Multi-Dimensional Service Compositions

L. Baresi, E. Di Nitto. and S. Guinea

Politecnico di Milano
Dip. Elettronica e Informazione
[-20133 Milano, Italy

{baresi | dinitto | guinea} @elet.polimi.it

Abstract

The wide diffusion of reliable Internet is pushing two
key novelties in the conception of modern software appli-
cations: the Software as a Service paradigm and the idea
of the Internet of Things. Traditionally, services and things
have been considered as separate entities, even addressing
different needs and application domains. In contrast, we
feel that services and things should be integrated and de-
mand for proper design and programming paradigms that
ease the task of system builders and enable reuse of compo-
nents through various systems. Furthermore, we also see
the need to take into account the many cross-cutting is-
sues that are typical of any complex application (e.g., se-
curity, user interface, transactionality). We suggest multi-
dimensional service assembly as the right abstraction for
taking into account all these different aspects. In this pa-
per we sketch our ideas, discuss the implications of multi-
dimensional service assembly, and draft a research agenda
that goes towards the development of a well established the-
ory in this area.

1. Introduction

The evolution of communication technologies, with the
Internet as aggregator, is pushing two key novelties in the
conception of modern software applications: the Software
as a Service paradigm and the idea of the Internet of Things.

Software as a Service enables consumers of software ar-
tifacts to use them remotely. Services are widely used as
integration means for complex systems [4] in continuously
evolving scenarios [5]. Moreover, they also provide the
underpinnings of Web 2.0 applications [10] and act as the
backbone of various domain-specific standards, like for ex-
ample AMI-C [1] and AUTOSAR [9] in the automotive in-
dustry.

The Internet of Things includes a number of devices
such as RFID tags, sensors, and GPS antennas, which al-

ICSE’09, May 16-24, 2009, Vancouver, Canada
978-1-4244-3494-7/09/$25.00 © 2009 IEEE

323

S. Dustdar
Vienna University of Technology
Distributed Systems Group
A-1040 Wien, Austria
dustdar@infosys.tuwien.ac.at

low us to conceive live contexts that can be exploited by
various applications and services. RFID tags have already
substituted more conventional management systems in lo-
gistics, while the GPS antennas embedded in many devices
(e.g., our mobile phones) provide easily accessible informa-
tion about current positions, and enable the most disparate
context-sensitive applications: from simple routing systems
to location-aware advisers (for restaurants, hotels, site see-
ing, etc.).

Traditionally, services and things have been considered
as separated entities, even addressing different needs and
application domains. However, in the last few years, we
have observed the tendency of using them together to ad-
dress problems within the context of pervasive computing.
For example, think of a logistics application that, among
the other functions, manages the delivery of containers to
proper destinations. In such an application, we would like to
track the position of each container, and maybe set its inter-
nal temperature, without dealing with the low-level devices
directly. Indeed, we would like to be able to perform these
operations on containers independently of whether they are
traveling on a train or waiting in a parking area. Thus, we
would like to see the containers as abstract data types sim-
ply accessible through a uniform service interface regard-
less of the context in which they are living or of the devices
that are needed to trace and control them. When dealing
with such kinds of applications, various cross-cutting is-
sues need to be considered as well. These concern the kind
of GUI they offer, the level of security they guarantee, the
ability to manage identities, the contextual information they
are able to deal with, and such.

We could build a software system that addresses the
above scenario by implementing it in an ad-hoc manner and
by hard-coding the interactions with low-level devices into
the application logic. However, we feel that the increas-
ing number of applications of this kind demands for proper
design and programming paradigms that ease the task of
system builders and enable reuse of components through
various systems. In literature there are proposals like WS-

Companion Volume

CIM [3] and DPWS [2] that hide the peculiarities of devices
behind a service-like interface to enable their integration in
traditional software applications, but also to ease their sub-
stitutability. These standards only mimic hardware charac-
teristics; they do not provide suitable high-level abstractions
to let designers seamlessly “compose” them with their busi-
ness services and substitute them when needed.

In this paper we suggest that software components, de-
vices, and cross cutting issues compose a multi-dimensional
service assembly. They can be regarded as services them-
selves offering the same interaction paradigm, making them
composable in more complex services. For instance, in the
example of the logistic application the service abstracting
the container as a whole could be built by composing the
lower level services provided by a GPS antenna, tempera-
ture and pressure sensors, and RFID tags mounted on the
container itself. Moreover, the container service could dy-
namically adapt, based on the situation, to exploit the GPS
service associated with the vehicle that is transporting it, or
any other devices offering position information.

The rest of this paper is organized as follows. Section
2 presents an integrated vision and the concept of multi-
dimensional service composition. Section 3 introduces the
more advanced features of our proposal, and Section 4 con-
cludes the paper by drawing a research agenda.

2. Integrated Vision

The key assumption of this research effort is that the
main elements we consider (devices, software, and cross-
cutting issues) can be regarded as services, and that these
are seamlessly composable to provide a complete applica-
tion. We want to break the barrier that service composition
is only about combining the operations offered by remote
software components. We want to be able to treat every
single application element as a service, and compose its fea-
tures. Figure 1 renders the multi-dimensionality of the prob-
lem: each axis identifies a particular aspect, and a complete
application is a proper blending of representatives of some
(or all) of the axes. The implementation of this “vision”
requires:

e Suitable wrappers to start conceiving applications
from a set of homogeneous entities. The need for
special-purpose wrappers is clear when we aim to ab-
stract physical devices into software elements, but it is
also mandatory when packaging different cross-cutting
concerns, or different families of software services
(e.g., Web vs. REST services);

e Composition means being able to accommodate these
different needs. We propose that a single high-level
mechanism be adopted when assembling operations,

324

2
3,
2
¢! Q
G % N
4 5
9
&
S
Application
e
Ho®
20!
\('&“ Se,
C’[/,_/)
&
8
©

Figure 1. Some dimensions of modern appli-
cations.

data, and non-functional characteristics. For exam-
ple, we could consider the well-known domain of Web
services, and BPEL (Business Process Execution Lan-
guage), for assembling the different aspects. However,
we believe its primitives do not provide the right level
of abstraction, and do not foster a proper separation of
concerns.

A model-driven approach [8] is mandatory in this case.
We propose models to provide designers with multi-faceted
representations of their applications, but also to automati-
cally produce the different parts of the application, that is,
those needed to assemble the services and cope with their
native technologies. To tackle these problems, and obtain a
homogeneous view, we can start from the reference model
of Figure 2. We consider that an Application can exploit ei-
ther a set of Services or an Aggregate Service. Each Ser-
vice is implemented by a Component, which is an abstract
concept. A component can be: a Software Component
—which further specializes in Business Element, whose
meaning is clear, and Utility, used to provide a cross-cutting
concern— a Physical Device, or an Aggregate Service
itself. Each Component may provide a Management In-
terface. Through these interfaces, the composition designer
gathers a partial insight of both the service’s functionality,
and the degree to which it can be customized during com-
position.

The aggregating element is the assembly of the opera-
tions provided by the different business elements. This core
must be suitably complemented with the abstractions pro-
vided by the physical devices and the features supplied by
the utilities. While it is meaningful that business elements
and physical devices cooperate at the same abstraction level,
utilities may work behind the scene to complement the ser-
vices. For example, if a business element e wants to ex-
change secure messages, the proper security mechanism

0,1 | Management
-1 Component Integr]face
|
i
i
i
| Utility
1
i | | Software
1 Component
| Business
: Element
i [Physical
1 Device
1
i
i
i
i
1 Aggregated
' Service

I (

Service

Figure 2. Simplified reference model.

must be assembled with e. This is why each component, be-
sides its functional interface (Service), must also provide a
suitable management interface.

We foresee three kinds of services:

e A black-box service is a service that only provides
a syntactical specification of its capabilities, and does
not provide a management interface.

e A grey-box service is a service that already provides
a management interface. There are many ways to cre-
ate a management interface. Among others, we cite
instrumentation techniques, such as code annotation.
Indeed, a sufficiently expressive declarative language
could be used to describe a service’s functional and
non-functional composition hooks.

e A white-box service is a service for which we have
knowledge of the internal design and code. This means
that the functional dependencies it has are known, and
that composition hooks can be found by looking at the
code.

3. Advanced Features

As for composition paradigms, we are investigating
both workflow-like assemblies (a-la BPEL) and also more
loosely-coupled interactions (e.g., compositions based on
a publish and subscribe infrastructure [7]). In this paper,
however, we prefer to stress the servilization of physical
devices, the blending of cross-cutting utilities, and the run-
time adaptation features.

325

3.1. Physical devices

The abstractions of Figure 2 allow us to treat complex
physical objects (made possible through different physical
devices) as services. As such we can even aggregate them.
For example, as previously stated, we could mask the sen-
sors, GPS antennas, and RFID tags mounted on a container,
and provide a single service Container. It would be capable
of locating the container, getting and setting its tempera-
ture, and sensing its presence in a given area, allowing us to
ignore low-level details.

More specifically, we foresee two separate abstraction
levels. Application services (the highest level) mask appli-
cation elements, which offer operations and raise events to
the rest of the system. These services can be associated
with different contexts during the evolution of the system,
or even belong to different contexts at the same time.

On the other hand, application services take advantage
of active physical devices for getting information and for
executing operations. However, they do not deal with them
directly. Instead, we propose a second intermediate abstrac-
tion level called logical level. These services can also be
functional elements in the system, offer operations (used by
application services), and raise events (for the application
level). A logical service does not only abstract the single
device, but it also abstracts the access gateway for it. This
means that a logical service offers the functionality of both
the device and the gateway it is associated with. For exam-
ple in the case of RFID tags, it hides the actual reader: when
atag is seen by a short range reader, its abstraction can offer
an approximation of the position of a tag given the position
of a reader.

3.2. Cross-cutting utilities

Service compositions can be enriched by a number of
cross-cutting utilities. Some may contribute to define a
composition’s quality of service (e.g., by adding transac-
tionality, security, or identity management), others may en-
able context-aware behavior (e.g., by adding the notion of
context or user profiles), while others may even provide rich
run-time management features (e.g., monitoring and adap-
tation [6]). What this means is that a single service, or a
composition, does not need to implement such aspects di-
rectly, but it can rely on out of the box utilities. This obvi-
ously has a big impact on a service’s design and develop-
ment. Indeed, a service can concentrate on its core business
without having to cope with (or foresee) all the different
ways it may be utilized.

As an example, depending on the scenario in which the
service is to be used (i.e., depending on the Service Level
Agreement established with its client), this service may
setup different security policies. For instance, it could al-

low for insecure transactions, or enforce one or more se-
curity standards through composition. Also, if the service
is context-aware, it could be designed to take advantage of
context information leaving to a context-collector utility the
task to manage how the information is retrieved at run-time.
In this case, the service could be customizable as it could
choose among various context-collector utilities, each of
which will be more or less suitable to a specific application
scenario. Finally, a service could follow the model-view-
controller design pattern and provide the model and the con-
troller logic, and delegate the related view to an appropriate
utility. This means that the service may have different GUIs
if it is run on a notebook or on a mobile device.

Which utility to use in a given composition can be a de-
sign issue, but we can also envision it occurring at run time.
Any one of them might be modified in the wake of evolving
requirements or situations, providing unprecedented levels
of customization and adaptivity of the composition.

3.3. Run-time adaptation

To manage such complex service compositions, and har-
ness the true advantages of customization and adaptation,
we will need to develop an integrated information model
for capturing requirements of complex and diverse nature,
keeping in mind that the requirements may evolve. This
calls for different requirements representations, and for a
highly advanced management framework capable of moni-
toring them throughout the composition’s execution cycle.

The ides is to extend our previous work in the field [11].
Indeed, we believe we can extend the integrated informa-
tion model developed in SEMF (Service Evolution Man-
agement Framework) to cope with such complex compo-
sitions. Since it is impossible to enforce a single model for
all types of requirements, we envision a model to which dif-
ferent sub-models are linked without enforcing any specific
data representation. In SEMF we started by experiment-
ing sub-models that capture SLAs, QoS, pre-conditions, li-
censes, interaction patterns, post-conditions, interfaces, tax-
onomies, folksonomies, and general documentation. A spe-
cific requirement type is described as an external source of
information. Based on that, a particular requirement for
a service, at any particular point it time, can easily be re-
trieved and processed. Utilizing this rich source of require-
ments information, we can check whether they are fulfilled
and perform adaptation based on manageable requirements.

4. Conclusions

In this paper we have sketched our idea of regarding de-
vices, software, and cross-cutting utilities under the unify-
ing idea of multi-dimensional service assembly. We think

326

this metaphor would simplify the design and implementa-
tion of pervasive systems where complex enterprise appli-
cations coexist with low-level software and specialized de-
vices. Of course, in order to make our idea really effective,
several issues need to be addressed, most of which are part
of our future research agenda. We need to refine the concep-
tual model behind the idea of service assembly. In partic-
ular, we need to define a proper computational model that
allows us to abstract from the peculiarities of specific de-
vices and components. Moreover, the computational model
should be connected to a proper run-time infrastructure that
offers all the mechanisms needed to execute, combine, and
adapt the various components of a service assembly. As we
envisage our assemblies dynamically adapting to the execu-
tion context, the relationship with the autonomic comput-
ing field will have to be investigated, and in particular the
techniques supporting self-configuration, self-healing, self-
optimization, and self-protection of each single component
and of the assembly as a whole.

References

[1] Automotive Multimedia Interface Collaboration.
ami-c.org/.

Devices Profile for Web Services. specs.xmlsoap.
org/ws/2006/02/devprof/devicesprofile.

pdf.
WS-CIM Mapping Specification. www.dmtf.org/

standards/published_documents/DSP0230.

pdf.
G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Ser-

vices: Concepts, Architectures and Applications. Springer,

2004.

L. Baresi, E. Di Nitto, and C. Ghezzi. Toward Open-World
Software: Issues and Challenges. COMPUTER, pages 36—
43, 2006.

L. Baresi and S. Guinea. A dynamic and reactive approach
to the supervision of BPEL processes. In Proceedings of
the 1st India software engineering conference, pages 39-48.

ACM New York, NY, USA, 2008.
P.-T. Eugster, P.-A. Felber, R. Guerraoui, and A.-M. Kermar-

rec. The many faces of publish/subscribe. ACM Comput.

Surv., 35(2), 2003.

D. Frankel. Model driven architecture. Wiley New York,
2003.

H. Heinecke, J. Bielefeld, K. Schnelle, N. Maldener, H. Fen-
nel, O. Weis, T. Weber, J. Ruh, L. Lundh, T. Sandén, et al.
AUTOSAR-Current results and preparations for exploita-
tion. 7th EUROFORUM conference Software in the vehicle,
2006.

T. O’Reilly. What is Web 2.0: Design Patterns and Business

Models for the Next Generation of Software.
M. Treiber, H. Truong, and S. Dustdar. SEMF - Service Evo-

lution Management Framework. In IEEE Computer Soci-
ety, editor, 34th EUROMICRO Conference on Software En-
gineering and Advanced Applications, Special Session on
Quality and Service-Oriented Applications, 2008.

WWW .

(2]

(3]

(4]

(3]

(6]

(7]

(8]
(9]

[10]

(1]

	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	Also by Elisabetta Di Nitto
	Also by Schahram Dustdar
