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Abstract—Machine learning models are increasingly used in
practice. However, many machine learning methods are sensitive
to test or operational data that is dissimilar to training data. Out-
of-distribution (OOD) data is known to increase the probability of
error and research into metrics that identify what dissimilarities
in data affect model performance is on-going. Recently, combi-
natorial coverage metrics have been explored in the literature
as an alternative to distribution-based metrics. Results show that
coverage metrics can correlate with classification error. However,
other results show that the utility of coverage metrics is highly
dataset-dependent. In this paper, we show that this dataset-
dependence can be alleviated with metric learning, a machine
learning technique for learning latent spaces where data from
different classes is further apart. In a study of 6 open-source
datasets, we find that metric learning increased the difference
between set-difference coverage metrics (SDCCMs) calculated on
correctly and incorrectly classified data, thereby demonstrating
that metric learning improves the ability of SDCCMs to an-
ticipate classification error. Paired t-tests validate the statistical
significance of our findings. Overall, we conclude that metric
learning improves the ability of coverage metrics to anticipate
classifier error and identify when OOD data is likely to degrade
model performance.

Index Terms—combinatorial coverage, combinatorial testing,
machine learning, out-of-distribution (OOD)

I. INTRODUCTION

Machine learning is an increasingly dominant part of soft-
ware systems and, thus, is of increasing interest in the soft-
ware testing community. Compared to the standard statistical
performance analysis on independent, identically-distributed
data that machine learning practitioners and researchers typi-
cally use to test machine learning [1], the perspective of the
software testing community has a broader scope. The learned
models produced by machine learning algorithms are function
approximations, and, as such, can be treated with the general
test methods developed for system functions [2]. A key set
of general test methods identified for software functions is
combinatorial interaction testing [3].

Combinatorial interaction testing is typically concerned with
the interaction of various system components and typically
applied during system integration to determine the subset
of interactions among components that cause the majority
of failures. It has been shown reported that most software

faults can be attributed to 2-, 3-, or 4-way interactions among
software components [4]. Recently, combinatorial interaction
testing and related concepts have been extended to machine
learning. A key concept in related machine learning literature
is combinatorial coverage [3].

Combinatorial coverage measures the number of interac-
tions present in a dataset against the total number of possible
interactions. Early applications of combinatorial coverage to
machine learning include the use of coverage within deep
learning algorithms [5]–[7]. These early works had mixed
results, and faced heavy criticism [8]. Central to critiques was
the idea that combinatorial coverage was concerned with the
total number of possible interactions, or, otherwise put, the
entire universe of interactions. Most of these interactions are
not natural, and many can be even be considered adversarial
[8].

While coverage metrics faced difficulties within machine
learning algorithms, their application to the testing of machine
learning algorithms grew in the literature. Early examples
include use cases in explainability [9], autonomous vehicles
[10], and test set construction [11]. Building on this early
work, Lanus et. al proposed set-difference combinatorial cov-
erage metrics (SDCCMs) which, in contrast to traditional
coverage metrics [3], did not calculate coverage with respect
to the entire universe of interactions, but rather with respect
to another dataset [12]. SDCCMs can be used to compare the
interactions seen in training, to those seen in testing, to those
seen in operation—all relative to each other, not relative to
all possible interactions. Cody et. al use SDCCMs to directly
refute previous critiques of the use of combinatorial coverage
in machine learning using MNIST image data [13].

While previous work has affirmed the utility of combina-
torial coverage concepts to machine learning, their use has
also been shown to be highly dataset-dependent [14]. In this
work, we propose that metric learning be used to address
dataset-dependence. Metric learning is a subfield of machine
learning concerned with learning latent spaces where data
from different classes is further apart than in their original
space. In a study of 6 open-source datasets from a variety of
domains and with a variety of sizes, we provide evidence that
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metric learning improves the ability of SDCCMs to anticipate
classification error. In doing so, we also provide supporting
evidence for existing claims in the literature that SDCCMs
are correlated to classification error [12], [13].

This paper is structured as follows. First, related work is
reviewed. Combinatorial coverage and set-difference combi-
natorial coverage (SDCC) are defined as given by [12]. Then,
background is provided on metric learning and details are
provided for the metric learning methods used in this paper.
The method of analysis is described, results are presented with
accompanying discussion, and, lastly, conclusions are drawn.

II. PRELIMINARIES

Notions of combinatorial coverage have been applied to
deep learning [5]–[7]. These applications have been critiqued
[8]. Broader use of coverage concepts in machine learning
include explainability [9], [15], autonomous vehicles [10],
[16], test set construction [11], fairness testing [17], physical
unclonable functions [9], multi-domain operations [18], and
active learning [19]. Many works focus on traditional measures
of coverage [3], however recent work proposes new measures
for applications of coverage to machine learning based on set-
difference [12].

A. Coverage Formalism

In combinatorial interaction testing for machine learning,
factors are the features X and classes Y and the values of those
factors are their events. Note, in combinatorial interaction
testing, continuous-valued factors must be discretized to a
finite set of values. A t-way value combination is a t-tuple
of (factor, value) pairs. If there are k factors in X × Y ,
then each element (x, y) ∈ X × Y contains

(
k
t

)
t-way value

combinations. Value combinations are a formal description of
interactions.

Combinatorial coverage, sometimes termed total t-way cov-
erage, measures the proportion of valid t-way value combina-
tions that appear in a set [3]. Value combinations that appear
are considered covered. Combinatorial coverage is defined in
the following.

Definition 1. t-way Combinatorial Coverage.
Consider a universe with k factors such that U is the set of
all valid k-way value combinations. Let U t be the set of valid
t-way combinations. Given a set of data D ⊆ U , let Dt define
the set of t-way value combinations appearing in D. The t-way
combinatorial coverage of D is

CCt(D) =
|Dt|
|U t|

,

where |D| denotes the cardinality of D.

SDCC is alternatively measures the proportion of valid t-
way value combinations that appear in one set relative to
another set. SDCC is defined in the following [12].

Definition 2. t-way Set Difference Combinatorial Coverage.
Let DA and DB be sets of data, and DA

t and DB
t be the

corresponding t-way sets of data. The set difference DB
t\DA

t

gives the value combinations that are in DB
t but that are not

in DS
t. The t-way set difference combinatorial coverage is

SDCCt(DB , DA) =
|DB

t \DA
t|

|DB
t|

.

SDCCt is bounded [0, 1] where 1 indicates no overlap, i.e.,
DB

t ∩ DA
t = ∅, and 0 indicates that DB

t ⊆ DA
t. In other

words, if DB is the testing data and DA is the training data,
0 indicates that all testing combinations are present in the
training data and 1 indicates that none are present. Note, we
use the term SDCCMs to refer to SDCC over a set of t-values.

III. METRIC LEARNING BACKGROUND

Metric learning is generally concerned with learning dis-
tance functions [20]. This typically involves learning a trans-
formation to a latent space where similar data are closer
together and dissimilar data are farther apart. As such, the
latent spaces learned by metric learning induce sparsity in
the input space that is both useful for making predictions (by
making data more linearly separable). This may also be useful
for coverage as the more separated data is easier to discretize
[21]. Although deep metric learning methods are an active area
of interest [22], [23], critiques suggest that, so far, deep metric
learning offers little improvement over classical methods in
cases where both deep and classical methods can be applied
[24].

We use three of the most prevalent classical meth-
ods: Neighborhood Component Analysis (NCA) [25], Metric
Learning for Kernel Regression (MLKR) [26], and Large
Margin Nearest Neighbor (LMNN) [27].

• NCA is a variation on k-nearest neighbors (KNN) classi-
fication that directly maximizes a variant of leave-one-out
performance.

• MLKR learns a distance function by directly minimizing
the leave-one-out regression error.

• LMNN is a variation on KNN classification that learns a
Mahalanobis distance.

These three methods are supervised metric learning methods
because they use class labels during training.

IV. DATA

In this paper, 6 open-source datasets are used. All datasets
can be retrieved from the University of California Irvine (UCI)
Machine Learning Repository [28]. The datasets are described
in Table I and are: the “Wine Data Set” (Wine), the “Rice
(Cammeo and Osmancik) Data Set” (Rice), the “Yeast Data
Set” (Yeast), the “Car Evaluation Data Set” (Car), the “Breast
Cancer Wisconsin (Diagnostic) Data Set” (Cancer), and the
“Balance Scale Data Set” (Balance). The datasets vary in size,
number of classes, number of features, and feature type. The
Cancer dataset is reduced from its original feature space to
only the ‘mean’ features. All other datasets are unaltered.



TABLE I
DATASET INFORMATION

Dataset Sample Size Classes Features Feature Type

Wine 178 3 13 Continuous
Rice 3810 2 7 Continuous
Yeast 1484 10 8 Continuous
Car 1728 4 6 Discrete
Cancer 569 2 10 Continuous
Balance 625 3 4 Discrete

V. METHOD

In this paper, we investigate whether metric learning im-
proves the ability of SDCCMs to anticipate classification
error. To assess the ability to anticipate error, we measure the
difference between SDCCMs calculated (1) between training
data and correctly classified data and (2) between training
data and incorrectly classified data. We suppose that the larger
the difference, the better SDCCMs perform as a metrics for
anticipating classification error. To conduct our analysis, the
data must be prepared.

The data is prepared for coverage analysis as follows.
The NCA, MLKR, and LMNN algorithms are used to learn
transformations to latent spaces using all available data. The
metric learning methods use the default settings of metric-
learn [29]. Each dimension of the latent spaces is used as a
feature. The number of dimensions is equal to the number of
features in the original data. Then, the NCA, MLKR, LMNN,
and original spaces are discretized. Note, the Car and Balance
datasets have discrete features and thus the discretization is
not applied to their original spaces. The discretization process
treats each feature separately. Each feature’s data is clustered
using the standard k-means clustering algorithm from scikit-
learn with k=5 bins [30].

After transformation and discretization, the data is ready
for coverage analysis. The coverage analysis is conducted as
follows. For each dataset, 10 folds are created with 80%-
20% train-test splits using random sampling. For each fold, a
decision tree (DT), support vector machine (SVM), and KNN
classifier is trained and tested. The classifiers use the default
scikit-learn settings [30], except the maximum depth is set to
2 for the DT classifier. The correctly and incorrectly classified
test data are separated. Then, the SDCCMs are calculated over
the discretized NCA, MLKR, LMNN, and original features
(i.e., not the labels) (1) between the training data and the
correctly classified data and (2) between the training data and
the incorrectly classified data. In both cases, the SDCC is
used to measure the ratio of the number of interactions that
appear in the training data that do not appear in test data to the
total number of interactions that appear in the training data. In
previous literature [13] and during initial testing, this direction
of set-difference showed stronger correlation with error than
the ratio of interactions appearing in the test data that do not
appear in the training data to the total number of interactions
in the test data. The difference between SDCCMs calculated
in (1) and (2) is assessed for t = (2, 3, 4).

TABLE II
CLASSIFICATION ACCURACY

n = 10 DT SVM KNN Random
Dataset (Mean, Std) (Mean, std) (Mean, Std) 1/No. Classes

Wine (0.85, 0.07) (0.61, 0.06) (0.72, 0.08) 0.33
Rice (0.92, 0.01) (0.88, 0.14) (0.88, 0.02) 0.50
Yeast (0.48, 0.04) (0.59, 0.03) (0.56, 0.03) 0.10
Car (0.78, 0.02) (0.93, 0.02) (0.90, 0.02) 0.25
Cancer (0.92, 0.02) (0.89, 0.03) (0.89, 0.03) 0.50
Balance (0.64, 0.04) (0.90, 0.03) (0.82, 0.03) 0.33

VI. RESULTS

The results of the coverage analysis are examined visually
and statistically to assess whether metric learning increases
the ability of SDCCMs to anticipate classification error. The
accuracy scores of the classifiers are summarized in Table
II. Figures 1 and 2 visualize the results. The rows of the
figures correspond to the datasets. The columns of the figures
correspond to the DT, SVM, and KNN classifiers, respectively,
from left-to-right.

Within each subplot, the y-axis corresponds to the SDCC
for the incorrectly classified data subtracted from the SDCC
for the correctly classified test data. Higher values along the
y-axis indicate a higher ability to anticipate classification error.
The x-axis corresponds to the t-values used in the SDCC
calculations, and boxplots are grouped according to the t-
values. The different colors of the boxplots correspond to
the discretized original, NCA, MLKR, and LMNN spaces,
respectively, from left-to-right. The center line of the boxes
indicates the median, the upper and lower borders of the
boxes indicate the upper and lower quartiles, and the whiskers
indicate the rest of the distribution. Outliers are depicted as
black diamonds. Note, these outliers are identified by their
distance from the inter-quartile range, and are not removed in
later statistical analysis.

The general trends in the figures can be described as follows.
In Figure 1, the Wine dataset shows outperformance by metric
learning for nearly all classifiers, t-values, and metric learning
methods. The Yeast dataset, in contrast, depicts mixed results,
with at least one metric learning method outperforming in
many cases, but no cases of all metric learning methods out-
performing. Lastly, the Rice dataset shows the opposite results
of the Wine dataset, with the original space outperforming for
nearly all cases. This dataset-to-dataset variance in results is
expected, and has been noted in previous literature [14]. The
trends in Figure 2 are more nuanced. For the Car dataset,
metric learning spaces tend to outperform the original space
more for lower values of t, while for the Cancer dataset,
metric learning outperforms for higher values of t. The Balance
dataset shows both of these trends, with, in general, more
outperformance occurring for t = 2 and t = 4 than for t = 3.

In summary, the figures show varied results, however, for
many cases, metric learning clearly increases the ability of
SDCCMs to anticipate classification error. From visual inspec-
tion of Figures 1 and 2, the largest dependency in the success
of metric learning appears to be on the dataset, followed by



Fig. 1: Results by dataset and classifier for Wine, Yeast, and Rice.

smaller dependencies on t-values and classifiers, respectively.
It should be noted, that across all datasets, classifiers, and t-
values, only the Yeast dataset with the DT classifier shows
near-zero difference between the SDCCMs for correctly and
incorrectly classified test data. This provides evidence for
claims in previous literature that SDCCMs can be used to
anticipate error in machine learning [12]. While Cody et.
al [13] demonstrated this correlation on MNIST image data,
herein, we evidence the presence of a more general trend by
using data from 6 different domains.

To better assess whether metric learning increases the ability

of SDCCMs to anticipate classification error, we conduct a
rigorous statistical analysis using the paired t-test. The paired
t-test assesses whether or not the pairwise differences between
two sets of values varies from 0 [31]. If the test statistic is
greater or less than 0 and the p-value is deemed significant,
than the null hypothesis that there is no difference is deemed
false. For our analysis, we treat test results with a p-value
< 0.05 as significant. We pairwise compare the SDCCM
differences of each metric learning space with those of the
original space. We apply the paired t-test for each dataset and
t-value since these are the primary dependencies identified in



Fig. 2: Results by dataset and classifier for Car, Cancer, and Balance.

the boxplots.

In Table III, the results of the statistical analysis are shown
with two significant figures. Since our hypothesis is that
metric learning improves the ability of SDCCMs to anticipate
classification error, as opposed to a specific metric learning
method, the table identifies the metric learning method with
the highest test statistic for each dataset and t-value. For
the Car dataset at t-values of 2 and 3, the LMNN and
original spaces were identical, and thus there was no pairwise
difference. The results of Table III are summarized in Table
IV. In 15/18 or 83% of cases, there was a metric learning

space that was as good as or better than the original space. In
10/18 or 56% of cases, there was a metric learning space that
was better than the original space. In conclusion, these results
provide evidence that metric learning improves the ability of
SDCCMs to anticipate classification error.

VII. DISCUSSION

Results are discussed in detail in the previous section,
however, the role of classification accuracy was not con-
sidered. Figure 3 shows the classification accuracy plotted
against the SDCCM differences for the metric learning and
original spaces. The points are from all datasets, t-values,



TABLE III
PAIRED T-TESTS FOR EACH DATASET AND T-VALUE

n = 30 t = 2 t = 3 t = 4

Dataset Statistic p-Value Result Method Statistic p-Value Result Method Statistic p-Value Result Method

Wine 8.2 5.2e-9 Higher LMNN 9.0 6.0e-10 Higher MLKR 13 2.6e-13 Higher LMNN
Rice -2.5 2.1e-2 Lower MLKR -12 1.8e-12 Lower MLKR -13 2.7e-13 Lower NCA
Yeast 1.1 2.9e-1 Same NCA 2.2 3.5e-2 Higher NCA 0.70 5.0e-1 Same NCA
Car 18 1.2e-17 Higher NCA 0 0 Same LMNN 0 0 Same LMNN
Cancer -0.9 3.8e-1 Same LMNN 2.3 2.9e-2 Higher LMNN 13 2.5e-13 Higher MLKR
Balance 2.7 1.1e-2 Higher NCA 4.8 4.0e-5 Higher MLKR 20 3.5e-18 Higher LMNN

TABLE IV
PAIRED T-TEST SUMMARY

Dataset t = 2 t = 3 t = 4 Totals

Wine Higher Higher Higher Higher
Rice Lower Lower Lower 10
Yeast Same Higher Same Same
Car Higher Same Same 5
Cancer Same Higher Higher Lower
Balance Higher Higher Higher 3

and classifiers. The R2 correlation between the accuracies
and differences for all data (for each respective space) is
displayed in the subplots. Also, regression lines are calculated
for each dataset using linear least-squares regression. The R2

correlations given by these regressions are displayed in the
legend boxes of each subplot. The regression lines and their
correlations are labeled by their dataset in the legend at the
bottom of the figure.

Immediately, we can note that there are clear positive
correlations between accuracy and SDCCM differences in all
spaces. This means that the ability of SDCCM to anticipate
classifier error increases with classification accuracy. Also, it
appears that NCA and MLKR are able to transform points
away from the upper-left quadrant, leading to higher correla-
tions. These upper-left points indicate cases where SDCCM
differences are uncorrelated to classification accuracy. This
means that the SDCC calculations for correctly and incorrectly
classified test data are similar regardless of classification
accuracy.

It may seem undesirable to have points in the upper-left
quadrant. But this intuition requires nuance. Consider the
distinct goals of learning classifiers and learning latent spaces
for coverage analysis. First, note that in this paper we are
studying whether metric learning provides more meaningful
spaces over which to conduct coverage analysis. Now, setting
that motivation aside for a moment, consider that one has ob-
tained a meaningful space—a space where no available method
offers significant improvement in the ability to anticipate errors
using SDCCMs. In such a space, the presence of points in
the upper-left quadrant that indicate high performance but
a low difference between SDCCMs calculated on correctly
and incorrectly classified test data can be taken as a signal
that classification errors are occurring at random, or at least
without significant bias towards any particular region in the
space of interactions. In contrast, the presence of points in

the upper-right quadrant indicate that there is such a bias; that
is, that even though classification accuracy is high, there are
still regions in the space of interactions where the classifier is
predictably wrong.

Therefore, NCA and MLKR, by finding transformations
which shift points away from the upper-left quadrant, are
effectively finding new representations for the space of in-
teractions to which the classifiers are predictably wrong or
otherwise biased. From this reasoning, it seems that the goal
of metric learning for coverage analysis should be to increase
the correlation between model performance and SDCCM
differences, while the goal of learning classifiers should be
to decrease the correlation by shifting test points to the upper-
left quadrant.

There are a few interesting trends in the dataset-specific
correlations. Rice and Cancer, the two datasets where metric
learning performed the worst based on visual inspection of
Figures 1 and 2, consistently have the lowest correlations.
Moreover, for Rice, the dataset where metric learning per-
formed the worst based on the statistical analysis summarized
in Table IV, the original space has a significantly higher
correlation than any metric learning space. And for Cancer,
the correlations are similar between the original and metric
learning spaces. In contrast, Wine and Balance—the best
performing metric learning methods based on Table IV—have
correlations that are higher for the metric learning spaces than
for the original space. From these observations, it seems that
the larger the difference there is in like-for-like correlations
between original and metric learning spaces, the more metric
learning improves the ability of SDCCMs to anticipate error.
This trend, however, needs more datasets for further investi-
gation.

VIII. CONCLUSION

In this paper, we provide evidence that metric learning can
improve the ability of SDCCMs to anticipate classification
error. Importantly, the metric learning spaces were minimally
tuned. This suggests that the demonstrated outperformance by
metric learning is not over-engineered and can likely increase
further with hyperparameter optimization. This promising
evidence supports arguments for combinatorial coverage in
identifying when out-of-distribution (OOD) data is likely to
degrade model performance.

Additionally, our experiments support previous claims in
the literature the SDCCMs correlate to the error of machine



Fig. 3: Correlation analysis of classification accuracy and SDCCM differences.

learning classifiers. Despite past criticisms of particular ap-
plications of coverage concepts to neural networks, there is a
growing body of literature supporting the use of combinatorial
coverage concept in machine learning in general. As this
marked trend continues, it is important to revisit the use of
coverage concepts in learning algorithm development, not just
auxiliary support systems like explainability, fairness, or error
anticipation.

Metric learning offers a promising opportunity in this
direction. Metric learning algorithms should be revisited in
future work for their prospective use in coverage analysis.
A particular concern in this area is metric learning methods
that inherently learn discretized or readily discretizable spaces.
Further, additional terms can be considered in the loss func-
tions of metric learning algorithms such that the learned spaces
are well-suited for particular kinds of coverage analysis, as
opposed to, e.g., the traditional focus on being well-suited
for classification and prediction problems. While the use of
classical metric learning algorithms herein demonstrates an
improvement in the ability to anticipate classification error,
the results also indicate that significant dataset-dependence
remains. Metric learning algorithms more tailored to coverage
concepts could help further alleviate dataset-dependence in the
utility of coverage analysis.
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