
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE 

Coverage measurement in model-based testing of web 
applications: Tool support and an industrial experience report 

 
Vahid Garousi  

Queen’s University Belfast, UK  
Testinium A.Ş., Türkiye  

ProSys MMC, Azerbaijan 
v.garousi@qub.ac.uk  

 

Alper Buğra Keleş, Yunus Balaman,  
Alper Mermer 

Testinium A.Ş., Türkiye 
{alper.keles, yunus.balaman, 

alper.mermer}@testinium.com  
 

Zeynep Özdemir Güler 
ING Türkiye, Türkiye 

Zeynep.OzdemirGuler@ing.com.tr 

Abstract--There are many widely used tools for measuring test-
coverage and code-coverage. Test coverage is the ratio of 
requirements or other non-code artifacts covered by a test suite, 
while code-coverage is the ratio of source code covered by tests. 
Almost all coverage tools show a few certain subset of coverage 
values, and almost always either test-coverage or code-coverage 
measures. In a large-scale industrial web-application-testing setting, 
we were faced with the need to “integrate” several types of coverage 
data (including front-end and back-end code coverage with 
requirements coverage), and to see all of them “live” as large model-
based test suites were running. By being unable to find any off-the-
shelf toolset to address the above need, we have developed an open-
source test coverage tool, specific for MBT, named MBTCover. In 
addition to code coverage, the tool measures and reports 
requirements and model coverage, “live” as a given MBT test suite 
is executing. In this paper, we present the features of the MBTCover 
tool and our experience from using it in multiple large test-
automation projects in practice. Other software test engineers, who 
conduct web application testing and MBT, may find the tool useful 
in their projects. 

Keywords--Software testing, test automation, model-based testing, 
test coverage, tool support, industrial experience 

1 INTRODUCTION 

In the context of software testing, “coverage” is a metric that 
measures the amount / extent of testing performed by a test 
set (suite).  

Coverage can be measured from both black-box and white-
box testing perspectives. The former case is called test 
coverage, and is the ratio of requirements, models or even 
user-interface (UI) artifacts, of the System Under Test (SUT), 
exercised (covered) by a given test suite. The latter case is 
called code coverage and is the ratio of source code exercised 
by a given test suite.  

Measuring coverage provides various benefits, e.g., it is “a 
useful tool for finding untested parts of a codebase” 
(martinfowler.com/bliki/Test Coverage.html).  

A Google search for "test coverage" and "code coverage", as 
of December 2023, returned around 4.8 and 3.2 billion hits, 
respectively, indicating the wide popularity and usage of 
coverage analysis in industry.  

There are hundreds or even thousands of code and test 
coverage tools, which are used in different test automation 
contexts and for different programming language. For 
example, a coverage tool named EclEmma (eclemma.org), as 

a plug-in of the Eclipse Integrated Development Environment 
(IDE), is widely used in JUnit testing. 

Given the widespread adoption of web and mobile 
applications, automated testing of and measuring coverage in 
the context of these applications have become major trends in 
testing [1]. For testing web and mobile applications, both 
front-end (client-side) and also back-end (server-side) 
components of a given SUT should be systemically tested and 
the code/test coverage values shall be analyzed. There are 
various coverage tools for web and mobile applications. For 
example, a few of the many coverage tools for JavaScript (JS) 
front-end code are: Jest (jestjs.io), Istanbul (istanbul.js.org) 
and the DevTools (Developer tools) feature of Google 
Chrome (developer.chrome.com/docs/devtools/coverage).  

For measuring back-end coverage (code running on server 
side), there are also various tools, depending on the server-
side technology of a given SUT, e.g., JaCoCo (jacoco.org) for 
server applications developed in Java, and PVOC 
(github.com/krakjoe/pcov) for applications developed in 
PHP. 

While all the above coverage tools are robust and popular for 
their purposes, in the context of various industrial automated 
model-based testing (MBT) projects in our context (see the 
previous experience paper in [2]), we were faced with the 
following test-coverage need: to gather and present both 
client-side and server-side code-coverage data, plus a number 
test coverage data (such as requirements coverage), and 
present them “live” as a given MBT test suite is executing.  

Furthermore, when conducting automated MBT of web 
applications using MBT tools such as GraphWalker 
(graphwalker.github.io), connected with the Selenium 
browser  automation framework (selenium.dev), there are no 
off-the-shelf coverage tool which would connect to the 
(integrate with) MBT tools such as GraphWalker seamlessly, 
i.e., without the need for further integration code 
development. 

To address the above need, we decided to develop a test 
coverage tool, named MBTCover (coverage for MBT), which 
gathers and provides the following four types of coverage 
measurements, when a MBT suite is running using the 
popular MBT tool GraphWalker:  

 Code coverage: 



1. Code coverage of front-end (client-side) JavaScript 
code of the web application under test  

2. Code overage of back-end (server-side) code (Java 
in our case context)  

 Test coverage: 
3. Requirements coverage, defined as the ratio of the 

use-case steps covered so far by the running MBT 
suite  

4. Model coverage, e.g., the ratios of nodes and edges 
in the MBT test models (with activity-diagram 
formalism), covered so far in the MBT execution 

In this paper, we present the features of the MBTCover tool 
and also our experience from using it in multiple large test-
automation projects in practice. The rest of this paper is 
structured as follows. Background and related work are 
discussed in Section 2. MBTCover tool, its architecture and 
features are described in Section 3. We discuss in Section 4 
our industrial experience in using the tool. Finally, Section 5 
concludes the paper. 

2 BACKGROUND AND RELATED WORK 

2.1 Model-based testing (MBT), and MBT in practice 

As of this writing in 2023, MBT has been around for more 
than 50 years. An IBM technical report [3], published in 
1970, is often referred to as one of the first known reported 
applications of MBT. The modeling semantics used in that 
first paper was Cause-Effect Graphs, and a prototype tool, 
named TELDAP (TEst Library Design Automation 
Program), for generating test cases was presented. A very 
large number of papers and reports have been published in 
MBT since then, by following different approaches to MBT, 
e.g., from the standpoints of model semantics (UML models, 
BPMN or other model types), level of modeling abstractions, 

test execution modes (offline or online), and test selection 
criteria (model coverage, fault-based, etc.) [4-6]. However, 
many studies report that: “most developers [still] don’t view 
MBT as a mainstream [testing] approach” [7]. 

While it seems that most of MBT literature have been studies 
which conducted in academic and lab settings, a subset of the 
literature are studies conducted in practice and industrial 
contexts. We review a few selected studies below. 

An author with affiliation in both industry and academia 
reported his view of the state of the art and challenges of 
“industrial-strength” MBT [8]. The reported experience and 
opinions are based on a MBT tool named RT-Tester, 
developed by the author’s team. The paper highlights the 
importance of selecting the right modelling “formalism” for 
the testing problem at hand, and the fact that development of 
models, properly, can prove to be a major hurdle for the 
success of MBT in practice. As a related factor, the required 
skills for test engineers developing test models are 
significantly higher than for test engineers writing 
conventional test procedures. Other key factors for successful 
industrial-scale application of MBT as reported in the paper 
were: tracing requirements to the model, and automated 
compilation of traceability data. 

An experience report of introducing MBT in the context of a 
system named European Train Control System (ETCS), 
developed by a large European company, named Thales, was 
reported in [9]. The authors argued that MBT is not 
applicable “out-of-the-box”, and application of MBT in a 
given environment (industrial context) requires specific 
adaptations. The selected test model formalism was 
UML/OCL. Certain toolchain-specific model revisions had to 
be made, e.g., timed triggers had to revised in the UML 
semantics (meta-model). The team used Borland Together for 

 

Figure 1- Architecture and usage context of the MBTCover tool 



formalizing and concretizing system models. The last 
sentence of the paper was: “it seems like the industry may 
already be aware of the possible benefits of MBT but fears 
the issues and costs of its integration”. 

Microsoft has been one of the companies from which many 
MBT papers have been published, e.g., [10-12]. A 2003 paper 
[10] authored by a test architect at Microsoft reported the 
obstacles and opportunities for MBT in Microsoft. The author 
reported that: “Model-based testing can provide a 
tremendous increase in testing capability, but modeling 
technology must be integrated into everyday software testing. 
Small-scale pilot projects, readily available tools and tester 
education have made the migration to test generation easier 
at Microsoft”. The author then reviewed how each of those 
characteristics affected the promotion of MBT at Microsoft. 
According to the paper [10], as of 2003, more than 600 of all 
5,000 testers, working with Microsoft, were involved in some 
form of MBT.  

Several papers from Microsoft have also presented their 
success story with MBT of documentation and quality 
assurance of client–server and server–server protocols of 
Microsoft Windows [11, 12]. A Microsoft MBT tool named 
SpecExplorer was used in those studies. The project was a 
large-scale undertaking in MBT: More than 25 000 pages of 
documentation for over 250 protocols had to be thoroughly 
verified to ensure that they are accurate, so that developers 
can implement protocols from the information they contain. 
Application of MBT reflected an investment of over 50 
person-years. In addition, a substantial time investment was 
made in tool development, based on a continuous feedback 
loop from the test-suite development process into the 
SpecExplorer development team. According to statistical 
analysis, MBT resulted in a 42% productivity gain when 
compared with traditional test suites in a site where similar 
numbers of requirements were verified. 

An interesting “voice of evidence” paper about MBT was 
published in IEEE Software in 2008 [7], which was based on 
systematic literature review (SLR). The authors argued that a 
rich body of experiences has not yet been published on all the 
SE techniques that researchers have proposed, including 
MBT. In fact, by some estimates, the techniques for which 
we do have substantial experience are few and far between. 
Thus, our current paper is a suitable evidence/experience 
paper aiming to address that gap. Based on their experience, 
the authors reported that: “most developers [still] don’t view 
MBT as a mainstream [testing] approach” [7]. The study 
reported a "serious lack of evidence" in usefulness of different 
MBT approaches [13], and that many publications on MBT 
provide only toy examples without proper comparison with 
other approaches. The SLR divided the MBT studies into five 
categories: speculation, example, proof of concept, 
experience/industrial reports, and experimentation. UML-
based MBT models were by far the most widely used 
formalisms. Furthermore, since applying MBT has non-
trivial costs, the associated cost-benefits should be carefully 

 
1 google.com/search?q=test+coverage+masurement+selenium  

analyzed when considering MBT, a topic referred to as 
"value-based" SE [14]. The study discussed this issue by 
stating: "it’s risky to choose an MBT approach without 
having a clear view about its complexity, cost, effort, and skill 
required to create [develop] the necessary models" and that: 
"Evidence on these topics could be a useful step in 
determining whether wider deployment of MBT approaches 
to different domains is worthwhile". 

2.2 Coverage measurement in testing web applications 

There is (very) limited academic literature on coverage 
measurement in testing web applications, e.g., empirical 
studies. However, there are various sources in the grey 
literature on the topic, e.g., in the context of using the popular 
Selenium test automation framework1.  In our literature 
review, we actually came across an online forum in which a 
practitioner was asking others, whether it is possible to collect 
front-end test coverage data when testing using Selenium2. 
This was additional motivation for the toolset that we have 
developed and present in this paper. 

3 MBTCOVER TOOL  

3.1 Usage context and architecture of the tool 

We show in Figure 1 the usage context and software 
architecture of the tool. MBTCover supports test engineers in 
the context of MBT of web and mobile applications, by 
showing test coverage information.  

MBT test models are designed by test engineers, in the form 
of activity diagrams showing the UI flow across different 
pages of a web application under test. For our large number 
of industrial MBT projects, from among a set of candidate 
tools, we systematically selected the MBT tool GraphWalker 
in our industrial context back in 2019, and have used it in 
several projects and previous papers, e.g., [2].  

To use the MBT tool GraphWalker, to make MBT models 
directly executable, test engineers develop Selenium Java 
code to “implement” the action (behavior) of each node/edge 
in the models.  

MBT models can then be executed, fully automated, using the 
MBT tool GraphWalker which uses the developed Selenium 
Java code to exercise (call) the front-end of the web 
application under test, and the front-end in turn 
communicates with the SUT’s back-end. Test outputs are 
recorded, logged and returned to test engineers by the test tool 
GraphWalker.  

To develop MBTCover, we selected a number of client-side 
and server-side coverage measurement technologies (details 
next) and integrated their outputs to show the results live 
visually, as a MBT suite is running. To get front-end JS 
coverage values at runtime, from among several alternative 
coverage tools, we selected the Chrome DevTools protocol, 
due to its stability, maturity and wide use in industry. To 

2 quora.com/Is-it-possible-to-collect-front-end-test-coverage-statistics-
with-Selenium  



programmatically extract coverage data live from DevTools 
at runtime, we used a library called Puppeteer (pptr.dev) 
which provides an Application Programming Interface (API) 
to the Chrome browser. 

To get back-end (server-side) coverage live at runtime, and 
since the server-side language of almost all of our SUTs were 
Java, we have used the JaCoCo code coverage library 
(jacoco.org), due to its stability and maturity. We shall note 
that, if the reader intends to use MBTCover for other SUTs 
which have been developed in other programming languages 
(such as .Net), other server-side code coverage technologies 
can be easily integrated into MBTCover, instead of JaCoCo. 

To better present and understand the MBTCover tool and 
how it works, we show a running example of a test model, 
designed and executed by the MBT tool, GraphWalker, and 
then MBTCover is used to measure coverage when running 
the MBT test suite. 

3.2 An example MBT test suite 

We show in Figure 2 one of the MBT models of a large MBT 
test suite for testing the login page of an industrial SUT 
named Testinium (testinium.io) [2]. Testinium is a web-based 
test management tool, which uses a number of test 
frameworks such as Selenium and Appium, and is one of the 
main products offered by the company (Testinium A.Ş.). the 
Testinium tool is in active use by 700+ test engineers of the 

company (Testinium A.Ş.) and also by many clients of 
Testinium A.Ş. 

Let us note that this large MBT model suite includes 18 test 
models (each designed as a separate activity diagram), and 
contains in total 177 nodes and 260 edges. The entire MBT 
model is available open-source: github.com 
/vgarousi/MBTof Testinium. 

In the last several years, in addition to MBT automated 
testing of the company’s own products such as Testinium, we 
have completed more than 10 large MBT test projects for 
various client companies, e.g., MBT automated testing of a 
large bitcoin trading provider, with a very extensive web 
application, including more than 100 dynamic web pages, and 
two mobile applications for each mobile platform (Android 
and iOS). Some details of that MBT project can be found in: 
bit.ly/MBTofCOVIDandBanking. As stated above, in 
addition to web applications, our MBT projects also include 
MBT of mobile apps, e.g., one of recent consulting projects 
was MBT testing of the UK’s three COVID contact-tracing 
apps. Details and test run videos can be found in 
github.com/vgarousi/MBT ofCOVIDapps.  

As shown in Figure 2, the semantic of test models in the MBT 
tool GraphWalker is a form of UML activity diagrams 
showing the UI flow across different pages of the web 
application under test. In this MBT approach, as required by 
the MBT tool, test assertions (verification points) are placed 
in the nodes of activity diagram models (by implementing the 

 

 

Figure 2- Top: One of the 18 MBT test models for the SUT, for 
testing the login page. Left: The login page in the SUT 



suitable Selenium test-code); and web-page transitions 
(events, e.g., button clicks) are placed on the edges (again by 
implementing the suitable Selenium test-code). 

To further showcase our MBT approach, and the usage of 
MBTCover tool, we have recorded several videos of the MBT 
test executions and the MBTCover in action and have posted 
them in a YouTube playlist (bit.ly/ VideosMBTTestinium). 

3.3 Features of MBTCover  

We show screenshots from MBTCover and its features in 
Figure 3. In these screenshots, the SUT (Figure 3b) is 
Testinium, and more precisely the Dashboard page (i.e., the 
main landing page) of the tool, which is shown to the user 
after successful login.   

An in-progress execution of the MBT suite, using the 
GraphWalker tool, is shown in Figure 3c. The visible test 
model is the one testing the Dashboard page of the SUT.  

MBTCover shows the coverage charts, which are updated 
every few seconds, a parameter which can be changed by the 
user. The chart in Figure 3a shows three coverage metrics in 
one line-chart view: front-end code-coverage ratio, back-end 
coverage, and requirement coverage.  

We designed the server-side coverage line in the chart to be 
shown as cumulative values (Figure 3a), and thus the 
coverage values either increase or stay the same, as the time 
goes by. Once test execution finishes, or in the middle upon 

request of the user by pressing a button, MBTCover instructs 
the JaCoCo engine in the server side to export the server-side 
coverage report to HTML format and MBTCover provides a 
view of that detailed coverage report (Figure  3e). 

In the current implementation of MBTCover, for the front-
end, the tool presents two separate coverage charts (Figure 
3d): (1) The top-view chart shows the cumulative front-end 
(JS) coverage, meaning that the coverage calculation has 
been done based on the combined lines of JS covered in all 
the web pages of the SUT, reached so far, divided by the sum 
of all JS code lines; (2) The bottom chart shows the JS 
coverage % of the current web page, being tested by the MBT 
suite so far. The decision to implement each of the above 
features in these specific manners have been as the result of 
discussions with several teams of test engineers in the 
company. For example, test engineers have provided the 
feedback to us that it would be useful for the purpose of 
testing to observe both cumulative and in-single-page 
coverage values while testing. 

Our software development process for MBTCover has been 
iterative and Agile. During the development process, we have 
seen the need to also show, in the GUI of the tool, several 
important and useful statistics (Figure  3a), which include: (1) 
number of test models reached (covered) so far, (2) number 
of model nodes covered so far, and (3) number of nodes 
executed so far. Note that there is a difference between the 
last two mentioned items since the former is the node 
coverage of MBT models, while the latter is the number of 

 

 

 

Figure 3- (a, d and e): User interface of MBTCover -- (b): the SUT: Testinium -- (c): the MBT suite in execution 



nodes which have been executed and a given node could be 
visited more than once during test execution.  

Another important feature that our test engineers have 
mentioned the need for, in the tool, was live requirements 
coverage. The format of requirement documentation, 
practiced in the company, is use-cases. We thus defined 
requirements coverage as the ratio of the specified use-case 
steps covered so far by the MBT suite. To enable 
measurement of such a coverage, we specify the traceability 
between requirements and model elements (nodes or edges), 
using a feature of the GraphWalker tool, as shown in Figure 
4.  

 

 

Figure 4- Assigning a given node to a requirements item in the 
chosen MBT tool 

For this purpose, test engineers document the use-case 
descriptions and steps. For example, we show the use-case 
steps of the Login feature of the SUT (Testinium) in Figure 
4.  

GraphWalker allows specifying the requirements “tags”, 
corresponding to a model element (a node or an edge). When 
a MBT suite is running using GraphWalker, we have 
programmed MBTCover to make calls to GraphWalker’s 
API, and query the latest set of requirements covered, and use 
that information to calculate the percentage of requirements 
coverage (see the requirements coverage in Figure  3a).  

The MBTCover is fully open-source in github.com/ 
vgarousi/MBTCover. The online repository also includes the 
tool’s design document, several SUT examples, their UML 
use-case requirements, and demo videos. 

3.4 Interpreting the coverage trends in the above 
example  

Let us briefly discuss the example coverage data in Figure 3, 
through which we also explain some of the many benefits of 
MBTCover. As seen in X-axis of Figure 3a, the coverage 
curves are from about 5-minute execution of the test models 
(minute 12:52 to 12:57). 

In Figure 3d-top, we can see that the cumulative front-end 
(JS) coverage has increased from mid-0% to above 40% and 
then back to mid-20% as the MBT suite continues its 
execution and visits different web pages of the SUT. The 
reason for the fluctuation (up and downs) is that different web 
pages of the SUT use (reference) different JS files with 
different Line-of-Code (LOC) sizes. In other words, the JS 
coverage calculation, which is based on the formula: 
num_of_covered_JS_lines / total_JS_lines, would yield a 
lower value since the “divisor” value in the formula would 
increase suddenly when an additional JS file is imported 
during execution.  

In Figure 3d-bottom, the JS coverage ratio of the current web 
page also provides valuable information, as we can see the 
extent of JS code coverage in the current page, as being tested 
by the MBT suite. For example, the MBT execution of 
Testinium starts with the Login page (Figure 2) and then 
moves to the Dashboard page (the first orange and the second 
yellow chart lines correspond to those two pages). As 
expected, the current web-page coverage chart resets to the 
value of 0% in each page and then grows up to a certain level, 
until the browser navigates to a different web page of the 
SUT, as the MBT suite is running.  

Test engineers can see the extent of coverage in the current 
page and take actions if s/he decides to. For example, if the 
coverage is low, test engineers can investigate why most parts 
of the included JS files have not been covered; or they may 
decide to improve the MBT models, e.g., add more test paths. 
In terms of usage mode of the tool, together with our test 
engineers, we have experimented both “live” analysis of 
coverage data, and also have done video recording of the 
different coverage curves, for later analysis and replay by test 
engineers. Both modes have proved to be useful. 

In Figure 3a, the server-side coverage value starts from about 
10% as the MBT suite starts its execution and since the chart 
is a cumulative percentage, it will either stay constant or 
increase by time. The server-side coverage grows very slowly 
to low teens, and slowly changes in the five-minute snapshot 
of test execution. This is due to the extra-large size of Java 
application code-base on the server (the Testinium tool being 
the SUT), and the fact that MBT suite only covers a small 
ratio of that code-base during the 5-minute execution. Let us 
note that, for this particular MBT test suite, a full execution 
of the test suite with coverage takes about 6 hours on our 
high-end machines.  



4 INDUSTRIAL EXPERIENCE REPORT: BENEFITS OF USING 

MBTCOVER IN TEST-AUTOMATION PROJECTS  

After finalizing the stable release of MBTCover in 2022, it 
has been in active use in MBT projects of several internal 
tools of the company, e.g., Testinium and Loadium (a web-
based load testing tool, loadium.io). Our test engineers are 
also actively using MBTCover in several (10+) test 
automation projects of our clients, e.g., the web and mobile 
apps of several airlines, and several financial and energy-
related corporations. 

In our conversations (semi-structured informal interviews) 
with eight test engineers in the company so far, their general 
consensus has been that MBTCover is a useful tool in 
exploring the scale and extent of MBT test automation, via 
the four consolidated coverage data that it provides: front-
end, back-end, requirements and model coverage. While 
many of our testers have been using coverage for unit testing 
before this new tool, they reported that assessing coverage for 
GUI testing using a tool such as MBTCover is a niche and 
useful approach.  

By using MBTCover, they have reported that they are able to: 
(1) pinpoint unused parts of JS files, in large test runs, and 
thus optimize the size of JS code files, (2) detect part of a 
given MBT test suite in not testing certain parts of front-end, 
back-end, and requirements, (3) improve MBT test suites to 
ensure full coverage w.r.t. any of the four coverage domains 
above (front-end, back-end, requirements and model 
coverage), (4) assess traceability of requirements to MBT 
models to code, which have been useful in various test 
regression and change-impact analysis scenarios.  

5 DISCUSSIONS AND FUTURE WORKS  

Our ongoing work in MBT since 2018 [2, 15, 16] has 
demonstrated the real-world need for industrial-scale 
coverage analysis tools, integrating different aspects of 
coverage for testing web and mobile applications. To address 
that need, we have designed, developed, open-sourced and 
have also evaluated the MBTCover tool. More than 10 test 
engineers are actively using the tool voluntarily in their daily 
tasks, and this shows the benefit of using the tool in MBT 
projects. 

In this paper, we presented the features of MBTCover and our 
overall experience from using it in large test-automation 
projects. We are certain that other software test engineers, 
who use the MBT approach in their projects, could find the 
MBTCover tool useful in their contexts. 

We plan to design and conduct empirical studies on the 
benefits of MBTCover, and to use stakeholders’ feedback to 
further improve the tool in the future. 

REFERENCES  

[1] R. Das and G. Johnson, Testing and Securing Web Applications. 
CRC Press, 2020. 

[2] V. Garousi, A. B. Keleş, Y. Balaman, Z. Ö. Güler, and A. Arcuri, 
"Model-based testing in practice: An experience report from the 

web applications domain," Journal of Systems and Software, vol. 
180, p. 111032, 2021. 

[3] W. Elmendorf, "Automated design of program test libraries," 
IBM Technical report, TR 00.2089, 
https://benderrbt.com/Automated%20Design%20of%20Progra
m%20Test%20Libraries%20-%201970.pdf, 1970.  

[4] M. Utting, A. Pretschner, and B. Legeard, "A taxonomy of 
model-based testing approaches," Software Testing, Verification 
and Reliability, vol. 22, no. 5, pp. 297-312, 2012. 

[5] A. C. Dias Neto, R. Subramanyan, M. Vieira, and G. H. 
Travassos, "A survey on model-based testing approaches: a 
systematic review," in Proceedings of international workshop on 
Empirical assessment of software engineering languages and 
technologies, 2007, pp. 31-36.  

[6] W. Li, F. Le Gall, and N. Spaseski, "A survey on model-based 
testing tools for test case generation," in International Conference 
on Tools and Methods for Program Analysis, 2017: Springer, pp. 77-
89.  

[7] A. D. Neto, R. Subramanyan, M. Vieira, G. H. Travassos, and F. 
Shull, "Improving evidence about software technologies: A look 
at model-based testing," IEEE software, vol. 25, no. 3, pp. 10-13, 
2008. 

[8] J. Peleska, "Industrial-strength model-based testing-state of the 
art and current challenges," arXiv preprint arXiv:1303.1006, 2013. 

[9] H. Lackner, J. Svacina, S. Weißleder, M. Aigner, and M. Kresse, 
"Introducing Model-Based Testing in Industrial Context–An 
Experience Report," Model-based Testing in Practice, p. 11, 2010. 

[10] H. Robinson, "Obstacles and opportunities for model-based 
testing in an industrial software environment," in Proceedings of 
the European Conference on Model-Driven Software Engineering, 
2003, pp. 118-127.  

[11] W. Grieskamp, "Microsoft’s protocol documentation program: 
A success story for model-based testing," in International 
Academic and Industrial Conference on Practice and Research 
Techniques, 2010: Springer, pp. 7-7.  

[12] W. Grieskamp, N. Kicillof, K. Stobie, and V. Braberman, 
"Model-based quality assurance of protocol documentation: 
tools and methodology," Software Testing, Verification and 
Reliability, vol. 21, no. 1, pp. 55-71, 2011. 

[13] M. Janicki, M. Katara, and T. Pääkkönen, "Obstacles and 
opportunities in deploying model-based GUI testing of mobile 
software: a survey," Software Testing, Verification and Reliability, 
vol. 22, no. 5, pp. 313-341, 2012. 

[14] S. Biffl, A. Aurum, B. Boehm, H. Erdogmus, and P. Grünbacher, 
Value-Based Software Engineering. Springer, 2006. 

[15] V. Garousi, A. B. Keleş, Y. Balaman, and Z. Ö. Güler, "Model-
based Testing (MBT) of web and mobile applications: A tutorial 
for UCAAT 2021 conference," 
https://www.youtube.com/watch?v=EQ7NZdqb8rw, 2021. 

[16] Ş. Şentürk, A. Akın, A. B. Karagöz, and V. Garousi, "Model-
based testing in practice: An experience report from the 
banking domain," in Proceedings of the Turkish National Software 
Engineering Symposium (UYMS), 2019.  

 


