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Abstract—We propose an innovative meteorological radar, 

which uses reduced number of spatiotemporal samples without 

compromising the accuracy of target information. Our approach 

extends recent research on compressed sensing (CS) for radar 

remote sensing of hard point scatterers to volumetric targets. The 

previously published CS-based radar techniques are not 

applicable for sampling weather since the precipitation echoes 

lack sparsity in both range-time and Doppler domains. We 

propose an alternative approach by adopting the latest advances 

in matrix completion algorithms to demonstrate the sparse 

sensing of weather echoes. We use Iowa X-band Polarimetric 

(XPOL) radar data to test and illustrate our algorithms.  
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I. INTRODUCTION 

Over the last two decades, weather radar has proven to be a 
valuable instrument providing critical precipitation information 
through remote sensing of the atmosphere [1]. Modern weather 
radar systems require an accurate and efficient information 
abstraction of voluminous data in real time. For example, a 
typical pulsed Doppler weather radar system samples data at 
1000 range bins at 1 kilohertz pulse repetition frequency 
(PRF), generating approximately a million samples of complex 
time series data per second. The volume of time series data is 
sufficiently large that, in general, its storage for later analysis is 
impractical and advanced real time signal processing is a 
challenge [2]. One of the essential functions of weather radar 
signal processing is to reduce the data volume by restyling time 
series data into more meaningful meteorological data products. 

The volume of radar signal acquisition is greatly affected 
by the dwell time, i.e., the time duration a radar beam spends 
hitting a particular target [3, 4]. Surveillance radars constantly 
scan the target scene in order to provide quick updates on the 
movement of targets-of-interest. The scan rate of the radar is 
often limited by the dwell time, which, in turn, is determined 
by the precision necessary to ascertain information about the 
target. A longer dwell time would lead to a more accurate 
target information, but, simultaneously, it would decrease the 
update rate of the target scene. Using conventional radar 
hardware and signal processing techniques, it is difficult to 
maintain the data quality with faster scan rates. 

Despite the initial massive time series data acquisition by 
the weather radar, the end products are often reasonably 
downsized in volume leading to a pertinent question: could 
lesser samples have been acquired in the first place? In this 
paper, we present a novel meteorological radar sampling and 
processing scheme that allows for smaller dwell times without 
significant loss of target information. Our philosophy is to 

adopt recent advances in compressed sensing (CS) for the 
particular application of weather radar. CS is a novel signal 
processing technique that unites sampling and digital data 
compression in a single step by relying on the inherent sparsity 
of the data in some dictionary [5]. While conventional signal 
processing methods sample at Nyquist-Shannon rate and then 
compress the data for minimal storage, CS allows sampling of 
only useful information at lower sampling rates. 

A. Relation to prior work 

Much of the existing research on applying CS to radar 
applications is devoted to hard target radars [6], where the 
target is contained in a single range bin resulting in sparsity in 
both range-time and frequency. Another natural candidate for 
CS application is multiple-input-multiple-output (MIMO) radar 
system where, in addition to range and Doppler, the radar 
signals are also sparse in angle space [7, 8]. CS application to 
radar imaging as that of terrain using synthetic aperture radar 
(SAR), isolated targets using inverse synthetic aperture radar 
(ISAR), and through-the-wall targets using ultra-wideband 
radars is another major research focus [6, 9]. CS-based imaging  
[10] is shown to reduce receiver hardware complexity by 
eliminating pulse compression [6], decrease data sampling cost 
[11] and enhance target detection resolution [12]. 

 Among volumetric target radars, [13] uses compressed 
sensing to achieve better noise removal and high resolution 
detection of meteors which, though distributed over many 
range cells, are assumed to be highly localized in both range-
time and frequency domains. There have been some attempts 
to use CS in weather radars for specialized tasks such as 
refractivity retrieval [14] by using the sparsity of refractivity 
difference in the discrete cosine transform (DCT) domain and  
making measurements using a phased-array antenna [15]. A 
related  meteorological application is downscaling [16], where 
the sparsity of the rainfall image in wavelet domain is used to 
form a high-resolution precipitation image from low-resolution 
measurements [17]. Downscaling adds details to a low-
resolution image using CS, but the radar data are obtained 
using conventional scanning and long dwell times. Also, CS-
based downscaling is applied on the image of the rainfall data 
rather than directly on received radar signal. 

The potential of CS in radar remote sensing of precipitation 
targets is relatively unexamined so far. The CS techniques 
developed for the hard target radars cannot be directly applied 
to weather radars because the precipitation echoes may not 
necessarily have sparsity in either range-time or Doppler. We 
resolve this issue by modeling the remote sensing of weather as 
a low-rank matrix completion problem since weather radar 
returns exhibit high spatial and temporal correlations [2]. 
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Fig. 5. 

Fig. 1. (a) Point targets on a radar display. (b) Spatially sparse precipitation (Iowa XPOL-2 radar data observed on 0139 UTC, Jun 13, 2013). (c) Precipitation 

echoes are sparse along only a few range profiles (0150 UTC, Jun 13, 2013). (d) Precipitation returns do not exhibit spatial sparsity (2308 UTC, Jun 12, 2013). 

Fig. 2. Typical Doppler signatures for (a) point targets and (b) weather 

echoes in white noise using pulse repetition frequency = 2 kHz for an X-Band 

radar. Two incoming and two outgoing point targets are shown in (a). In (b), 

the estimated parameters are mean velocity ≈ 6 m/s and spectrum width ≈ 

3.5 m/s. 

B. Our contributions 

 Matrix completion approach for sparse sensing of point 
targets has been previously proposed for a colocated MIMO 
radar [7], even though sparsity already exists in range-Doppler-
angle space. However, this kind of remodeling is not applicable 
to weather radar signals as they usually lack sparsity in such 
conventional domains. We propose sparse sampling of 
precipitation as partially observing a low-rank matrix and then 
view reconstruction of the target scene as recovering the full 
matrix. Unlike several other CS-based radar studies, we use 
real data from Iowa XPOL radars [18] to verify our algorithms.  

II. GENERAL CONSIDERATIONS 

 The compressed sensing deals with an NP-hard problem of 

minimizing the    norm [5] i.e., the number of non-zero vector 

elements. The key result from the theory of compressed 

sensing states that, under certain “incoherency” conditions on 

the measurement process, this NP-hard problem can be 

replaced by its closest convex approximation: minimizing the 

  norm. For CS techniques to succeed the radar signals must 

be sparse and measurements must be incoherent. 

A. Sparsity 

In the context of scanning radar, the spatial domain often 
has the same connotation as the time domain since every 
spatially distinct return is acquired at a different time instant. 
Let    ( )be the complex transmitted signal waveform at time 
 . Then, the received signal from the scatterer at range   is 
given by, 

    ( )    (   )   (  (   ⁄ )) (1) 

where  (   ) is the time-varying scattering amplitude or target 
reflectivity and   is the speed of light. The received voltage is 

the complex envelope of this received signal. If there are 
multiple scatterers along the range, then the received signal is 
the convolution of transmitted signal with the reflectivity 
profile  (   ),  

    ( )   ∫  (   )   (  (   ⁄ ))  
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where      is the maximum unambiguous range of the radar. 
If the transmit pulse-width is   , then the entire range profile 
can be divided into   range bins of length         ⁄ . Here, 
   ⌊      ⁄ ⌋. The scattering amplitude or reflectivity can 
be expressed as a discrete sum of the reflectivities of   
individual scatterers each located at range    as, 

  (   )  ∑ (    ) (    )
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where  ( ) is the Kronecker delta function. For point target 
radars,     implying that the radar signal is sparse in spatial 
or range-time domain. For example, Fig. 1(a) illustrates a 
typical radar display for aircraft surveillance radar, in which 
every red dot indicates an aircraft. On the other hand, weather 
radars sample precipitation echoes which extend over several 
range cells, often the entire radar coverage range, so that it is 
quite common to have    . The meteorological reflectivity 
product Zh that has units of dBZ is given by [1, p.82], 

   ( )      ( )             (4) 

where     is the mean received power (in dBm), C is the radar 
constant, and r is the range (in km). Fig. 1(b)-(d) show that the 
Zh for precipitation need not always have spatial sparsity.  

 The radar signals from point targets are also sparse in 
frequency domain [19] because the corresponding spectrum 
shows only a finite number of Doppler frequencies    (as 
shown in the simulation of Fig. 2(a)). Assuming   to be the 
radial Doppler velocity of the target and   the operational radar 
wavelength, we have       ⁄ , which appears as a spike in 
the spectrum sampled at frequency        ⁄ . Due to the 
simple scaling relationship (for a constant  ),   and    are often 
used interchangeably. In the case of weather, the appropriate 
spectrum descriptor is power spectral density  ( ), since here 
the reflectivity  (   ) is also a random process (due to random 
locations of the scatterers). However, unlike point targets, the 
power spectral density of the weather echo closely follows a 
Gaussian shape [1, p. 136] and occupies a continuum of 
spectrum (thereby excluding any possible spectral sparsity): 
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where   is the mean velocity of precipitation and the standard 
deviation    is known as the spectrum width (Fig. 2(b)). 
Therefore, in general, precipitation is not sparse in frequency 
domain as well. 

B. Sampling Schemes 

Most of the proposed strategies to ensure incoherence 
require changes in the waveform (“Alltop” sequence) [12], or 
using multiple radars on ground [8]. However, the most 
relevant scheme for our work is randomly sampling range bins 
in the radar coverage area using an array of antenna elements, 
as previously proposed for point target radars in [19]. If the 
antenna is not phased array but, say a parabolic dish, such a 
random sampling can be achieved by randomly selecting only a 
few time samples to pass through the receiver. This approach 
would require scanning the entire target scene (and therefore 
not reduce the dwell time), and then discard many samples 
randomly. An alternative can be setting the radar antenna to 
scan at a very high scan rate. Under normal scanning speeds, a 
weather radar produces meteorological estimates by averaging 
over several azimuths. Therefore, should the radar to scan at a 
very fast scan rate, it would then dwell less on each azimuth 
and would randomly “miss” other azimuths (which would have 
been otherwise dwelled by the radar at a normal scan rate). 
This scan strategy would then produce randomly sensed 
samples (fewer than a slower scan rate) for each range cell. 

III. SPARSE SAMPLING OF WEATHER ECHOES 

Although weather radar signals cannot be modeled as 
sparse in conventional dictionaries such as time and frequency, 
the backscattered signal in a weather radar is coherent [2]. In 
other words, the motion among the precipitation scatterers is 
small compared to the radar wavelength, so their relative 
positions produce highly correlated echoes from sample to 
sample and scan to scan. This inherent redundancy in weather 
radar signals implies that the range-azimuth scan of 
precipitation echoes can be modeled as a low-rank matrix. 
Low-rank matrices are the multi-dimensional equivalents of 
one-dimensional sparse vectors. Given a matrix       , its 
singular value decomposition (SVD) is given by,   
                             (       )  where 
          are the unique singular values and   
   (   )is the rank of the matrix. For a low-rank matrix, 
most of the diagonal elements of   are zero such that,   
   (   ). The best   -rank approximation  ̃ of the matrix   
is given by zeroing out the      smallest singular values so 

that,  ̃    ̃       ̃      (              ).  

As an illustration, in Fig. 3 we plot the singular values of 
the spatially non-sparse 1930 (range gates) by 413 (azimuthal 
rays)    data matrix corresponding to the actual Iowa XPOL-2 
radar data of Fig. 1(d). We observe that most of the singular 
values are very small or close to zero (due to highly correlated 
spatial samples of weather backscatter). In Fig. 4, we show the 
effect of low-rank approximation on the original weather echo. 
It should be noted that a very small fraction of detailed features 
are lost in the low-rank approximations of weather radar 
reflectivity product, illustrating the rank sparsity in the real 

 

Fig. 3. (a) Original Zh data and (b) plot of its ordered singular values. 

 

Fig. 4. (a) Full rank original   . Low rank approximations of original data 

using (b) 40% (c) 25% (d) 5% of the most significant singular values. 

weather radar echoes. This makes it possible to apply current 
research in matrix completion to fully recover a low-rank 
matrix from a randomly observed sample of its entries [20].  

 Let Ω denote the set of the random locations of the partially 
observed entries of the original low rank matrix  . Then, 
recovering   corresponds to the rank minimization problem:  

(  ) 
             ( )  

                   (   )    
(6) 

However, like   minimization, rank minimization is also 

intractable. The approach to low-rank matrix completion is 

therefore to minimize the matrix equivalent of   , i.e., the 

nuclear-norm ‖ ‖  ∑    , 

(  ) 
         ‖ ‖   

                   (   )    
(7) 

 In Fig. 5, we reconstruct the sparsely sampled 
meteorological reflectivity using singular value thresholding 
(SVT) [21] for nuclear norm minimization. Although the 

illustrated reconstruction uses a low-rank approximation  ̃  as 
matrix  , the results are not very different if    itself is used 
with some modifications to problem    (the relative errors    
and    are of the same order). The very close similarity of the 
reconstructed data distribution with the original clearly 
illustrates the potential of CS for weather radars. 



IV.  DISCUSSION AND SUMMARY 

We proposed an unconventional weather radar paradigm 
that employs compressed sensing techniques to reduce the 
radar scan time without any significant loss of target 
information. We posed the sparse sampling of weather radar 
targets as a low-rank matrix completion problem, and verified 
our approach using real data from the Iowa XPOL radars. In 
this preliminary formulation of CS-based meteorological radar, 
we greatly simplified the radar signal model by ignoring the 
effects of receiver noise, ground clutter, mixed-phase 
hydrometeors and use of dual-polarization. In future work, it 
will be interesting to investigate these effects for the proposed 
CS-based meteorological radar. 
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Fig. 5. (a) Original    (b) Low rank approximation  ̃  of original    obtained by retaining 25% of the most significant singular values (c) Randomly sampled one-

third entries of  ̃  (d) Reconstructed reflectivity  ̂  using SVT. Histograms of data corresponding to (e)    (f)  ̃ , and (g)  ̂ . Two relative error metrics    and    

are computed. ‖ ‖  denotes the Frobenius norm.  


