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Abstract—We propose the adaptive random Fourier features
Gaussian kernel LMS (ARFF-GKLMS). Like most kernel adap-
tive filters based on stochastic gradient descent, this algorithm
uses a preset number of random Fourier features to save
computation cost. However, as an extra flexibility, it can adapt
the inherent kernel bandwidth in the random Fourier features in
an online manner. This adaptation mechanism allows to alleviate
the problem of selecting the kernel bandwidth beforehand for the
benefit of an improved tracking in non-stationary circumstances.
Simulation results confirm that the proposed algorithm achieves
a performance improvement in terms of convergence rate, error
at steady-state and tracking ability over other kernel adaptive
filters with preset kernel bandwidth.

Index Terms—Kernel LMS, random Fourier features, Gaussian
kernel, stochastic gradient descent.

I. INTRODUCTION

THE kernel least-mean-square (KLMS) algorithm was first
introduced in [1] by reformulating the LMS algorithm in

reproducing kernel Hilbert spaces (RKHS). Since the KLMS
can be easily implemented and has good tracking performance,
it has become central in the family of kernel adaptive filters.
The Gaussian kernel is commonly used with kernel adaptive
filters because it has universal modeling capability, desirable
smoothness, and numerical stability [2], [3]. In particular,
the Gaussian kernel LMS (GKLMS) has attracted substantial
research interests as well as its variants [4]–[9], and its
theoretical performance has been extensively analyzed [10]–
[14]. However, the selection of an appropriate bandwidth for
the Gaussian kernel to ensure good performance still remains
a problem with GKLMS-type algorithms in practical use,
especially for non-stationary environments.

Multi-kernel LMS (MKLMS) algorithms use a collection of
kernels with predefined bandwidths. They were developed to
alleviate the issue of kernel bandwidth selection, unfortunately
at the cost of an extra computational overhead [15], [16].
The GKLMS algorithm with adaptive kernel bandwidth, in
parametric vector-valued form, and in non-parametric func-
tional form, was introduced independently in [17], [18], but
without considering any non-negative constraint for the kernel
bandwidth. On the other hand, the random Fourier features
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GKLMS (RFF-GKLMS) algorithm was proposed to make the
GKLMS algorithms computationally more efficient with low
performance penalty [19]. Random Fourier features (RFF)
were also considered in [20] for distributed learning over
networks and graphs with kernel adaptive filters in order
to address nonlinear regression and classification tasks. The
RFF principle was used with the kernel conjugate gradient
algorithm [21]. The Cauchy-loss conjugate gradient method
based on multiple RFF was proposed in [22] to improve
robustness and reduce computational cost in the presence of
non-Gaussian noises. Recently, several RFF kernel regression
algorithms over graphs were proposed in [23], and their
conditions for convergence in the mean and mean-square sense
were also studied.

To the best of our knowledge, no RFF-based algorithm has
been proposed yet to adapt random Fourier features. In this
letter, we overcome this lack by devising the adaptive random
Fourier features GKLMS (ARFF-GKLMS) algorithm. Based
on stochastic gradient descent, it updates the vectors and phase
factors of the RFF in an online manner. The ARFF-GKLMS
algorithm outperforms the RFF-GKLMS and the GKLMS
in terms of convergence rate, steady-state error and tracking
ability. More importantly, the proposed simple but effective
principle of adaptive RFF can be readily incorporated into all
existing RFF filtering algorithms to enhance their performance.

II. GAUSSIAN KERNEL-BASED METHODS WITH RFF

Consider an unknown system with input-output relation
characterized by the following nonlinear model:

yn = f?(xn) + zn (1)

where f?(·) is an unknown function to be identified in a given
RKHS H endowed with a kernel κ(·, ·), and xn ∈ RL is the
original input data. The nonlinear desired output yn ∈ R is cor-
rupted by a zero-mean white Gaussian observation noise zn.
Given input and noisy output data pairs {(xn, yn)}Nn=1, we
consider the following functional optimization problem:

min
f∈H

N∑
n=1

`
(
f(xn), yn

)
+
λ

2
‖f‖2H (2)

where `(·, ·) denotes any convex loss function, λ > 0 is the
regularization parameter, and ‖·‖H is the RKHS norm induced
by its inner product. The Representer Theorem ensures that
the solution f(·) can be represented by a kernel expansion in
terms of training data [24]:

f(·) =
N∑
n=1

wnκ(·,xn) = w>NκN (·) (3)
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with wN = [w1, . . . , wN ]> the coefficient vector to determine
and κN (·) =

[
κ(·,x1), . . . , κ(·,xN )

]>
the kernelized input.

Instead of using the kernel trick [25], [26], which implicitly
maps the data into a feature space, the input data can be
explicitly mapped to a finite low-dimensional Euclidean space
by a random Fourier feature nonlinear map, z : RL → RD.
Hence, the kernel evaluation step can be approximated as
follows [27]:

κ(x,x′) = 〈ϕ(x), ϕ(x′)〉 ≈ z(x)>z(x′). (4)

A continuous and shift-invariant kernel κ(x,x′) = κ(δ) with
δ = x− x′ defined on RL is positive definite if, and only if,
κ(δ) is the Fourier transform of a non-negative measure [28].
When the kernel κ(δ) is properly scaled, Bochner’s theorem
guarantees that its Fourier transform:

p(ω) =
1

(2π)L

∫
RL

κ(δ) exp (−jω>δ)dδ (5)

is a proper probability distribution [27], where j =
√
−1.

Defining ζω(x) = exp(jω>x), we obtain:

κ(x− x′) =
∫
RL

p(ω) exp
(
jω>(x− x′)

)
dω

= Eω
[
ζω(x)

Hζω(x
′)
] (6)

where (·)H denotes the Hermitian transpose operator. When ω
is drawn from p(ω), ζω(x)Hζω(x′) then provides an unbiased
estimate of κ(x,x′). Because κ(x,x′) is real-valued, replac-
ing exp

(
jω>(x− x′)

)
by its real part cos

(
ω>(x− x′)

)
leads to a real-valued random feature for kernel κ. By defining
mapping zω,b(x) =

√
2 cos(ω>x + b), then the real-valued

kernel function can be expressed as [27]:

κ(x,x′) = Eω,b
[
zω,b(x)

>zω,b(x
′)
]

(7)

where b is drawn from the uniform distribution on [0, 2π].
Using (7) with the Gaussian kernel mentioned before, the
latter can be approximated by D random Fourier features and
random phase factors:

κ(x,x′) = exp
(
−‖x− x′‖2/2ξ2

)
≈ 1

D

D∑
m=1

zωm,bm(x)zωm,bm(x′)
(8)

with ξ > 0 the kernel bandwidth. Each ωm is obtained by
sampling p(ω) =

(
ξ/
√
2π
)D

exp
(
− ξ2‖ω‖2/2

)
beforehand,

that is, ω ∼ N (0D, ξ
−2ID). On the other hand, each bm is

obtained by sampling U([0, 2π]) [19], [20]. A high order D
can improve the approximation of (8). However, a trade-off
between accuracy and complexity has to be reached. Assume
that the feature map zΩ : RL→RD is defined as:

zΩ(x)=
√

2/D
[
cos(ω>1 x+b1), . . . , cos(ω

>
Dx+bD)

]>
. (9)

Substituting (9) into (8), the kernelized input vector in (3) can
be approximated by:

κN (·) ≈
[
zΩ(x1)

>zΩ(·), . . . ,zΩ(xN )>zΩ(·)
]
. (10)

By using approximation (10) and a sufficiently large order D,

function (3) can be reformulated as:

f(·) ≈ w>N
[
zΩ(x1), . . . ,zΩ(xN )

]>
zΩ(·) (11)

We shall rewrite (3) as follows:

f(·) = α>zΩ(·) (12)

with the modified (D × 1)-dimensional weight vector α and
the RFF nonlinear transformation zΩ(·):

α =
[
zΩ(x1), . . . ,zΩ(xN )

]
wN (13)

Based on model (12), we can now derive a linear adaptive
filtering strategy based on the LMS for updating α based on
the (D × 1)-dimensional RFF representation zΩ(·) of data.

III. ADAPTIVE RANDOM FOURIER FEATURES GKLMS

In this section, we introduce the proposed ARFF-GKLMS
algorithm. Model (12) shows that, although it no longer
required to evaluate Gaussian kernel functions, the preset
kernel bandwidth ξ still plays a prominent role through the
Gaussian vectors ωm sampled from N (0D, ξ

−2ID). Note that
a parallel can be drawn between these vectors ωm and the
dictionary elements usually considered with KAF algorithms;
see, e.g., [1], [4], [29]. We shall now consider adjusting
vectors {ωm}Dm=1 to improve the performance of RFF-based
algorithms.

Consider the mean-square error cost function defined by:

Ł(α,ωΩ, bΩ) = E
{∣∣yn −α>zΩ(xn)

∣∣2} (14)

with ωΩ = (ω1, · · · ,ωD) and bΩ = (b1, · · · , bD). We aim to
estimate these optimal variables α, ωΩ, and bΩ by solving the
following optimization problem of identifying the nonlinear
system described by model (12):

min
α,ωΩ,bΩ

Ł(α,ωΩ, bΩ). (15)

Following to the steepest-descent principle, the weight vector
αn+1 at time n+ 1 can be evaluated by updating the weight
vector αn at time n as follows:

αn+1 = αn +
1

2
ηα

[
−∂Ł(α,ωΩ, bΩ)

∂α

]
(16)

where ηα > 0 denotes the learning step-size. The gradient
vector of Ł(α,ωΩ, bΩ) with respect to α is approximated by
its instantaneous value, i.e.,

∂Ł(α,ωΩ, bΩ)

∂α
≈ −2enzΩ,n(xn). (17)

with en = yn − α>n zΩ,n(xn) the instantaneous estimation
error. Substituting the stochastic subgradient (17) into (16), we
arrive at the update relation of the ARFF-GKLMS algorithm:

αn+1 = αn + ηαenzΩ,n(xn) (18)

with αn = [α1,n, . . . , αD,n]
> the weight vector, and zΩ,n(xn)

the adaptive random Fourier features transformation vector:

zΩ,n(xn) =
[
cos(ω>1,nxn+b1,n), . . . , cos(ω

>
D,nxn+bD,n)

]>
.

(19)
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Now we apply the steepest-descent principle to (14) in order
to update the m-th vector ωm,n:

ωm,n+1 = ωm,n +
1

2
ηω

[
−∂Ł(αn,ωΩ, bΩ)

∂ωm

]
(20)

for m = 1, . . . , D, where ηω > 0 is the corresponding learning
step-size. Applying the chain rule to take the partial derivative
of (14) with respect to ωm, we obtain:

∂Ł(α,ωΩ, bΩ)

∂ωm
=
∂Ł(α,ωΩ, bΩ)

∂zΩ,m,n(xn)
· ∂zΩ,m,n(xn)

∂ωm

≈ 2enαm,n sin(ω
>
m,nxn + bm,n)xn

(21)

where the subgradient vector ∂Ł(α,ωΩ, bΩ)/∂ωm is replaced
by its instantaneous estimate, i.e., the stochastic subgradient.
Substituting (21) into (20), the update equation is given by:

ωm,n+1 = ωm,n − ηωenαm,n sin(ω>m,nxn + bm,n)xn. (22)

Likewise, we can obtain the recursive relation of the m-th
phase factor bm,n:

bm,n+1 = bm,n − ηbenαm,n sin(ω>m,nxn + bm,n) (23)

for m = 1, . . . , D, with the learning step-size ηb > 0. The
procedures of the ARFF-GKLMS are listed in Algorithm 1.

Before going further, two important points need to be given
attention. First, problem (15) is no longer convex with respect
to variables (α,ωΩ, bΩ). We shall however observe in the next
section that, thanks to the adaptation steps (22) and (23), the
ARFF-GKLMS algorithm offers a fast convergence rate, low
steady-state error, and good tracking ability, in particular when
processing with non-stationary systems. More importantly,
due to its simplicity, the VRFF method can be readily ap-
plied to other RFF-based algorithms. Secondly, the adaptation
steps (22) and (23) no longer guaranty that the {ωm,n} are
driven by any Gaussian distribution N (0D, ξ

−2ID) as the
algorithm progresses. This does not allow us to establish a
correspondence between the {ωm,n} and the bandwidth ξn of
a Gaussian kernel. Further work will be carried out to give a
better insight in understanding the properties of the nonlinear
mapping.

Algorithm 1 ARFF-GKLMS algorithm
1: Initialization:
2: Set the step-sizes ηα, ηω , ηb, and the kernel bandwidth ξ.
3: Generate random ωm,1 and bm,1 for m = 1, 2, . . . , D.
4: Input:

{
(xn, yn)

}
, n = 1, 2, . . . , N.

5: for n = 1, 2, · · · , N do
6: Update αn+1 via (18).
7: for m = 1, 2, . . . , D do
8: Update ωm,n+1 via (22);
9: Update bm,n+1 via (23).

10: end for
11: end for
12: Output: f(xN ).

IV. SIMULATION RESULTS

In this section, we shall present two simulation examples
to validate the improved performance of the ARFF-GKLMS

algorithm compared to its RFF-GKLMS counterpart on the
one hand, and to the classical GKLMS algorithm with coher-
ence sparsification (CS) criterion [4] on the other hand. All
the simulated curves were obtained by averaging over 200
independent Monte Carlo runs.

A. Stationary Nonlinear System Identification

Consider first the stationary nonlinear system defined by:

yn = κ>ξ?(xn)w
? + zn

where zn denotes a zero-mean Gaussian observation noise at
a SNR = 15dB, and w? the optimal weight vector is given by

w? = [0.756, −1.384, −0.101, 0.445, −0.565, 0.134]>.

The kernelized input vector κξ?(xn) was constructed based
on the Gaussian kernel with bandwidth ξ? = 0.95 and the
dictionary elements defined by:

D =

{[
0.17
−1.92

]
,

[
−1.62
−0.18

]
,

[
0.52
1.55

]
,

[
2.90
1.92

]
,

[
−2.01
−2.47

]
,

[
2.66
−0.82

]}
.

The input sequence xn = ρxn−1 +
√
1− ρ2un was generated

with correlation coefficient ρ = 0.5 and un a random sequence
governed by the i.i.d. standard normal distribution. The input
data vector was defined as xn = [xn, xn−1]

>. The step-size ηα
was set to 0.2 for the GKLMS-CS, 0.01 for the RFF-GKLMS,
and 0.005 for the ARFF-GKLMS, respectively. Both step-
sizes ηω and ηb were set to 1. The number of RFF was set to
D = 48. The kernel bandwidth of the Gaussian kernel used by
the GKLMS-CS was set to ξ = 0.95, and the threshold of the
CS criterion δκ was set to 0.7 to obtain the final dictionary size
M = 51 for the comparisons of learning curves of transient
EMSE.

Fig. 1(a) shows that ARFF-GKLMS algorithm significantly
outperformed the RFF-GKLMS and the GKLMS-CS algo-
rithms in terms of convergence rate and steady-state excess-
mean-square error (EMSE), which is the mean of the last
5 × 103 entries of the ensemble-average learning curve of
EMSE. Correspondingly, Figs. 1(c) and 1(d) show that the
weight coefficients of the ARFF-GKLMS converged faster
than those of the RFF-GKLMS. Fig. 1(b) shows the location of
vectors ωn at the beginning and at the end of the optimization
process. Fig. 1(e) shows that ξ setting has a strong effect on the
performance of the GKLMS-CS algorithm, which thus needs
to be carefully initialized based on side information or prelim-
inary tests. After a transient stage, the dictionary size reaches
a maximum value M determined by the CS criterion. Fig. 1(f)
shows that M gradually decreases as the kernel bandwidth ξ
increases. We observe on Fig. 1(e) that the EMSE at steady
state of the RFF-GKLMS algorithm is sensitive to large orders
D and to kernel bandwidth ξ setting. In contrast, we can notice
that the EMSE at steady-state of the ARFF-GKLMS algorithm
is robust with respect to kernel bandwidth ξ initialization,
particularly for large ξ. Nevertheless, the algorithm suffers
from performance degradation when both D and the kernel
bandwidth are small, as a result of the poor approximation
capacities of the kernel model in that case.
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Fig. 1. Simulation results for stationary nonlinear system identification. (a)
Learning curves of transient EMSE for ξ = 0.95, M = 51, and D = 48.
(b) Location of vectors ωn (D = 48). (c) Weights evolution for the RFF-
GKLMS (D = 48). (d) Weights evolution for the ARFF-GKLMS (D = 48).
(e) Steady-state EMSE versus ξ initial setting. (f) Dictionary length versus
different initial ξ.

B. Non-stationary Nonlinear System Identification

Consider the following non-stationary nonlinear system with
an abrupt change at time instant n = 1× 104:

dn =
[
0.8− 0.5 exp(−d2

n−1)
]
dn−1 + 0.1 sin(dn−1π)

−
[
0.3 + 0.9 exp(−d2

n−1)
]
dn−2,

for 0 ≤ n ≤ 5× 103,

dn =
[
0.2− 0.7 exp(−d2

n−1)
]
dn−1 + 0.2 sin(dn−1π)

−
[
0.8 + 0.8 exp(−d2

n−1)
]
dn−2,

for 5× 103 < n ≤ 1× 104,

yn = dn + zn,

with d−1 = d−2 = 0.1, and zn a zero-mean white Gaussian
noise at SNR = 25dB. The input data vector consists of the
nonlinear delayed system outputs xn = [dn−1, dn−2]

>. The
step-size ηα was set to 0.05 for the GKLMS-CS, and to 0.005
for the RFF-GKLMS and the ARFF-GKLMS, respectively.
Both step-sizes ηω and ηb were set to 0.05. The threshold of
the CS criterion δκ and the order D were set to 0.9 and 96,

respectively. In order to test the ability of the ARFF-GKLMS
to track nonstationary systems, the kernel bandwidth ξ was set
to 0.3661 for all algorithms.

Fig. 2(a) shows that the ARFF-GKLMS has a good tracking
ability, characterized by the lowest steady-state EMSE and
the fastest convergence rate after the abrupt change, thanks
to the online adaptation of ωn. Fig. 2(b) shows that the
dictionary length of the ARFF-GKLMS remains significantly
smaller than that of the GKLMS-CS, which allows to save
computation overhead. We can observe on Fig. 2(c) that the
locations of vectors ωn remained unchanged during the first
stationary phase because the kernel bandwidth was carefully
initialized for it, and then almost half of the ωn changed in
order to adapt to the abrupt change.
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Fig. 2. Simulation results for nonstationary nonlinear system identification.
(a) Learning curves of transient EMSE . (b) Evolution of the dictionary length.
(c) Variation in the locations of vectors ωn (D = 96).

V. CONCLUSION

In this letter, we proposed a novel ARFF-GKLMS algorithm
to adapt random Fourier features. This extra flexibility endows
the algorithm with robustness and good tracking ability in
non-stationary environments. The simulation results showed
a significant performance improvement, both in transient and
steady state. Since the step-sizes ηω and ηb have an important
impact on the performance of the ARFF-GKLMS, variable
step-size methods will be considered in future work. We will
also apply a forward-backward splitting framework to elimi-
nate the features with negligible contribution to the estimation
performance. Finally, as mentioned before, further work will
be carried out to give a better insight in understanding the
properties of the nonlinear mapping resulting from the adap-
tation process.
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