
HAL Id: hal-00773398
https://hal.science/hal-00773398v1

Submitted on 13 Jan 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Structuring typical evolutions using Temporal-Driven
Constrained Clustering

Marian-Andrei Rizoiu, Julien Velcin, Stéphane Lallich

To cite this version:
Marian-Andrei Rizoiu, Julien Velcin, Stéphane Lallich. Structuring typical evolutions using Temporal-
Driven Constrained Clustering. The IEEE International Conference on Tools with Artificial Intelli-
gence (ICTAI), Nov 2012, Athene, Greece. pp.610–617. �hal-00773398�

https://hal.science/hal-00773398v1
https://hal.archives-ouvertes.fr


Structuring typical evolutions using

Temporal-Driven Constrained Clustering

Marian-Andrei Rizoiu

ERIC laboratory

University Lumière Lyon 2.

Email: Marian-Andrei.Rizoiu@univ-lyon2.fr

Julien Velcin

ERIC laboratory

University Lumière Lyon 2.

Email: Julien.Velcin@univ-lyon2.fr
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Abstract—In this paper, we propose a new time-aware dissim-
ilarity measure that takes into account the temporal dimension.
Observations that are close in the description space, but distant
in time are considered as dissimilar. We also propose a method
to enforce the segmentation contiguity, by introducing, in the
objective function, a penalty term inspired from the Normal
Distribution Function. We combine the two propositions into
a novel time-driven constrained clustering algorithm, called
TDCK-Means, which creates a partition of coherent clusters, both
in the multidimensional space and in the temporal space. This
algorithm uses soft semi-supervised constraints, to encourage
adjacent observations belonging to the same entity to be assigned
to the same cluster. We apply our algorithm to a Political Studies
dataset in order to detect typical evolution phases. We adapt the
Shannon entropy in order to measure the entity contiguity, and
we show that our proposition consistently improves temporal
cohesion of clusters, without any significant loss in the multidi-
mensional variance.

Keywords-semi-supervised clustering, temporal clustering,
temporal-aware dissimilarity measure, contiguity penalty func-
tion.

I. INTRODUCTION

Researchers in Social Sciences and Humanities (like Politi-

cal Studies) have always gathered data and compiled databases

of knowledge. This information often has a temporal compo-

nent, the evolution of a certain number of entities is recorded

over a period of time. Each entity is described using mul-

tiple attributes, which form the multidimensional description

space. Therefore, an entry in such a database would be an

observation, a triple (entity, timestamp, description). An

observation xi = (φl, tm, xd
i ) signifies that the entity φl is

described by the vector xd
i at the moment of time tm. Each

observation belongs to an entity and, consequently, each entity

is associated with multiple observations, for different moments

of time. For example, a database studying the evolution of

democratic states [1] will store, for each country and each year,

the value of multiple economical, social, political and financial

indicators. The countries are the entities, and the years are the

timestamps.

Starting from such a database, one of the interests of

Political Studies researchers is to detect typical evolution

patterns. There is a double interest: a) obtaining a broader

understanding of the phases that the entity collection went

through over time (e.g. detecting the periods of global political
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Fig. 1. Desired output: (a) the evolution phases and the entity trajectories,
(b) the observations of 3 entities contiguously partitioned into 5 clusters.

instability, of economic crisis, of wealthiness etc.); b) con-

structing the trajectory of an entity through the different phases

(e.g. a country may have gone through a period of military

dictatorship, followed by a period of wealthy democracy).

The criteria describing each phase are not known beforehand

(which indicators announce a world economic crisis?) and may

differ from one phase to another.

We address these issues by proposing a novel temporal-

driven constrained clustering algorithm. The proposed algo-

rithm partitions the observations into clusters, that are coherent

both in the multidimensional description space and in the

temporal space. We consider that the obtained clusters can

be used to represent the typical phases of the evolution of the

entities through time. Figure 1 shows the desired result of our

clustering algorithm. The observations of three entities (φ1, φ2

and φ3) are partitioned into 5 clusters (µj , j = 1, 2, ..., 5).

In Figure 1a) we observe how clusters µj are organized in

time. Each of the clusters has a limited extent in time, and

the time extents of clusters can overlap. The temporal extent

of a cluster is the minimal interval of time that contains all

the timestamps of the observations in that cluster. The entities

navigate through clusters. When an observation belonging to



an entity is assigned to cluster µ2 and the anterior observation

of the same entity is assigned in cluster µ1, then we consider

that the entity has a transition from phase µ1 to phase µ2.

Figure 1b) shows how the series of observations belonging to

each entity are assigned to clusters, thus forming continuous

segments. This succession of segments is interpreted as the

succession of phases through which the entity passes. For this

succession to be meaningful, each entity should be assigned

to a rather limited number of continuous segments. Passing

through too many phases reduces the comprehension. Simi-

larly, evolutions like µ1 −→ µ2 −→ µ1 −→ µ2 hinder the

comprehension.

Based on these observations, we assume that the resulting

partition must:

• regroup observations having similar descriptions into

the same cluster (just as traditional clustering does). The

clusters represent a certain type of evolution;

• create temporally coherent clusters, with limited ex-

tent in time. In order for a cluster to be meaningful, it

should regroup observations which are temporally close

(be contiguous on the temporal dimension). If there are

two different periods with similar evolutions (e.g. two

economical crises), it is preferable to have them re-

grouped separately, as they represent two distinct phases.

Furthermore, while it is acceptable that some evolutions

exist during the entire period, usually the resulted clusters

should have a limited temporal extent;

• segment, as contiguously as possible, the series of

observations for each entity. The sequence of segments

will be interpreted as the sequence of phases through

which the entity passes.

In this paper, we propose a new time-aware dissimilarity

measure that takes into account the temporal dimension. Ob-

servations that are close in the description space, but distant in

time are considered as dissimilar. We also propose a method to

enforce the segmentation contiguity, by introducing a penalty

term inspired from the Normal Distribution Function. We com-

bine the two propositions into a novel time-driven constrained

clustering algorithm, TDCK-Means, which creates a partition

of coherent clusters, both in the multidimensional space and in

the temporal space. This algorithm uses soft semi-supervised

constraints to encourage adjacent observations belonging to the

same entity to be assigned to the same cluster. The proposed

algorithm constructs the clusters that serve as evolution phases

and segments the observations series for each entity. The graph

structure represented in Figure 1a) is going to be addressed in

a future work, based on the clustering results obtained using

TDCK-Means.

The paper is organized as follows. In Section II we present

some previous related works and, in Section III, we intro-

duce the temporal-aware dissimilarity function, the contiguity

penalty function and the TDCK-Means algorithm. In Sec-

tion IV, we present the dataset that we use, the proposed eval-

uation measures and the obtained results. Finally, in Section V,

we draw the conclusion and plan some future extensions.

II. RELATED WORK

Leveraging partial expert knowledge into clustering repre-

sents the domain of semi-supervised clustering. The expert

knowledge is under the form of either class labels, or pairwise

constraints. Pairwise constraints [2] are either “must-link” (the

observations must be placed in the same cluster) or “cannot-

link” (the two observations cannot be placed in the same

cluster). Depending on the method in which supervision is

introduced into clustering, [3] divides the semi-supervised

clustering methods into two classes: a) the similarity-adapting

methods [4]–[7], which seek to learn new similarity measures

in order to satisfy the constraints, and b) the search-based

methods [2], [8], [9] in which the clustering algorithm itself

is modified.

The literature presents some examples of techniques which

are used to segment a series of observations into continuous

chunks. In [10], the daily tasks of a user are detected by

segmenting scenes from the recordings of his activities. Must-

link constraints are set between all pairs of observations, and

a fixed penalty is inflicted when the following conditions

are fulfilled simultaneously: the observations are not assigned

to the same cluster and the time difference between their

timestamps is less than a certain threshold. A similar technique

is used in [11], where constraints are used to penalize non-

smooth changes (over time) on the assigned clusters. This

segmenting technique is used to detect tasks performed during

a day, based on video, on sound and on GPS information.

In [12], the objects appearing in an image sequence are

detected by using a hierarchical descending clustering, that

regroups pixels into large temporally coherent clusters. This

method seeks to maximize the cluster size, while guaranteeing

intra-cluster temporal consistency. All of these techniques

consider only one series of observations (a single entity)

and must be adapted for the case of multiple series. The

main problem of a threshold based penalty function is setting

the value of the threshold, which is usually data-dependent.

Optimal matching is used in [13] to discover trajectory models,

while studying the de-standardization of typical life courses.

The temporal dimension of the data is also used in some

other fields of Information Retrieval. In [14], constrained

clustering is used to scope temporal relational facts in the a

knowledge bases, by exploiting temporal containment, align-

ment, succession, and mutual exclusion constraints among

facts. In [15], clustering to segment temporal observations

into continuous chunks, as a preprocessing phase. A graphical

model is proposed in [16], that uses a probabilistic model

in which the timestamp is part of the observed variables,

and the story is the hidden variable to be inferred. But still,

none of these approaches seek to create temporally coherent

partitions of the data, mainly using the temporal dimension as

a secondary information.

In the following sections, we propose a dissimilarity mea-

sure, a penalty function and a clustering algorithm in which

the temporal dimension has a central role, and which address

the limitations existing in the above presented work.



III. TEMPORAL-DRIVEN CONSTRAINED CLUSTERING

The observations xi ∈ X that need to be structured

can be written as triples (entity, time, description): xi =
(xφ

i , x
t
i, x

d
i ). xd

i ∈ D is the vector in the multidimensional

description space which describes the entity x
φ
i ∈ Φ at the

moment of time xt
i ∈ T .

Traditional clustering algorithms input a set of multidi-

mensional vectors, which they regroup in such a way that

observations inside a group resemble each other as much

as possible, and resemble observations in other groups as

little as possible. K-Means [17] is a clustering algorithm

based on iterative relocation, that partitions a dataset into k

clusters, locally minimizing the total distance between the

data points xi and the cluster centroids µj ∈ M (the col-

lection of centroids). At each iteration, the objective function

I = Σµj∈MΣxi∈Cj
||xd

i − µd
j ||

2 is minimized until it reaches

a local optimum.

Such a system is appropriate for constructing partitions

based solely on xd
i , the description in the multidimensional

space. It does not take into account the temporal order of

the observations, nor the structure of the dataset, the fact that

observations belong to entities. We extend to the temporal case

by adding to the centroids a temporal dimension µt
j , described

in the same temporal space T as the observations. Just like its

multidimensional description vector µd
j , the temporal compo-

nent does not necessary need to exist in the temporal set of the

observation. It is an abstraction of the temporal information in

the group, serving as a cluster timestamp. Therefore, a centroid

µj will be the couple (µt
j , µ

d
j ).

We propose to adapt the K-Means algorithm to the temporal

case by adapting the Euclidean distance, normally used to

measure the distance between an element and its centroid.

This novel temporal-aware dissimilarity measure takes into

account both the distance in the multidimensional space and in

the temporal space. In order to ensure the temporal contiguity

of observations for the entities, we add a penalty whenever

two observations that belong to the same entity are assigned

to different clusters. The penalty depends on the time differ-

ence between the two: the lower the difference, the higher

the penalty. We integrate both into the Temporal-Driven

Constrained K-Means (TDCK-Means), which is a temporal

extension of K-Means. TDCK-Means searches to minimize the

following objective function:

J =
∑

µj∈M

∑

xi∈Cj











||xi − µj ||TE +
∑

xk 6∈Cj

x
φ

k
=x

φ
i

w(xi, xk)











(1)

where w(xi, xj) is the cost function that determines the

penalty of clustering adjacent observations of the same entity

into different clusters, and Cj is the set of observations in

cluster j.

A. The temporal-aware dissimilarity measure

The proposed temporal-aware dissimilarity measure

||xi − xj ||TE combines the Euclidean distance in the
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Fig. 2. Penalty function vs. time difference for multiple δ. (β = 1)

multidimensional space D and the distance between the

timestamps. We propose to use the following formula:

||xi − xj ||TE = 1−

(

1−
||xd

i − xd
j ||

2

∆x2
max

)(

1−
||xt

i − xt
j ||

2

∆t2max

)

(2)

where || • || is the classical L2 norm and ∆xmax and ∆tmax

are the diameters of D, and T respectively (the largest distance

encountered between two observations in the multidimensional

description space and, respectively, in the temporal space). The

following properties are immediate:

• ||xi − xj ||TE ∈ [0, 1], ∀xi, xj ∈ X
• ||xi − xj ||TE = 0⇔ xd

i = xd
j and xt

i = xt
j

• ||xi − xj ||TE = 1(maximum)⇔ ||xd
i − xd

j || = ∆xmax

or ||xt
i − xt

j || = ∆tmax

The dissimilarity measure is zero if and only if the two ob-

servations have equal timestamps and equal multidimensional

description vectors. Still, it suffices for only one of the com-

ponents (temporal, multidimensional) to attend the maximum

value for the measure to reach its maximum. Therefore, any

algorithm that seeks to minimize an objective function based

on the temporal-aware dissimilarity measure, will need to min-

imize both components. This makes it suitable for algorithms

that search to minimize both the multidimensional and the tem-

poral variance in clusters. Furthermore, both components that

intervene in the measure follow a function like 1−ǫ2, ǫ ∈ [0, 1].
This function provides a good compromise: it is tolerant for

small values of ǫ (small time difference, small multidimen-

sional distance), but decreases rapidly when ǫ augments. The

temporal-aware dissimilarity measure is an extension of the

Euclidean function. If the timestamps are unknown and set

to be all equal, the temporal component is canceled and the

temporal-aware dissimilarity measure becomes a normalized

Euclidean distance. In Section IV-D, we evaluate the behavior

of the proposed dissimilarity function. We will call Temporal-

Driven K-Means the algorithm that is based on the K-Means’

iterative structure and uses the temporal-aware dissimilarity

measure to asses similarity between observations.

B. The contiguity penalty function

The penalty function encourages temporally adjacent ob-

servations of the same entity to be assigned to the same



cluster. We use the notion of soft pair-wise constraints from

semi-supervised clustering. A “must-link” soft constraint is

added between all pairs of observations belonging to the same

entity. The clustering is allowed to break the constraints, while

inflicting a penalty for each of these violations. The penalty is

more severe if the observations are closer in time. The function

is defined as:

w(xi, xk) = β ∗ e
− 1

2

(

||xt
i−xt

j ||

δ

)2

✶

[

x
φ
i = x

φ
j

]

(3)

where β is a scaling factor and, at the same time, the maximum

value taken by the penalty function; δ is a parameter which

controls the width of the function. β is dataset dependent and

can be set as a percentage of the average distance between

observations.

The function resembles to the positive side of the Normal

Distribution function, centered in zero. The function has a

particular shape, as represented in Figure 2. For small time dif-

ferences, it descends very slowly, thus inflicting a high penalty

for breaking a constraint. As the time difference increases,

the penalty decreases rapidly, converging towards zero. When

δ is small, the functions value descends very quickly with

the time difference. The function produces penalties only if

the constraint is broken for adjacent observation. For high

values of δ, breaking constraints for distant observations

cause high penalties, therefore creating segmentations with

large segments. Figure 2 shows the evolution of the penalty

function with the time difference between two observations,

for multiple values of δ and for β = 1.

An advantage of the proposed function is that it requires

no time discretization or setting a fixed window width, as

proposed in [10]. The δ parameter permits the fine tuning

of the penalty function. The influence of both β and δ will

be studied in Section IV-E. In Section IV-D, we evaluate

Constrained K-Means, which is an extension of K-Means,

to which we add the proposed contiguity penalty function.

C. The TDCK-Means algorithm

The time dependent distance ||xi − µj ||TE encourages the

decrease of both the temporal and multidimensional variance

of clusters; meanwhile the penalty function w(xi, xj) favors

the adjacent observations belonging to the same entity to be

assigned to the same cluster. The rest of the TDCK-Means

algorithm is similar to the K-Means algorithm. It seeks to

minimize J by iterating an assignment phase and a centroid

update phase until the partition does not change between two

iterations. The outline of the algorithm is given in Algorithm 1.

The choose random function chooses randomly, for each

centroid µj , an observation xi and sets µj = (xt
i, x

d
i ). In the

assignment phase, for every observation xi, the best cluster

function chooses a cluster so that the temporal-aware dissimi-

larity measure from xi to the clusters centroid µj , added to the

cost of penalties possibly incurred by this cluster assignment,

is minimized. It resumes to solving the following equation:

argmin
j=1,2,...,k






||xi − µ

(iter−1)
j ||2TE +

x
φ

k
=x

φ
i

∑

xk 6∈C
(iter−1)
j

w(xi, xk)







Algorithm 1 Outline of the TDCK-Means algorithm.

Input: xi ∈ X - observations to cluster;

Input: k - number of requested clusters;

Output: Cj , j = 1, 2, ..., k - k clusters;

Output: µj , j = 1, 2, ..., k - centroids for each cluster;

for j = 1, 2, .., k do

µj ← choose random(X )

end for

iter ← 0
M(iter) ← ∅ //set of centroids

P(iter) ← ∅ //set of clusters

repeat

iter ← iter + 1
for j = 1, 2, ..., k do

C
(iter)
j ← ∅

end for

// assignment phase

for xi ∈ X do

C
(iter)
j = C

(iter)
j ∪ xi| where

j = best cluster(X , M(iter−1), P(iter−1))

end for

// centroids update phase

for j = 1, 2, ..., k do

(µ
φ,(iter)
j , µ

t,(iter)
j )← update centroid

(j, X , M(iter−1), P(iter−1))

end for

M(iter) ← {µ
(iter)
j |j = 1, 2, ..., k}

P(iter) ← {C
(iter)
j |j = 1, 2, ..., k}

until C
(iter)
j = C

(iter−1)
j , ∀j ∈ [1, k]

This guaranties that the contribution of xi to the value of

J diminishes or stays constant. Overall, this assures that J
diminishes in the assignment phase (or stays constant).

In the centroid update phase, the update centroid function

recalculates the cluster centroids using the observations in X
and the assignment at the previous iteration. Therefore the

contribution of each cluster to the J function is minimized.

Each of the temporal and the multidimensional components is

calculated individually. In order to find the values that mini-

mize the objective function, we need to solve the equations:

∂J

∂µd
j

= 0;
∂J

∂µt
j

= 0 (4)

By replacing equations (2) and (3) in (1), we obtain the

following formula for the objective function:

J = |X | −
∑

xi∈X

[(

1−
||xd

i − µd
j ||

2

∆x2
max

)(

1−
||xt

i − µt
j ||

2

∆t2max

)]

+
∑

xi∈X

∑

xk 6∈Cj

β ∗ e
− 1

2

(

||xt
i−xt

j ||

δ

)2

✶

[

x
φ
i = x

φ
j

]

(5)

From equations (4) and (5), we obtain the centroid update
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Fig. 3. Typical evolution patterns constructed by TDCK-Means on Comparative Political Data Set I with 8 clusters.

formulas:

µd
j =

∑

xi∈Cj
xd
i ×

(

1−
||xt

i−µt
j ||

2

∆t2max

)

∑

xi∈Cj

(

1−
||xt

i−µt
j ||

2

∆t2max

)

µt
j =

∑

xi∈Cj
xt
i ×

(

1−
||xd

i −µd
j ||

2

∆x2
max

)

∑

xi∈Cj

(

1−
||xd

i −µd
j ||

2

∆x2
max

)

Just like the centroid update phase in K-Means, the new cen-

troids in TDCK-Means are also averages over the observations.

Unlike K-Means, the averages are weighted for each compo-

nent, using the distance from the other. For example, each

observation contributes to the multidimensional description of

the new centroid, proportional with its temporal centrality in

the cluster. Observations that are more distant in time (from the

centroid) contribute less to the multidimensional description

than the ones being closer in time. A similar logic applies

to the temporal component. The consequence is that the new

clusters are coherent both in the multidimensional space and

in the temporal one.

Temporal complexity: equation (5) shows that the tem-

poral complexity of the TDCK-Means is O(n2k), due to the

penalty term. Still, the equation can be rewritten, so that only

observations belonging to the same entity are tested. If p

is the number of entities and q is the maximum number of

observations associated with each entity, then n = p × q.

The complexity of TDCK-Means is O(pq2k), which is well

adapted to Social Science and Humanities datasets, where

often a large number of individuals is studied over a relatively

short period of time (p > q).

IV. EXPERIMENTS

A. Dataset

Experimentations with Time-Driven Constrained K-Means

are performed on a dataset issued from political sciences:

Comparative Political Data Set I [1]. It is a collection of

political and institutional data, which consists of annual data

for 23 democratic countries for the period from 1960 to 2009.

The dataset contains 207 political, demographic, social and

economic variables.

The dataset was cleaned by removing redundant variables

(e.g. country identifier and postal code) and the corpus was

preprocessed by removing entity bias from the data. For

example, it is difficult to compare, on the raw data, the

evolution of population between populous country and one

with fewer inhabitants, since any evolution in the 50 years

timespan of the dataset will be rendered meaningless by the

initial difference. Inspired from panel data econometrics [18],

we remove the entity-specific, time-invariant effects, since we

assume them to be fixed over time. We subtract from each

value the average over each attribute and over each entity. We

retain the time-variant component, which is in turn normalized,

in order to avoid giving too much importance to certain

variables. The obtained dataset is under the form of triples

(country, year, description).

B. Qualitative evaluation

When studying the evolution of countries over the years, it

is quite obvious for the human reader why the evolutions of the

eastern European countries resemble each other for most of the

second half of the twentieth century. The reader would create

a group entitled “Communism”, extending from right after

the Second World War until roughly 1990, for defining the

typical evolution of communist countries. One would expect

that, based on a political dataset, the algorithms would succeed

in identifying such typical evolutions and segment the time

series of each of these countries accordingly. Figure 3 shows

the typical evolution patterns constructed by TDCK-Means

(with β = 0.003 and δ = 3), when asked for 8 clusters. The

distribution over time of observations in each cluster is given

in Figure 3a). All constructed clusters are fairly compact in

time and have limited temporal extents. They can be divided

into two temporal groups. In the first one, clusters µ1 to

µ5 consistently overlap. Same for clusters µ6 to µ8, in the

second group. This indicates that the evolution of each country

passes by at least one cluster from each group. The turning

point between the two groups is around 1990. Figure 3b)

shows how many countries belong in a certain cluster for each

year. Clusters µ5 and µ6 contain most of the observations,

suggesting the general typical evolution.

The meaning of each constructed cluster starts to unravel
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only when studying the segmentation of countries over clus-

ters. For example, cluster µ2 regroups the observations belong-

ing to Spain, Portugal and Greece from 1960 up until around

1975. Historically, this coincides with the non-democratic

regimes in those countries (Franco’s dictatorship in Spain,

the “Regime of the Colonels” in Greece). Likewise, cluster

µ4 contains observations of countries like Denmark, Finland,

Iceland, Norway, Sweden and New Zealand. This cluster

can be interpreted as the “Swedish Social and Economical

Model” of the Nordic countries, to which the algorithm added,

interestingly enough, New Zealand. In the second period,

cluster µ8 regroups observations of Greece, Ireland, Spain,

Portugal and Belgium, the countries which seemed the most

fragile in the aftermaths of the economical crises of 2008.

C. Evaluation measures

Since the dataset contains no labels to report to as ground

truth, we use the classical Information Theory measures in

order to numerically evaluate the proposed algorithms. Each

of the three tasks proposed in Section I is evaluated separately.

The mean cluster variance is traditionally used in clustering to

assess how the observations in a cluster are dispersed. We use

the variance to measure the dispersion of clusters both in the

multidimensional space (MDvar measure) and in the temporal

space (Tvar measure).

One of the initial demands was to segment the temporal

series of observations of each entity into a relatively small

number of contiguous segments. Each segment is a succession

of observations belonging to the same cluster. We evaluate us-

ing an adapted mean Shannon entropy of clusters over entities

(ShaP measure), which weights the entropy by a penalty factor

depending on the number of continuous segments in the series

of each entity. ShaP is calculated as:

1

|X |
×
∑

xi∈X

k
∑

j=1

(−p(µj)× log2(p(µj))×

(

1 +
nch − nmin

nobs − 1

)

)

where nch is the number of changes in the cluster assignment

series of an entity, nmin is the minimal required number of

changes and nobs is the number of observation for an entity.

For example, in Figure 4, if the series of 11 observation of an

entity is assigned to two clusters, but it presents 4 changes, the

entropy penalty factor will be 1+ 4−1
11−1 = 1.33. The ShaP score

for this segmentation will be 1.23, compared to a score of 0.94
of the “ideal” segmentation (only two contiguous chunks). The

“ideal” values for MDvar, Tvar and ShaP is zero and, in all of

the experiments presented in the following sections, we search

to minimize the values of the three measures.

D. Quantitative evaluation

For each combination of algorithms and parameters, we

execute 10 times and compute only the average and the

TABLE I
MEAN VALUES FOR INDICATORS AND STANDARD DEVIATIONS

Algorithm MDvar Tvar ShaP

S
c
o
r
e
s Simple K-Means 120.59 2.97 48.01 8.87 2.15 0.23

Temp-Driven K-Means 122.98 2.85 19.97 5.39 2.58 0.18

Constrained K-Means 132.69 8.07 103.15 42.98 1.24 0.5

TDCK-Means 127.81 3.96 27.54 5.81 2.06 0.2

tcK-Means 123,04 3.8 62.44 24.16 1.79 0.32

%
G
a
i
n Temp-Driven K-Means -1.99% 58.40% -19.63%

Constrained K-Means -10.04% -114.84% 42.21%

TDCK-Means -5.99% 42.64% 4.19%
tcK-Means -2.03% -30.05% 16.99%

standard deviation. We vary k, the number of clusters, from

2 to 36. The performances of five algorithms are compared

from a quantitative point of view:

• Simple K-Means - clusters the observations based solely

on their resemblance in the multidimensional space;

• Temporal-Driven K-Means - optimizes only the temporal

and multidimensional components, without any contiguity

constraints; combines K-Means with the temporal-aware

dissimilarity measure define in Section III-A;

• Constrained K-Means - uses the Euclidean distance to-

gether with the penalty component, as proposed in Sec-

tion III-B. β = 0.003 and δ = 3;

• TDCK-Means - the Temporal-Driven Constrained Cluster-

ing algorithm proposed in Section III-C. β = 0.003 and

δ = 3;

• tcK-Means - the temporal constrained clustering algorithm

proposed in [10]. It uses a threshold penalty function

w(xti
i , x

ti
j ) = α✶(|xt

i−x
t
j | < d) when observations xi and

xj are not assigned to the same cluster. It was adapted to

the multi-entity case by applying it only to observations

belonging to the same entity. Parameters: α = 2, d = 4.

All the parameters are determined as shown in Section IV-E.

Table I shows the average values for the indicators, as well

as the average standard deviation (in italic) obtained by each

algorithm over all values of k. The average standard deviation

is only used to give an idea of the order of magnitude of the

stability of each algorithm. Since Simple K-Means, Temporal-

Driven K-Means and Constrained K-Means are designed to

optimize mainly one component, it is not surprising that they

show the best scores for, respectively, the multidimensional

variance, the temporal variance and the entropy (best results

in boldface). TDCK-Means seeks to provide a compromise,

obtaining in two out of three cases the second best score. It

is noteworthy that the proposed temporal-aware dissimilarity

measure used in Temporal-Driven K-Means provides the high-

est stability (the lowest average standard deviation) for all in-

dicators. Meanwhile, the constrained algorithms (Constrained

K-Means and tcK-Means) show high instability, especially on

Tvar. TDCK-Means shows a very good stability. The second

part of Table I gives the relative gain of performance of

each of the proposed algorithms over Simple K-Means. It is

noteworthy the effectiveness of the temporal-aware dissimilar-

ity measure proposed in Section III-A, with a 58% gain of

Temporal Variance and less than 2% loss of multidimensional
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Fig. 5. MDvar (a), Tvar (b) and ShaP (c) values of the considered algorithms when varying the number of clusters.

variance. The proposed dissimilarity measure greatly enhances

the temporal cohesion of the resulted clusters, without a

significant scattering of observations in the multidimensional

space. Similarly, the Constrained KM shows an improvement

in the contiguity measure ShaP of 42%, while losing 10%

multidimensional variance. By comparison, tcK-Means shows

modest results, improving ShaP by only 17% and still showing

important losses on both Tvar (-30%) and MDvar (-2%).

This proves that the threshold penalty function proposed in

literature has lower performances than our newly proposed

contiguity penalty function. TDCK-Means combines the ad-

vantages of the other two algorithms, providing an important

gain of 43% of temporal variance and increasing the ShaP

measure by more than 4%. Nonetheless, it shows a 6% loss

of MDvar.

Similar conclusions can be drawn when varying the number

of clusters. MDvar (Figure 5a)) decreases, for all algorithms,

as the number of cluster increases. It is well known in

clustering literature that the intra-cluster variance decreases

steadily with the increase of number of clusters. As the number

of clusters augments, so does the differences of TDCK-Means

and Constrained K-Means, when compared to the Simple

K-Means algorithm. This is due to the fact that the constraints

do not let too many clusters to be assigned to the same entity,

resulting in the convergence towards a local optimum, with a

higher value of MDvar. An opposite behavior is shown by the

ShaP measure in Figure 5c), which increases with the number

of clusters. It is interesting to observe how the MDvar and the

ShaP measures have almost opposite behaviors. An algorithm

that shows the best performances on one of the measures,

also shows the worst on the other. The temporal divergence in

Figure 5b) shows a very sharp decrease for a low number of

clusters, and afterwards remains relatively constant.

E. Impact of parameters β and δ

The β parameter controls the impact of the contiguity

constraints in equation (3). When set to zero, no constraints

are imposed, and the algorithm behaves just like the Simple

K-Means. The higher the values of β, the higher the penalty

inflicted when breaking a constraint. When β is set to large

values, the penalty factor will take precedence over the sim-

ilarity measure in the objective function. Observations that
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Fig. 6. MDvar and ShaP function of β (a) and of δ (b)

belong to a certain entity will be assigned to the same cluster,

regardless of their resemblance in the description space. When

this happens, the algorithm cannot create partitions with higher

number of clusters than the number of entities. In order

to evaluate the influence of parameter β, we execute the

Constrained K-Means algorithm with β varying from 0 to

0.017 with a step of 0.0005. The value of δ is set at 3, and 5

clusters are constructed. For each value of β, we executed 10

times the algorithm and we plot the average obtained values.

Figure 6a) shows the evolution of measures MDvar and ShaP

with β. When β = 0 both MDvar and ShaP have the same

values as for Simple K-Means. As β increases, so does the

penalty for non-contiguous segmentation of entities. MDvar

starts to increase rapidly, while ShaP decreases rapidly. Once

β reaches higher values, the measures continue their evolution,

but with a leaner slope. In the extreme case, in which all



observations are assigned to the same cluster regardless of

their similarity, the ShaP measure will reach zero.

The δ parameter controls the width of the penalty function

in equation (3). As Figure 2 shows, when δ has a low value,

a penalty is inflicted only if the time difference of a pair

of observations is small. As the time difference increases,

the function quickly converges to zero. As δ increases, the

function decreases with a leaner slope, thus also taking into

account observations which are farther away in time. In

order to analyze the behavior of the penalty function when

varying δ, we have executed the Constrained K-Means, with

δ ranging from 0.1 to 8, using a step of 0.1. β was set at

0.003 and 10 clusters were constructed. Figure 6b) plots the

evolution of measures MDvar and ShaP with δ. The contiguity

measure ShaP decreases almost linearly as δ increases, as the

series of observations belonging to each entity gets segmented

in larger chunks. At the same time, the multidimensional

variance MDvar increases linearly with δ. Clusters become

more heterogeneous and variance increases, as observations

get assigned to clusters based on their membership to an entity,

rather than their descriptive similarities.

Varying α and d for the tcK-Means proposed in [10]

yields similar results, with the MDvar augmenting and the

ShaP descending, when α and d increase. For the tcK-

Means, these evolutions are linear, whereas for the Con-

strained K-Means they are exponential, following a trend line

of function e−
const

x . Plotting the evolution of the MDvar

and the ShaP indicators on the same graphic, provides a

heuristic for choosing the optimum values for the (β, δ) pa-

rameters of the Constrained K-Means and the TDCK-Means,

respectively the (α, d) parameters of the tcK-Means. Both

curves are plotted with the vertical axis scaled to the interval

[minvalue,maxvalue]. Their point of intersection determines

the values of the parameters (as shown in Figure 6a) and 6b)).

The disadvantage of such a heuristic would be that a large

number of executions must be performed with multiple values

for the parameters before the “optimum” can be found.

V. CONCLUSION AND FUTURE WORK

In this article we have studied the detection of typical evo-

lutions from a collection of observations. We have proposed a

novel way to introduce temporal information directly into the

dissimilarity measure, weighting the Euclidean component in

the description space by the temporal component. We have

proposed TDCK-Means, an extension of K-Means, which

uses the temporal-aware dissimilarity measure and a new

objective function which takes into consideration the temporal

dimension. We use a penalty factor to make sure that the

observation series related to an entity get segmented into

continuous chunks. We infer a new centroid update formula,

where elements distant in time contribute less to the centroid

than the temporally close ones. We have shown that our

proposition consistently improves temporal variance, without

any significant losses in the multidimensional variance.

The algorithm can be used in other applications where

the detection of typical evolutions are required, e.g. career

evolution of politicians or abnormal disease evolution. In our

current work, we have only detected the centroids that serve

as the evolution phases. For future development, we consider

generating the evolution graph (as shown in Figure 1a)), based

on how the observations belonging to an entity get assigned

over different clusters. This will allow an abstract succinct

description of the evolution of an entity. Another direction of

research will be describing the clusters in a human readable

form. We work on means to provide them with an easily com-

prehensible description by introducing temporal information

into an unsupervised feature construction algorithm. We are

also experimenting a method to fine tune of the ratio between

the multidimensional component and the temporal component

in the temporal-aware dissimilarity measure, based on the

maximum and minimum values for MDvar and Tvar.
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