
Software Environment for Research on Evolving User Interface Designs

Juan Quiroz, Anil Shankar, Sergiu M. Dascalu, Sushil J. Louis
University of Nevada, Reno, USA

{quiroz, anilk, dascalus, sushil}@cse.unr.edu

Abstract

We investigate the trade off between investing effort

in improving the features of a research environment
that increases productivity and investing such effort in
actually conducting the research experiments using a
less elaborated, albeit sufficiently operational
environment. The study case presented is an interactive
genetic algorithm environment we created to evolve
user interfaces designs. We present three productivity
improvements integrated in our environment and
examine whether on the long run the research
productivity can be in fact increased by spending
development time on enhancing the research tools
rather than on performing the research itself. The
three improvements are the integration of the entire
system interface into a main wxPython window, the
addition of a runs manager for setting up multiple
experiments, and the creation of a data manager for
effective exploration and visualization of data
produced in the experiment runs. We also discuss
several guidelines for transitioning a research
environment such as ours from a researcher’s tool to
an end-user’s tool.

1. Introduction

User interface (UI) design is a complex, time
consuming, and expensive process. “Design is rarely a
straightforward process and typically involves much
iteration and exploration of both requirements and
design solutions” [13]. Guidelines of style help UI
designers to evaluate UI designs since guidelines
provide principles for the use of color, font, margin and
spacing, and the layout of widgets [1], [2], [4], [8]. We
have used evolutionary techniques, specifically an
interactive genetic algorithm (IGA), to allow UI
designers to explore the space of UI designs [11], [12].
Through evolution, the UI designer is able to rapidly
explore creativity and gain insight into various designs.
Our approach allows the user to incorporate both
expert knowledge in the form of objective design

metrics (or guidelines) and subjective human
preferences into the UI design process through an IGA.

Our research software environment provides a
front-end to the IGA. We allow the user to configure
the IGA behavior through the GUI. Our current
environment provides limited functionality and does
not address several usability and efficiency issues. For
example, we use XUL, a markup language for UIs, as
the target language for our UIs because of its flexibility
and ease with which widgets can be manipulated [9].
Due to the limited support of XUL rendering with
wxPython, our environment implementation language,
we dump the IGA output to a file every generation to
be viewed by the user through a system capable of
rendering XUL, such as the Mozilla web browser.

In this paper, we present three modifications to the
existing environment aimed at improving research
productivity: (1) integration of XUL output into the
main wxPython window; (2) a manager for specifying
experiment runs; and (3) a manager for the analysis
and visualization of data produced from the many
experiment runs. We discuss how such improvements
to the environment empower the user and increase
research productivity by providing the user with an
intuitive tool that reduces tedious tasks. We also look
into the effort needed to improve the research
environment and assess its worthiness versus
alternatively spending this effort on actually
conducting research experiments using the existing
(less developed) environment. In other words, we
discuss two different approaches: the first is to invest
some time and resources to better prepare the research
tools (and then conduct the experiments), the second is
to focus immediately on conducting the experiments
and advancing research (by using less elaborated,
albeit operational research tools).

In addition, the long-term goal is to deploy our
environment to UI designers. However, the
environment needs to be prepared for the context on
which it will be used for our intended audience. We
foresee two audiences, researchers and end-users. The
current environment is tailored towards researchers.
We discuss how we will go about moving our

International Conference on Software Engineering Advances(ICSEA 2007)
0-7695-2937-2/07 $25.00 © 2007

environment from a “researcher’s tool” to an “end
user’s tool”. Our discussion focuses on how we will
conduct this transition.

We hope that the discussion presented in the paper
will help other researchers customize their experiment
environments and tools developed for the end-users
and thus strengthen the work of both the research and
end-user communities.

The paper is structured as follows. Section 2
presents an overview of our environment for UI
evolution and the current status of the project. Section
3 shows the improvements made to the existing
environment to increase research productivity. In
Section 4 we discuss the process by which we plan to
transition our tool from a researcher’s tool to an end-
user’s tool. Section 5 presents a discussion of related
work. Finally, in Section 6 we present our concluding
remarks and outline directions of future work.

2. Overview of Our Research Environment

Our research software environment is a front-end to
an interactive genetic algorithm (IGA).

2.1 Interactive Genetic Algorithms

A genetic algorithm (GA) is a search technique based
on the principles of natural selection and survival of
the fittest [3]. It consists of a population, where
individuals are potential solutions to the problems to be
solved. Solutions are probabilistically recombined and
mutated, favoring the reproduction of high fitness
individuals. The process continues for several
generations. We can usually determine the fitness of
individuals algorithmically. However, there are times
when determining the fitness of individuals is difficult
if not impossible. IGAs replace the objective fitness
evaluation with human subjective evaluation. By
incorporating human subjective input, we can instill
human expertise, emotion, and intuition into the
evolutionary process [7]. UI evolution, because it is
both guided by expert knowledge taken from
guidelines of style and a human sense of aesthetics, is a
suitable problem for the IGA domain. For a survey of
IGAs the reader is invited to consult [7].

2.2 User interface Design Evolution

We use an IGA to evolve UI designs [11],[12]. UI
design is a complex and time consuming process. The
design process is driven both by guidelines of style and
human expertise. The problem with guidelines of style
is that applying them beyond specific cases and

interpreting the guidelines is itself a major problem
[13]. The IGA empowers UI designers to explore the
space of UI designs, and by doing so to instill
creativity and inspiration into various possible designs.

We encode UI layouts as individuals in the IGA
population. The user is presented a subset of the
population, consisting of the best UI designs in the
population, and then selects the UI design he/she likes
the best and the UI design he/she likes the least. This
user feedback guides the evolution of the UI designs
from generation to generation. Furthermore, we
incorporate computable objective metrics taken from
guidelines of style, to guide the evolution along with
the user input [11]. The objective and subjective
heuristics are combined in a linear weighted sum. The
combination of objective heuristics allows the UI
designer to evolve UI designs which both reflect user
preferences and coded guidelines of style.

In our previous work we found the user able to
effectively bias the evolution of UI designs [11], [12].
The current coded guidelines are: (1) a high contrast
between the panel background color and the widgets’
color, and (2) a low contrast between widget colors.
The first guideline enforces legibility by having
different foreground and background colors. The
second guideline enforces widgets to have a similar
shade of color, instead of having each widget with an
independent color. Lastly, we layout the widgets in a
grid construct. The grid construct aligns widgets in
rows and columns, implicitly enforcing another
guideline of style.

2.3 The Environment

The environment allows the user to configure the
IGA parameters. Settings that can be modified include
the crossover rate, mutation rate, population size,
number of individuals to display, the objective and
subjective weights of the fitness linear sum, and the
frequency of user input. The user can further customize
advanced options such as using the roulette wheel or
the tournament selection for the IGA, and if
tournament selection is chosen, the ability to specify
the tournament size and the probability of choosing the
winner of the tournament.

The IGA was implemented with Python and the GUI
with wxPython. Python was chosen because it enabled
us to do agile programming through fast prototyping,
continuous refactoring, and iterative redesigns.

International Conference on Software Engineering Advances(ICSEA 2007)
0-7695-2937-2/07 $25.00 © 2007

Figure 1. User interface evolution environment.

2.4 User Interface Specification

XUL, the XML User Interface Language, is a cross
platform markup language for user interfaces [9]. We
initially used XUL as the target language because of its
flexibility and ease with which widgets can be
manipulated and styled through CSS stylesheets.

A user defines a UI to be evolved by writing the list
of widgets to be evolved in XUL format. XUL, as a
subset of XML, is intuitive and straightforward. A
button in XUL is defined by “<button label=’I am the
label for this button!’/>”. The XUL list is loaded into
the environment through a file dialog. Currently
Python has limited support for XUL renderers. Thus,
we write the evolution output to a XUL file, and view
the file with the Mozilla web browser, which uses the
Gecko rendering engine to render XUL through the
browser [9]. Figure 1 shows the Mozilla web browser,
on the left, displaying the XUL individuals in the
population; the environment window is shown on the
right.

3. Investing Time on Development Versus
on Research Experimentation

We have worked on improving the effectiveness of
our research environment by implementing three new
features: (1) integrating the UI output into wxPython
instead of writing it to a XUL file; (2) adding an
experiment manager to handle numerous experiment
runs and their organization; and (3) adding a data
manager to navigate and visualize the large amounts of
data generated by running many experiments.

3.1 wxPython Integration

As implemented (in a simpler way) in the previous
version of our research environment, the dumping of
the visualization of individuals to a XUL file presents
efficiency and usability issues. First of all, both the
Mozilla web browser and the environment must be
started every time in order to be able to view the
population status and to provide relevant feedback to
the IGA. Once Mozilla has been started, the user must
then open the XUL file to which the output was sent.
Lastly, the user has to constantly switch back and forth
between the UI evolution environment itself (to enter
the user input of the best and worst UI displayed) and
the Mozilla browser (to see what the UIs at the current
generation look like).

We propose a design solution to the aforementioned
problem: to integrate in the main wxPython window
the rendering of individuals being evolved instead of
writing it to a XUL file. Alternatively, we could
implement the entire GUI with XUL. The advantage
of the latter approach is the ability to make the system
available online and thus have users evolve GUIs
through the web. However, the challenge in this is the
communication overhead between the XUL widgets
and the Python IGA backend, which would require
extensive processing. Therefore, we have opted for the
former solution.

The integration into wxPython, illustrated in Figure
2, has several advantages. First, the user does not have
to keep switching back and forth between Mozilla and
the main environment interface. Second, the user
selection becomes intuitive and less error prone. A left
double click on an individual selects it as the best UI
design, and a right double click on an individual selects
it as the worst UI design. Another advantage is that
productivity improves through having the session run
faster. With the XUL output viewed on Mozilla, the
user had to switch windows and refresh the browser to
see the latest subset for user evaluation. Instead, with
wxPython integration the update is almost instant,
speeding up the IGA session. Overall, the evolution of
individuals and their visualization becomes
straightforward.

3.2 Experiment Runs Manager

The second improvement was to add a manager of

experiment runs. The interface of this experiment runs
manager, shown in Figure 3, allows the user to specify
as many experiments as are desired and their
configurations. The processing is parallelized, so that
the user does not have to manually run the code in
multiple machines. Configurations for an experiment

International Conference on Software Engineering Advances(ICSEA 2007)
0-7695-2937-2/07 $25.00 © 2007

include all settings that would usually be set through
the main interface, as described previously in sub-
section 2.3. An experiment is added by clicking on the
“Add” button. Clicking the “Start” button begins
running the experiments, with a progress bar showing
the status of each experiment as time goes by.

In our previous work, an experiment consisting of
31 runs was done for each of the main results
presented, which amounted to a lot of time setting up
experiments in separate nodes in a cluster and tedious
data management. The experiment runs manager
developed to increase research productivity abstracts
all that away, allowing the user to run as many
experiments as necessary, with the ability to customize
almost every aspect of the IGA for each experiment,
parallelize the processing to have the experiments run
as fast as possible, and automate the organization of
the vast amounts of data resulting for each experiment.

Figure 2. Integration of individuals into the main wxPython window.

3.3 Data Manager

The third improvement we have integrated in our
environment is closely related to the experiment runs
manager. The data manager allows the user to browse
and explore the data produced from the many runs of
each experiment intuitively. Each experiment and its
corresponding runs are organized in a tree construct,
with two visualization modes.

First, clicking on an experiment expands its children
(the experiment runs) and displays an average plot of
the results from the experiment. An example is shown
in Figure 4a. Second, clicking on one of the runs from
an experiment displays the data in a spreadsheet, as
shown in Figure 4b.

Figure 3. The interface of the experiment runs manager.

 (a) (b)
Figure 4. The data manager organizes the data resulting from
experiments into a tree structure. (a) Experiment view. (b) Run view.

Usually, a script is written to parse the data
produced by the many IGA experiments. The data then
needs to be fed into a plotting program, such as xgraph
or gnuplot to view the results. The data manager takes
care of retrieving and organizing the data from each
experiment, and allows the user to rapidly make sense
of the vast amounts of data through the plots. This
third environment enhancement also saves a significant
amount of time and makes easier the work of the
researcher.

3.4 Future Productivity Improvements

To further increase research productivity, we would

like to incorporate in our environment a more intuitive
way to define a UI to be evolved. An option would be
to have the user define a GUI in a development
environment such as wxGlade or NetBeans, and have
the representation of it loaded into our environment to
be evolved. Another alternative is to have the user
define the widgets to be evolved inside the
environment, by presenting the user with a list of basic
widgets and have the user simply drag and drop
widgets into an empty panel. Once the panel was filled
with the user desired widgets, then it can be evolved.

Also, we would like to further abstract the UI
specification by allowing the user to specify the type of

International Conference on Software Engineering Advances(ICSEA 2007)
0-7695-2937-2/07 $25.00 © 2007

data that needs to be represented by the UI, and then
have our tool evolve both the type of widget used to
represent the data and the organization of the widgets.

4. Transitioning from a Research Tool to
an End User Tool

We would like not only to further improve the
productivity of the environment, but also to make it
available to regular users (non-researchers). In order to
conduct user studies and to deploy the system for
widespread use, we need to address some usability
issues. We foresee having two modes for the
environment, an end-user mode and a researcher mode.
There are advanced features which a researcher could
use, such as the parameters and configuration of the
IGA. However, the end-user (which, in our tool’s case
is a UI designer) may not care or understand about
such configurations, hence they need to be abstracted.

The researcher mode would allow for configuration
of both high level and low level details, giving the
researcher the complete control over how the IGA
should behave. On the other hand, it does not make
sense to present the end-user, a UI designer, with a
cluttered interface and configuration options that are
bound to confuse and affect the systems’ usability and
engagement.

The UI designer should be presented with a
minimalist interface, with an organization and
representation that would be useful for users not
familiar with IGAs. This can be accomplished by
reducing technical jargon and presenting the user with
leverage tools to achieve the desired goals, in this case
the exploration of UI designs. For example, on the
context of UI design, it does not make sense to present
the user with a slider for “crossover” and “mutation,”
since it does not correlate to the task at hand. A better
approach would be to present the user with sliders for
“variety,” “creativity,” or the degree to which the
system should “stick to my choices!”

When designing a tool for researchers we need not
shy away from presenting a plethora of configurations.
We also allow the configuration of the UI through
XML files. Hence, the advanced user (the researchers)
need not search through the code to change the UI
specification used as defaults.

The end-user tool would basically contain a subset
of the functionality presented in the research tool. For
example, allowing a user to change the degree of
variety in the UIs presented to the user can be done in
the background through higher crossover rates and an
aggressive selection algorithm. For the advanced user,

who wishes to explore how the degree of variety
affects the population dynamics, he or she can switch
to the advanced mode, and configure low and high
level details of the IGA. The sets of features available
in researcher mode and, respectively, end-user mode
are summarized using use cases in Table I. It can be
seen that in our tool’s case, with the exception of the
“Extended help” feature, the end-user mode
functionality is a subset of the researcher mode
functionality.

 Furthermore, for users interested in the use of
evolutionary techniques and with a weak programming
background, it can be intimidating diving through
hundreds of lines of code and customizing a GA to the
problem at hand. Through our environment we hope to
provide an efficient and usable front-end to both GAs
and IGAs, for the benefit of both the research and end-
user communities.

TABLE I. USE CASES IN END-USER AND RESEARCHER MODES.

 Use Case
End-User
Mode

Researcher
Mode

1 Define user interface √ √
2 Load user interface definition √

3
Customize high level IGA
details

√ √

4 Customize low level IGA details √
5 Start IGA √ √
6 Stop IGA √ √
7 Open IGA state √ √
8 Save IGA state √ √
9 Select best and worst UI √ √
10 Undo evolution step √ √
11 Redo evolution step √ √
12 Edit evolved UI √ √
13 Run batch mode √
14 Extended help √

5. Related Work

The evolution of website styles is explored in the
work by Oliver, Monmarché, and Venturini [6] and by
Monmarché et al [15]. However, their work explores
the evolution of website styles, while our work is
focused on the evolution of layout and style of GUI
widgets. Thus, our research is rather unique and, we
believe, also very promising in terms of increasing UI
design productivity via an IGA-driven evolution while
incorporating both established guidelines of style and
individual designer preferences [11], [12].

While unique in terms of specific research
supported, our software environment can however be
considered illustrative for two significant challenges

International Conference on Software Engineering Advances(ICSEA 2007)
0-7695-2937-2/07 $25.00 © 2007

faced by scientific researchers: (1) how to balance the
need for fast research results with the need for better
research tools that could improve research productivity
in the long run and, (2) how to prepare the transition of
tool used for research to a tool accessible by a general
category of end users. Nevertheless, because we have
started the exploration of literature for reports on the
above two topics and found only rather few such
reports so far [16], [17] [18], it seems these challenges
are yet to be addressed thoroughly.

6. Conclusions and Future Work

We have presented a software environment for
research on evolving UI designs and described three
improvements aimed at increasing research
productivity by automating tedious tasks that had to be
conducted previously by the user. Because our research
productivity has been significantly increased, we
believe that in our environment’s case investing effort
in developing new features of the research software is
beneficial in the long run. We also presented a
discussion on transitioning the research environment
from a researcher’s tool to an end-user’s tool, and
looked into how changes to the current environment
could bridge the gap between these two types of tools.

A direction of future work is to quantitatively assess
the increase in productivity brought by the
improvements integrated in our environment. We also
intend to develop an application programming
interface (API) and generalize our IGA tool such that it
could be used by the AI research community as a front-
end to both GAs and IGAs. Lastly, we would like to
elaborate a set of guidelines for researchers to be
followed when preparing and distributing tools that can
be used by the end-user community.

7. Acknowledgments

This material is based upon work supported by the
Office of Naval Research under contract number
N00014-03-1-0104 and by the National Science
Foundation under Grant No. 0447416.

8. References

[1] Apple Human Interface Design Guidelines.
http://developer.apple.com/documentation/UserExperience/C
onceptual/OSXHIGuidelines/
[2] GNOME Human Interface Guidelines 2.0.
http://developer.gnome.org/projects/gup/hig/

[3] Goldberg, D.E. Genetic Algorithms in Search,
Optimization, and Machine Learning. Addison-Wesley,
1989.
[4] Java Look and Feel Design Guidelines.
http://java.sun.com/products/jlf/ed2/book/
[5] Lagoon. http://lagoon.cse.unr.edu
[6] A. Oliver, N. Monmarché, and G. Venturini. Interactive
design of web sites with a genetic algorithm. In Proc. of the
IADIS Intl. Conf. WWW/Internet, pp. 355–362, Lisbon,
Portugal, 2002.
[7] H. Takagi. Interactive Evolutionary Computation: Fusion
of the Capabilities of EC Optimization and Human
Evaluation. Proc. of IEEE, 89 (9): 1275-1296, 2001.
[8] Windows XP – Guidelines for Applications.
http://www.microsoft.com/whdc/Resources/windowsxp
[9] XULPlanet.com. http://xulplanet.com.
[10] H. Thimbleby. User interface design with matrix
algebra. ACM Trans. on Computer-Human Interaction,
11(2): 181–236, 2004.
[11] J. C. Quiroz, S. M. Dascalu, and S. J. Louis. Human
guided evolution of XUL user interfaces. In Proc. of ACM
CHI ’07 Human Factors in Computing Systems, San Jose,
CA, USA, May 2007.
[12] J. C. Quiroz, S. J. Louis, and S. M. Dascalu. Interactive
evolution of XUL user interfaces. In Proc. of the 2007 Conf.
on Genetic and Evolutionary Computation (GECCO-2007),
London, England, July 2007.
[13] Benyon, D., Turner, P., and Turner, S. Designing
Interactive Systems: People Activities, Contexts,
Technologies. Addison-Wesley, 2005.
[14] W.C. Kim and J.D. Foley. Providing high-level control
and expert assistance in the user interface presentation
design. In Proc. of CHI ’93, the ACM SIGCHI Conf. on
Human Factors in Computing Systems, Amsterdam, The
Netherlands, 1993, pp. 430-437.
[15] N. Monmarché, G. Nocent, M. Slimane, G. Venturini,
and P. Santini. Imagine: a tool for generating HTML style
sheets with an interactive genetic algorithm based on genes
frequencies. In Proc. of IEEE Intl. Conf. on Systems, Man
and Cybernetics, 1999, pp. 640-645.
[16] L.A. Mallak, Using information technology to leverage
research productivity. In Proc. of the 1996 Intl. Conf. on
Engineering and Technology Management, pp. 351-356.
[17] C. Ryan, B. Tewey, S. Newman, T. Turner, and R.J.
Jaeger. Estimating research productivity in assistive
technology: a bibliometrics analysis spanning four decades.
IEEE Trans. on Neural Systems and Rehabilitation
Engineering, 12(4): 422-429, 2004.
[18] J.T. Yao and Y.Y. Yao. Web-based information retrieval
support systems: building research tools for scientists in the
new information age. In Proceedings of the 2003 IEEE Intl.
Conf. on Web Intelligence, p.570-573.

International Conference on Software Engineering Advances(ICSEA 2007)
0-7695-2937-2/07 $25.00 © 2007

