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ABSTRACT
At half-meter resolution the earth’s surface has roughly 600
Trillion pixels. The need to process satellite imagery at such
enormous scales for automated semantic categorization and
the requirement to repeat this process at time-stipulated inter-
vals demand optimal strategies to scan, extract, and, represent
image features for accurate land-cover detection. In this pa-
per we focus on developing optimal strategies for semantic
categorization of image data which often involves computa-
tionally intensive feature extraction and mapping processes.
Our proposed semantic categorization framework involves
feature extraction and mapping at multiple levels. Initially,
we examine low-level pixel features such as edge gradients,
orientations, and intensity values to compute feature vector
based on aggregate statistics. At the second level we generate
line based representation by connecting edge gradients to
extract higher-order spatial features on image scenes that are
screened by the first level. By employing a multi-level fea-
ture analysis strategy we develop a semantic categorization
framework that is computationally efficient and accurate. We
tested our approach for the automated detection of mobile
home park scenes, a challenging land-cover class, using one-
meter aerial image data. We report the detection performance
of our system. We envision that such changes to traditional
feature analysis are necessary for the massive image analysis
challenges.

Index Terms— mutli level analysis, semantic classifica-
tion, mobile home parks

1. INTRODUCTION

With the availability of high spatial resolution data, mapping
requirements are subsequently shifting from general land
cover information such as grass, buildings, roads etc., to de-
tailed semantic scene categories such as golf courses, school
campuses etc. Semantic categorization of aerial imagery of-
ten involves deriving an intermediate representation of the
imagery to quantify features that characterize the geometri-
cal, spatial, and appearance attributes of physical structures
in the scene. However, transforming image data to such in-
termediate representation and extracting high-order features

Fig. 1. Line based representation of aerial scenes. We com-
pute local line pattern statistics based on difference in line
orientations, length, position within a local neighborhood and
line contrast statistics from the image patches to generate
higher-order scene features that can yield accurate semantic
categorization of the scene. The image patches shown here
represent mobile home parks.

from the representation is a computationally intensive pro-
cess, but often necessary to generate accurate categorization
for challenging semantic classes.

Previously, researchers have explored several interesting
approaches based on pixel and object (homogeneous and con-
tiguous pixels) attributes for high-resolution image classifica-
tion. Most of the previous work [1] focused on improving
the classification accuracy of the process. Often the chal-
lenge of scaling the solutions for large-scale operations is
overlooked. Although pixel and object-based classification
approaches, such as [2, 3], produce accurate thematic map-
ping, they rarely capture the complex relationship between
physical objects that explain the semantics of the scene cate-
gory. In this work we employ a line based feature extraction
and representation strategy to capture the structural and spa-
tial patterns in the scene. To address the computational chal-
lenges involved in generating such a representation for large-
scale image analysis, we employ a tiered analysis scheme.
We first use a local pixel-level attributes such as intensity
and edge orientation statistics at the initial level for identi-
fying image patches (scenes) with built-up presence. The im-
age patches that have built-up presence are further processed
to extract line representation at the second level. Figure 1
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Fig. 2. Overview of the proposed framework. At the first level we examine pixel-level features for screening image patches that
needs to be further processed for semantic categorization. The feature extraction process is based on first-order gradient and
intensity statistics. We employ a SVM based classifier to identify image patches that need further processing. The second level
of the process involves generating line based representation by connecting pixel gradients to generate higher-order line features
for semantic category detection. The line generation process and feature extraction process is computationally intensive and by
reducing the image volume that needs to be processed by the computationally intensive stage, we improve the overall efficiency
of the process without compromising the detection performance.

.

shows line based representation generated from a few sample
high-resolution overhead scenes. We compute local line pat-
tern statistics such as difference in line orientations, length,
position within a local neighborhood and line contrast statis-
tics from the image patch to generate higher-order scene fea-
tures that can yield accurate semantic categorization of the
scene.We show that such a strategy can yield high process-
ing efficiency without compromising the classification perfor-
mance. We apply our technique to detect mobile home park
scenes in high-resolution aerial imagery.

2. MULTI-LEVEL FEATURE ANALYSIS
FRAMEWORK

Here we briefly describe our multi-level analysis framework.
Figure 2 shows an overview of the proposed framework. First,
we normalize the image by subtracting the mean out and di-
viding by the standard deviation. We operate on the gray scale
image. Next, at each pixel we compute the intensity gradient
magnitude and orientation.

2.1. First-Level Features

For the first level feature analysis we use the gradient features
and raw intensity data for feature computation. We divide
the image into non-overlapping square pixel-blocks consist-
ing of 16 × 16 pixels. At each pixel block we compute sta-
tistical parameters from edge orientation histogram and first-
and second-order local pixel intensity statistics. For the edge
orientation statistics we compute three heaved central shift

moments (order = 0,1, and 2) and two orientation measure-
ments. The two orientation measurements are the magni-
tude of the histogram peak and the absolute sine difference
of the orientations corresponding to the two highest peaks.
For the first-order intensity statistics we simply compute the
mean and variance measurement of the pixel intensity. For
the second-order intensity statistics we compute intensity co-
occurrence matrix and compute contrast feature from the co-
occurrence matrix. For each pixel-block we perform the fea-
ture extraction at five scales where each scale is characterized
by the spatial window from which the edge orientation and
pixel intensity statistics are generated. We employ a square
window and the window size at the five scales are 16, 32, 48,
64, and 80 pixels. Except for the first scale, we extract 7 fea-
tures (5 edge orientation feature and 2 raw intensity statistics)
from each scale. For the first scale along with the 7 features
we also compute the gray-level co-occurrence feature. We
refer interested readers to our previous work [4]. Next we
learn a SVM based detection model to classify pixel-blocks
with built-up presence. We use manually labelled data to per-
form the model training. For each image patch that has pixel-
blocks with built-up labels less than a pre-defined threshold
is eliminated from the second level computationally intensive
feature extraction.

2.2. Second-Level Features

For the second level feature generation we use the pixel in-
tensity gradient magnitude and orientation values to generate
lines representing linear features in the scenes. Our approach
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begins by extracting straight line segments from the image by
grouping spatially contiguous pixels with consistent orienta-
tions as reported in [5]. The orientations are quantized into 8
bins ranging from 0◦ to 360◦ in 45◦ intervals. To avoid line
fragmentation attributed to the quantization of orientations,
we quantize the orientation into another 8 bins starting from
22.5◦ to (360 + 22.5)◦ in 45◦ intervals. Spatially contiguous
pixels falling in the same orientation bin form the line sup-
porting regions. Regions are generated based on the different
quantization schemes separately and the results are integrated
by selecting line regions based on a pixel voting scheme. We
ignore pixels having gradient below a threshold (.5 for im-
age intensity ranging between 0 and 1) to reduce noisy line
regions. We compute the line centroid, length, and orienta-
tion from the Fourier series approximation of the line region
boundary. Figure 1 shows lines generated from the input im-
ages. We refer interested readers to [6, 7].

Next, to compute higher-order local line pattern statis-
tics, we perform a neighborhood analysis around each line
using the nearest 30 neighbors. For each line, we compute
the histogram of the distance to the neighbors as one of the
line features. For each line, we also compute the histograms
of differences in line length and orientation between the line
and it’s neighbors as addiitional features. This results in a
154 length feature vector for each line. In order to model the
line patterns, we develop a codebook representing the clus-
ter centers generated from line feature vector by employing
K-means clustering. Next, each line is mapped to the cor-
responding codebook entry based on the distance proximity.
For the input image we produce a histogram of the cluster
labels in addition to the histogram of line brightness values
to form the final feature vector. We learn a SVM based de-
tection model based using labeled feature vectors to detect
mobile home parks.

3. EXPERIMENTS

The performance of the multi-level framework was tested
at two separate stages: (i) detection performance at second-
level, and (ii) overall detection performance when both the
first and second level are combined. The performance of
the first level analysis, which predominantly detects built-up
areas, is close to 85%. We refer interested readers to our pre-
vious work [4] for the detailed performance assessment. Two
separate datasets were used for the two stages as discussed in
the following paragraphs.

3.1. Dataset

To assess the higer-order level features, a preliminary visual
analysis of the mobile parks using USDAs National Agricul-
ture Imagery Program (NAIP) imagery was performed across
the US identity different mobile home park scenes. Based
on this analysis, a database of one-meter aerial scenes (300

x 300 pixels) was compiled from 10 different cities that ex-
haustively covered the majority type of mobile home parks
and other categories. For each scene a context size of 300
meters was carefully chosen to be large enough to capture
the spatial context of the mobile home parks scene. A total of
610 positive samples and 7,813 negative samples representing
mobile home parks scene category were collected. In order to
assess the performance of these features in detecting mobile-
home park scenes, a geographically stratified cross validation
technique was designed using the aerial scene database. Un-
der this scheme we iteratively hold samples from one geo-
graphic area for testing and trained a linear SVM classifier
using the samples from all the other geographic area. To as-
sess the overall accuracy, a 5-fold cross validation was also
performed without geographical stratification.

To evaluate the performance of the entire framework, two
large-scale aerial images ( 25km2) from San Ysidro, CA and
Rochester, NY were chosen. In the case of large-scale image
analysis, we use a moving window of 300 meters context size
and a step size of 100 meters. The moving windows were
classified using a SVM model developed based on the sam-
ples collected previously for the higher-order level feature as-
sessment.

3.2. Results

For the second-level analysis the overall mobile home parks
scene detection accuracy for each chosen city is shown in Ta-
ble 1. The average overall accuracy is 96.80% with a preci-
sion and recall of 72.13% and 81.48% respectively for mo-
bile home samples . The very low false positive rate and high
true positive rate suggests that the chosen higher-order fea-
tures can be very useful formobile home parks scene detec-
tion. For the overall assessment of our multi-level framework
we conducted mobile home park detection on the Rochester
and San Ysidro imagery. The results are shown in Figure 3.
We processed a total of 4484 windows resulting in detection
rate of 87.9 % and false positive rate of 0.25 %. Similarly for
the San Ysidro imagery, a total of 2695 windows were pro-
cessed with a detection rate of 70 % and a false positive rate
of 0.55 %. Filtering of image patches using the first level fea-
tures contributed to the reduction of false positives as well as
for improving the computational efficiency.

4. CONCLUSIONS

In this paper, we have presented a multi-level framework for
detecting mobile home park scenes from high-resolution im-
agery. We employ a tiered analysis approach to address the
computational challenges in generating complex higher order
features. The higher order features are designed for detecting
dense mobile home park scenes. Currently we are extending
our work to detect sparse mobile home park scenes by inves-
tigating adaptive window sizes and multi-scale approaches.
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Table 1. Mobile home parks scene detection accuracy (in %) for different cities. Al - Albuquerque, Bu- Buffalo, He-Helena,
Ja-Jackson, Lo-Louiseville, Ph-Phoenix, Ri-Ri-Riverside, Sac-Sacremento, Sfo-San Francisco, San-Santa Fe.

City Al Bu He Ja Lo Ph Ri Sac Sfo San
Accuracy(%) 93.5 82.5 61.1 73.5 96.3 93.2 66.7 82.1 99.6 85.3

We are also porting our work to GPU based cluster architec-
ture to support national level critical infrastructure assessment
and monitoring.

Fig. 3. (a) Rochester image marked with manually delineated
reference polygons for mobile home parks (b) Red regions
overlaid on the imagery represents output from first level (c)
mobile home park detections produced second level marked
in yellow. (d) - (g) show true positive and (h) - (i) show false
positive detections.
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