5  8 0 .96 1 .33  

l OT cell [ 14] 380 66 24 1 .0 1 .24 

FFT-Cache [ 12] 375  10  8 0 .95 1 .2 1  

Archipelago [ I I ]  370 12  7 0 .95 1 . 1 8  

REMEDIATE 360 1 1  8 0 .95 1 .0 

Overall, REMEDIATE achieves the lowest operating voltage 
(360mv) and the highest power reduction compared to all other 
techniques. Since ECC-based techniques cannot tolerate high failure 
rates in very low voltages, their minimum Vdd is higher than 
remapping based methods. The closest techniques to ours are 
Archipelago, FFT-Cache, and lOT cell. However, lOT cell incurs a 
66% area overhead and 24% power which are much more than our 
method overheads. Comparing to FFT-Cache and Archipelago, 
overheads are almost equal, but our scheme can achieve a lower V dd 
and higher power saving. Overall, the scalability of REMEDIATE 
for large shared NUCA caches along with efficient remapping, high 
configurability, and inherent flexibility allows it to tolerate higher 
failure rates compared to other similar techniques. 

VIII. CONCLUSION 

The design of NUCA LLC in CMP architectures is challenging 
due to the often conflicting tradeoffs of reliability, manageable power, 
and performance. In this work, we proposed REMEDIATE, a 
fault-tolerant scalable cache architecture for shared NUCA LLC in 
tiled CMPs. REMEDIATE leverages address remapping to replicate 
faulty blocks of shared LLC banks with blocks from other banks. It 
utilizes two remapping policies for efficient selection of redundancy 
from different cache banks considering design challenges in a NUCA 
memory organization. Our experimental analysis shows that as cache 
operating voltage scales down, REMEDIATE increases available 
cache capacity and hence maintains performance even in the 
presence of high failure rates. We show that REMEDIATE is most 
effective in lowering power and EDP in the mid-range voltages 
(0.375 � 0.450 V). Our results indicate that REMEDIATE saves up 
to 50% power consumption of LLC cache in a 4x4 CMP architecture 
operating below O.4V while recovering up to 80% of the faulty cache 

capacity with only modest performance degradation. 
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