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Abstract—3D speech enhancement can effectively improve the
auditory experience and plays a crucial role in augmented reality
technology. However, traditional convolutional-based speech en-
hancement methods have limitations in extracting dynamic voice
information. In this paper, we incorporate a dual-path recurrent
neural network block into the U-Net to iteratively extract dy-
namic audio information in both the time and frequency domains.
And an attention mechanism is proposed to fuse the original
signal, reference signal, and generated masks. Moreover, we
introduce a loss function to simultaneously optimize the network
in the time-frequency and time domains. Experimental results
show that our system outperforms the state-of-the-art systems
on the dataset of ICASSP L3DAS23 challenge.

Index Terms—3D Speech Enhancement, Convolutional Rec-
curent Neural Network, Attention Mechanism

I. INTRODUCTION

3D audio is a multi-channel audio processing technology
designed to provide a more immersive listening experience
by simulating a realistic three-dimensional sound field. But in
real world environments, speech communication is usually dis-
turbed by various background noise, leading to poor intelligi-
bility and clarity. Some speech-related tasks, such as automatic
speech recognition, also suffer from performance degradation
when noise and reverberation are involved. Therefore, speech
enhancement (SE), which aims at improving the quality of
speech signals, has received widespread attention recently.

Researchers often use filters with different characteristics to
eliminate noise components [1]–[3]. Another approach named
spectral subtraction uses mathematical models to estimate
the noise spectrogram, which is then be subtracted from the
original spectrogram [4], [5]. However, these conventional al-
gorithms are usually based on strong assumptions and require
professional knowledge to model and analyze signals.

To overcome the limitations of traditional algorithms, deep
learning (DL) has emerged as a powerful approach to improve
the performance of SE [6]–[8]. It does not require extensive
feature engineering or domain knowledge to capture data
patterns accurately and can adapt well to unstructured data.
Recently, SE is typically regarded as a supervised learning
problem with neural networks falling into two categories: time-
domain-based [9] and time-frequency (T-F) domain-based
methods [10], [11]. Time-domain-based approaches extract
information directly from the waveform to construct a regres-
sion function for the target speech. However, SE methods in
the time domain usually need to deal with continuous time

series data, which leads to the problem of high computational
complexity. In contrast, SE systems carrying out in the T-F
domain can take advantage of efficient frequency-domain al-
gorithms such as Fast Fourier Transform, so the computational
complexity is relatively lower. Firstly, speech is transformed
into a time-frequency representation by the Short-time Fourier
Transform (STFT). Then, DL models, such as convolutional
neural networks (CNNs), are used to reconstruct the clean
speech spectrogram. Finally, the inverse Short-time Fourier
Transform (iSTFT) is applied to generate time domain signals.

Recently, the U-Net structure has been proposed to improve
SE performance [12]. It uses skip connections to connect
the output of some layers in the encoder with the input of
corresponding layers in the decoder. In this way, the decoder
can access lower-level feature maps, which preserve more
spatial information. However, this structure is not suitable
for modeling long-range interactions, or interactions with
variable-length dependencies, which are common to certain
forms of audio such as speech [13]. Some researchers try to
incorporate recurrent neural networks (RNNs) into CNNs to
extract dynamic voice information. E.g., the famous music
separation model, Demucs [14], adds a bidirectional long
short-term memory (Bi-LSTM) block between the encoder and
the decoder, achieving state-of-the-art performance. Similarly,
DCCRN [15] incorporates a complex-valued LSTM block into
the U-Net structure and achieves great SE performance.

In addition to one-step approaches, researchers have pro-
posed some multi-stage SE methods, hoping to iteratively
eliminate the noise signal [16]–[19]. In our previous work [20],
we propose a two-stage U-Net framework to eliminate noise
and reverberation in 3D speech signals, which achieves the
state-of-the-art performance but lacks some form of attention
mechanism for efficient fusion of signals and masks from
different stages.

To address the above issues, in this paper, we propose a
convolutional recurrent neural network for 3D SE by using
two sequentially stacked U-Nets. Firstly, we integrate a Dual-
path RNN (DPRNN) block [21] into the first U-Net, which can
iteratively and alternately apply time-domain and frequency-
domain modeling. Secondly, we propose an attention mecha-
nism to fuse the original signal, reference signal, and generated
masks. Then, we utilize the multi-layer perceptron (MLP) to
perform frequency-domain beamforming on the multi-channel
data to form a monaural output. Finally, we introduce a loss
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Fig. 1. The architecture of the proposed convolutional recurrent neural network for 3D speech enhancement

function to simultaneously optimize the network in the T-F
and time domains.

This paper is organized as follows: Section II describes the
proposed methods. Section III gives details of experiments
such as datasets, evaluation metrics, baselines and settings.
Section IV shows the experimental results and Section V gives
our discussion and conclusions.

II. PROPOSED METHODS

A. Overview

Fig. 1 illustrates the architecture of the proposed convolu-
tional recurrent neural network for 3D SE. We use the time-
domain representation of the noisy speech signal Sn(t) ∈
RC×(T×S) as the input of the system, where C denotes the
total number of audio channels, T represents the duration
of the audio, and S is the sampling rate. STFT is then
applied to obtain the time-frequency domain representation
X(t, f) ∈ CC×L×F , where L represents the number of frames,
and F denotes the frequency bins. The convolutional recurrent
neural network takes the amplitude of X(t, f) as input and
uses it to reconstruct the spectrogram of clean speech.

|X(t, f)| is passed through the first U-Net to produce an es-
timated real-valued mask M1(t, f) ∈ RC×L×F . Then, X(t, f)
and M1(t, f) are multiplied by element-wise to produce the
reference signal Xf (t, f) ∈ CC×L×F , formulated as:

M1(t, f) = UN1[|X(t, f)|] (1)

Xf (t, f) = X(t, f)⊙M1(t, f) (2)

Where UN1 represents the first U-Net, and ⊙ means element-
wise multiplication.

The amplitude of the reference signal is fed into the second
U-Net to generate another mask M2(t, f) ∈ RC×L×F :

M2(t, f) = UN2[|Xf (t, f)|] (3)

Where UN2 represents the second U-Net.
After that, we use an attention block to perform weighted

fusion of mask tensors M1(t, f) and M2(t, f) to get the final

mask M(t, f) ∈ RC×L×F . Similarly, original signal X(t, f)
and the reference signal Xf (t, f) are weighted and fused to
produce the estimated signal X̂(t, f) ∈ CC×L×F , formulated
as: {

M(t, f) = Att [M1(t, f),M2(t, f)]

X̂(t, f) = Att [X(t, f),Xf (t, f)]
(4)

Where Att represents the attention block.
The enhanced spectrogram Xm(t, f) ∈ CC×L×F can be

calculated by element-wise multiplication of the estimated
signal X̂(t, f) and the final mask M(t, f):

Xm(t, f) = X̂(t, f)⊙M(t, f) (5)

Xm(t, f) is passed through a neural beamforming filter in
the frequency domain to get a monaural output Xe(t, f) ∈
CL×F and we use iSTFT to generate the enhanced time
domain speech signal Se(t) ∈ RT×S , formulated as:{

Xe(t, f) = Beam [Xm(t, f)]
Se(t) = iSTFT [Xe(t, f)]

(6)

B. U-Net structure

As shown in Fig. 1, the proposed system is mainly com-
posed of two U-Nets.

Encoder: The encoder comprises L = 10 stacked encoder
blocks, each of which is composed of a two-dimensional
convolution with Cin input channels and Cout output chan-
nels, followed by a batch normalization and a LeakyReLU
activation function [22].

Decoder: The decoder is the inverse of the encoder and
comprises 10 decoder blocks, each of which contains a two-
dimensional transposed convolution, followed by a batch nor-
malization and a LeakyReLU activation function. Encoder and
decoder parameters are set to the same.

Skip connection: Similar to the multi-channel U-Net struc-
ture [12], skip connections are used between encoder blocks
and corresponding decoder blocks. These skip connections
allow the input to be directly transmitted to the output and
preserve more feature details.



The architectures of the encoder and decoder blocks are
illustrated in Fig. 2. Table I presents the detailed configurations
of two-dimensional convolution layers in the encoder blocks.

Fig. 2. The architecture of the encoder and decoder block

TABLE I
THE CONFIGURATIONS OF CONVOLUTION LAYERS IN THE ENCODER

BLOCKS

L Cin/Cout kernel stride
1 C/32 (7,1) (1,1)
2 32/32 (1,7) (1,1)
3 32/32 (8,6) (2,2)
4 32/64 (7,6) (1,1)
5 64/64 (6,5) (2,2)
6 64/96 (5,5) (1,1)
7 96/96 (6,3) (2,2)
8 96/96 (5,3) (1,1)
9 96/128 (6,3) (2,1)
10 128/256 (5,3) (1,1)

C. DPRNN Block

In order to perform dynamic feature extraction, we incor-
porate a DPRNN block between the encoder and decoder to
iteratively apply time-domain and frequency-domain model-
ing.

As shown in Fig. 3, the DPRNN block is composed of four
stacked DPRNN modules. Suppose Z(t, f) ∈ RC×L×F is the
output of the encoder, which is used as the input to the DPRNN
block. Subsequently, Z is passed through two consecutive
Bi-LSTMs, each of which contains 128 hidden units, for
sequentially time and frequency modeling. We perform a
residual connection between the input and the output of each
Bi-LSTM. After that, the output of the second Bi-LSTM is
fed to a convolutional layer with Cin of 128 and Cout of 256.
The Norm and PReLU depicted in the figure refer to group
normalization [23] and parametric rectified linear unit [24],
respectively.

D. Attention Block

Let Xi and Ai denote the i-th input tensor and i-th learnable
weight tensor, respectively. The output of the attention block

Fig. 3. The architecture of DPRNN block and DPRNN module

is given by:

O =

N∑
i=1

Ai ⊙Xi (7)

By adding attention blocks to the system, the convolutional
recurrent neural network can learn to assign bigger weights
to more important features. Reference signals estimated at
each stage can be effectively fused through the attention
mechanism to further improve the performance of clean speech
spectrogram reconstruction.

E. Neural Beamforming Filter

As shown in Fig. 1, we pass the enhanced multi-channel
spectrogram Xm(t, f) ∈ CC×L×F through a neural beam-
former at the end of the system. There are two motivations: 1)
Through frequency-domain beamforming, the amplitude and
phase of Xm at different frequencies are adjusted to enhance
the signal from the target direction. 2) Form a monaural output.
Specifically, as shown in Fig. 4 , we implement this neural
beamforming filter using MLPs so that the beam weights can
be learned adaptively.

Fig. 4. The architecture of the beamforming filter



F. Loss Function

Recently, the mean absolute error loss function, defined in
the time domain, has been increasingly employed for speech
enhancement tasks because of its superior performance [12],
which can be formulated as:

MAE =
1

T

T∑
t=1

|x(t)− x̂(t)| (8)

where x(t) denotes the clean speech signal and x̂(t) denotes
the enhanced speech signal.

In this paper, we propose a loss function which combines
the normalized relative error in the T-F and time domains. It
can be formulated as:

Loss =
γ

LF

L∑
t=1

F∑
f=1

||X(t, f)| − |X̂(t, f)||
|X(t, f)|

+
1− γ

T

T∑
t=1

|x(t)− x̂(t)|
|x(t)|

(9)

where X(t, f) and X̂(t, f) denote the clean and the en-
hanced spectrogram, respectively, x(t) and x̂(t) represent
corresponding speech signals in the time domain and γ is the
hyperparameter. By default, γ is set to 0.5.

III. EXPERIMENTS

A. Dataset

The proposed system is evaluated on the 3D audio dataset
provided by the L3DAS23 challenge. The dataset is semi-
synthetic, where the spatial sound scenes are generated by
convolving computed room impulse responses (RIRs) with
clean sound samples. The noise data is sourced from the
FSD50K dataset [25], and clean speech samples are extracted
from Librispeech [26] . Overall, the dataset comprises approx-
imately 90 hours 4-channel recordings with a sampling rate of
16kHz.

To capture a comprehensive range of acoustic environments,
two Ambisonics microphones are positioned at 443 random lo-
cations across 68 houses to generate RIRs. The sound sources
are placed in random locations of a cylindrical grid. One
microphone is located in the exact position selected, while the
other is positioned 20 cm apart from it. Both microphones are
situated at a height of 1.6 m, which approximates the average
ear height of a standing person. Details about the dataset can
be found at https://www.l3das.com/icassp2023/dataset.html.

B. Baselines

We conduct a comparative analysis of the proposed method
against several state-of-the-art baselines, including:

FasNet [27]: A neural beamformer that leverages both
magnitude and phase information of the signal, operating in
the time domain.

U-Net [12]: A multi-channel autoencoder neural network
that performs in the T-F domain. This method won the first
place in the L3DAS21 challenge, showing its effectiveness in
dealing with 3D speech enhancement tasks.

SE-UNet [20]: A two-stage U-Net architecture proposed
by us before, which got the second place in the L3DAS23
challenge.

C. Evaluation Metrics

We utilize a set of objective criteria including Short-Time
Objective Intelligibility (STOI) and Word Error Rate (WER).
STOI is employed to estimate the intelligibility of speech,
while WER is used to evaluate the performance of speech
on recognition. Both STOI and WER scores are normalized
to the range of [0, 1], facilitating a consistent and comparative
analysis across different methods.

Moreover, we use an additional metric defined by the
L3DAS23 challenge, which provides an overall evaluation of
speech enhancement performance. This metric combines the
STOI and WER scores, which can be calculated as:

Metric = (STOI + (1−WER)) /2 (10)

D. Training Setup and Hyper-parameters

We employ a batch size of 12 and the Adam optimizer to
train all models. The initial learning rate is set to 0.001, and
we use early stopping based on validation loss to select the
best model.

For the proposed system, we preprocess audio data using
STFT with a window size of 512 and a hop size of 128. We
cut all recordings into 4.792-second segments and use them
as the input of the network. Dropout rate is set to 0.1.

IV. RESULTS AND DISCUSSION

Experimental results of the proposed system and baselines
are presented in Table II. Results show that the proposed
method outperforms baselines in terms of both STOI and
WER. Compared to our previous work, SE-UNet, STOI is
improved by 0.022 and WER is reduced by 0.019.

TABLE II
EXPERIMENTAL RESULTS OF DIFFERENT SYSTEMS

Model STOI WER Metric
FasNet 0.624 0.599 0.513
U-Net 0.679 0.562 0.559

SE-UNet 0.837 0.167 0.835
Proposed 0.859 0.148 0.856

In Fig. 5, we visually demonstrate the effectiveness of the
proposed method by comparing the enhanced speech spec-
trogram, the noisy speech spectrogram and the clean speech
spectrogram. It can be seen that our system removes the noise
signals while suppressing reverberation effectively.

Furthermore, we explore the impact of the proposed loss
function by evaluating the system using different settings. As
shown in Table III, results show that SE performs better when
optimized from T-F domain and time domain at the same
time. Moreover, it can be found that the T-F loss has a great
influence on STOI, while the time-domain loss affects WER
more. We recommend to set the default value of γ to 0.5 for
achieve a general good performance for 3D SE.

https://www.l3das.com/icassp2023/dataset.html


Fig. 5. the log-frequency spectrogram of: (a) noisy speech (b) enhanced
speech (c) clean speech

TABLE III
EXPERIMENTAL RESULTS OF DIFFERENT LOSS FUNCTIONS

Loss Function STOI WER Metric
Proposed(γ = 0) 0.802 0.171 0.816

Proposed(γ = 0.5) 0.859 0.148 0.856
Proposed(γ = 0.7) 0.862 0.161 0.851
Proposed(γ = 0.3) 0.841 0.143 0.849

V. CONCLUSIONS

In this paper, we propose a convolutional recurrent neural
network for 3D speech enhancement using two stacked U-
Nets. Firstly, we incorporate a DPRNN block into the first U-
Net for alternately extracting dynamic voice information in the
time and frequency domains. Then, we introduce an attention
mechanism to effectively fuse the original signal, reference
signal, and generated masks. Finally, an loss function for SE
tasks is proposed to simultaneously optimize the network on
the T-F and time domains. Experimental results show that the
proposed system can achieve the state-of-the-art 3D speech
enhancement performance and surpasses the baselines on the
dataset of L3DAS23 challenge.
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