
Conformal Policy Learning for Sensorimotor Control
Under Distribution Shifts

Huang Huang1*, Satvik Sharma1*, Antonio Loquercio1*,
Anastasios Angelopoulos1, Ken Goldberg1, Jitendra Malik1

Abstract— This paper focuses on the problem of detecting
and reacting to changes in the distribution of a sensorimotor
controller’s observables. The key idea is the design of switching
policies that can take conformal quantiles as input, which we
define as conformal policy learning, that allows robots to detect
distribution shifts with formal statistical guarantees. We show
how to design such policies by using conformal quantiles to
switch between base policies with different characteristics, e.g.
safety or speed, or directly augmenting a policy observation
with a quantile and training it with reinforcement learning.
Theoretically, we show that such policies achieve the formal con-
vergence guarantees in finite time. In addition, we thoroughly
evaluate their advantages and limitations on two compelling
use cases: simulated autonomous driving and active perception
with a physical quadruped. Empirical results demonstrate
that our approach outperforms five baselines. It is also the
simplest of the baseline strategies besides one ablation. Being
easy to use, flexible, and with formal guarantees, our work
demonstrates how conformal prediction can be an effective tool
for sensorimotor learning under uncertainty.

I. INTRODUCTION

As robots break out of lab-controlled conditions and start
to operate for and around humans, there is a critical need
to ensure their safety and reliability. When operating in
the wild, such robots increasingly rely on machine learning
systems: in modular and end-to-end systems, there is a
neural network at the core of the decision-making process
interpreting high-dimensional observations, making predic-
tions, or directly predicting actions. However, when deployed
in unstructured environments, such neural networks often
encounter data distributions that change over time, negatively
affecting their performance and, in turn, the safety of the
overall system. We present an approach that allows robots
to quantify such distribution shifts with formal statistical
guarantees, and to use this information downstream on
control tasks (Fig. 1).

Traditional approaches for estimating distribution shifts
model the network activations and weights by parametric
probability distributions [1], estimate uncertainties through
sampling [2] or train an estimator of uncertainty by using
a loss function [3], [4]. However, these methods tend to
generate over-confident predictions [5] and provide neither
rigorous statistical guarantees nor calibrated uncertainties.
Conformal prediction [6] offers a principled approach to
quantifying the uncertainty of black-box machine learning
models, which has fueled a recent surge in its popularity [7],
[8], [9], [10], [11], [12].

*Equal contribution, 1 University of California, Berkeley

Fig. 1: Illustration of conformal policy learning. As the distri-
bution shifts (a), the uncertainty of the prediction increases,
reflected by an increasing quantile (b). (c) Our policy takes
into the observation O, prediction f(x) and the quantile q̂ to
decide the actions to take. (d) We evaluate this framework on
two use cases: autonomous driving in simulation and vision-
based trajectory tracking with a physical quadruped.

Conformal prediction works as follows. First, the user
specifies a score function, s(x, y), that measures the quality
of a prediction f(x) from a black-box model. For example,
the score function can be the absolute distance between a
prediction f(xi) and the ground truth yi, i.e., s(xi, yi) =
|yi − f(xi)|. Then, given a sample of exchangeable calibra-
tion data points {(X1, Y1)}ni=1, and a new data point (X,Y)
with an unobserved label, a prediction set is formed for the
label by inverting the score function as

C(X) = {y : s(X, y) ≤ q̂}, (1)

where q̂ is chosen as the (1 − α)(1 + 1/n)-quantile of
the scores on the calibration data. This procedure results in
prediction sets with valid coverage [6], [13],

P(Y ∈ C(X)) ≥ 1− α, (2)

where α is the error rate specified by the user. Despite the
restrictive assumptions that the data points are exchange-
able [6], [13], traditional conformal prediction has been
applied in several robotics domains, e.g., to design sample-
efficient alert systems for self-driving cars [14] and object-
pose estimation [15], and language-based planning [16].
However, the data observed during the operation of a robot is
more akin to a time series, whose distribution might change
over time, due to various factors such as changes in the

ar
X

iv
:2

31
1.

01
45

7v
1

 [
cs

.R
O

]
 2

 N
ov

 2
02

3

environment (night-day), sensor degradation, or unforeseen
operating conditions. Such conditions invalidate traditional
conformal prediction since the data-generation process is not
exchangeable.

Recently, new forms of conformal prediction have
emerged to handle entirely non-exchangeable settings such as
time-series prediction [17], [18], [19], [20], [21], [22]. The
standard setting, in this case, is the adversarial sequence
model, in which the data points {(xt, yt)}t∈[T] are arbitrary
deterministic objects (e.g., real numbers) devoid of any
probabilistic meaning. Therefore, methods that can provide
robustness in that setting are insulated against all possible
realizations of future data — including those drawn by
an omniscient adversary strategizing against the agent with
full knowledge of its current and future plans. Such adver-
sarial settings have been popular since the early literature
on calibration [23] and were introduced into the realm of
conformal prediction by [17]. Note that these approaches
lose the guarantee at every time-step and instead provide
long-term coverage. That is, for some sequence of sets Ct,
letting errt = 1{yt /∈ Ct(xt)}, they achieve

1

T

T∑
i=1

errt = α+ o(1).

.
Such a setting, more akin to real-world conditions, has

quickly captured the attention of roboticists for applications
in multi-agent motion-planning problems [24], [25], [26]. In
these examples, prediction sets for the other agents’ posi-
tions, are incorporated as safety constraints into the planner.
However, simpler conformal methods with tighter prediction
sets and greater stability have been developed—namely,
the conformal PID control method [22]. This approach for
generating prediction sets has only been applied in traditional
time-series prediction settings, where the data distribution at
time t is unaffected by the predictions and decisions made at
times 1, . . . , t−1. Furthermore, the utility of these prediction
sets are somewhat limited, as they require a robotic system
in which constraints are easy to incorporate. Ad exemplum,
policies trained with deep learning cannot accept the sort of
mathematical constraints that are common in optimization.

The main methodological innovation of this paper is the
design of policies that can take conformal quantiles as input;
we call this conformal policy learning. Our results indicate
it is possible to train reinforcement learning policies that, in
practice, satisfy the conditions needed [27] to achieve formal
coverage guarantees in finite time; we call such policies
conformal policies and show the first practical examples of
their existence.

To give a bit more detail, we explore conformal policies
of two forms. The first is a naive switching mechanism,
falling back to a safe policy whenever the quantile exceeds a
user-defined threshold [28]. The switching policy has safety
guarantees under the relatively weak assumption that the safe
policy is eventually safe, i.e., that it will have low risk when
deployed for long enough [27]. However, its reliance on a
hand-designed threshold for switching between policies can

make tuning challenging. In the second, we aim to remove
such user-defined threshold by directly augmenting the obser-
vation of a policy with conformal quantiles, and training such
policy with reinforcement learning. To our knowledge, this
strategy is novel and demonstrates an interesting new form of
learning under uncertainty, although its practical performance
is not yet as good as that of the switching policy.

We demonstrate these ideas in two compelling use cases:
the first is a simulated autonomous driving scenario, where
an autonomous car must drive as fast as possible while
avoiding other vehicles. The second is a real-world active
perception problem with a quadruped, where the goal is to
minimize a trajectory tracking error by actively controlling
the robot’s speed over the trajectory to maximize the quality
of vision-based state estimation. We compare against many
strong baselines in simulation and show that our approach
empirically achieves the desired guarantees while signifi-
cantly outperforming these baselines. In addition, we report
the interesting finding that learning a policy with conformal
quantiles as input systematically underperforms the simple
switching strategy in out-of-distribution settings, indicating
that the learning procedure fails to capture the relation
between the quantile and the overall policy uncertainty. We
provide an in-depth study of this phenomenon, a set of
hypotheses underpinning this behavior, and possible avenues
to improve its performance.

II. RELATED WORK

Robotics research has allocated a lot of attention to
decision-making under uncertainty in the context of ma-
chine learning approaches [29]. Given the recent surge in
popularity of conformal prediction, several works showed
how to use it to add statistical guarantees in perception [15]
and planning [24], [25], [26], [14]. Recent work shows that
conformal quantiles can control the hallucination of large
language models, making the latter better in learning-based
planning [16]. However, these approaches do not provide
exhaustive studies on how conformal quantiles could be used
directly for control in real-world robotics scenarios.

Conversely, PAC-Bayes generalization theory has been
used for deriving conditional bounds to influence decision-
making on vision-based aerial navigation and manipulation
in Farid et al [30]. However, this approach focused on
studying generalization in the training distribution, while
our work focuses on studying the problem of generalization
under distribution shifts. In addition, they lack a study on
how such bounds could be directly used by a policy trained
with reinforcement learning.

In robotics, uncertainty has not only been used in the
context of safety but also to speed up the reinforcement
learning on a real robot [31], combine optimal control with
neural networks [32], [28], or to increase the efficiency of
learning in manipulation [33]. However, these works neither
provide formal guarantees nor an easy and interpretable way
to change the behavior of the control policy as a func-
tion of its safety. Conversely, our work can use conformal
quantiles to directly affect the controller’s performance with

a single and interpretable user-specified parameter, α, i.e.,
the desired error rate. This gives the user the possibility to
have more greedy behavior, hence favoring exploration, or
a more conservative attitude, promoting safety. In addition,
we empirically show to achieve the desired error rate, as
predicted by the underlying theory.

III. METHOD

We describe our methodology, first focusing on its theo-
retical foundation in conformal PID control and then develop
the idea of conformal policy learning — i.e., the design of
policies that take conformal quantiles as input.

A. Conformal control methodology

Producing the sets. Similarly to classical conformal pre-
diction, we will proceed at time t by forming prediction sets
Ct in the following way:

Ct = {y : s(xt, y) ≤ qt}, (3)

where the quantile qt is up to us to choose. The set construc-
tion in (3) is almost exactly the same as that of standard
conformal prediction; the difference is that qt is not an
empirical quantile of the previous data points. Instead, it will
be dynamically modulated using conformal P control, i.e.,
quantile tracking [22]. Why is the parameter qt so important?
Because the miscoverage event errt abides by the equivalence
errt = 1 ⇐⇒ s(xt, yt) > qt. Therefore, picking the right
sequence of quantile updates is critical to achieving coverage.

Tracking the quantile. The update for qt takes the
following form:

qt+1 = qt − η∇ρ1−α(errt − α), (4)

where ρ is the quantile loss (sometimes referred to as the
“pinball loss”) at level 1− α. This update can be seen as a
simple form of P-control where the feedback signal is errt
and we would like it close to 1− α.

Proof of validity. A simplified and slightly improved
proof of the result in [22] is given (this analysis strategy
was first developed in [17]).

Theorem 1: Let the scores s(x1, y1), . . . , s(xT , yT) be
bounded between [0, B]. Then we have, uniformly for all
positive integers W and T0 satisfying T0 +W ≤ T and all
realizations (x1, y1), . . . , (xT , yT), that

1

W

T0+W∑
t=T0

errt ≤ α+
B + η

ηW
. (5)

Proof: Akin to Proposition 5 of [17], we telescope the
sum in (4) to get

qT0+W − qT0

ηW
=

1

W

T0+W∑
t=T0

∇ρ1−α(errt − α)

=
1

W

T0+W∑
t=T0

errt − α,

(6)

where the last step used the definition of the gradient of the
quantile loss. Rearranging terms, the implication is that

1

W

T0+W∑
t=T0

errt ≤ α+
qT0+W − qT0

ηW
≤ α+

B + η

ηW
, (7)

where the last inequality holds because qT0+W ≤ B + αη
and qT0 ≥ −η(1− α) .

The nature of the result is multi-resolution in the sense that
for all possible windows in time, the coverage will be met,
and has a finite sample correction at level (B + η)/ηW . In
practice, we use a (slightly) adaptive version of the quantile
tracker with ηt = 0.1B̂t. It is trivial to get a guarantee in
this setting as well. Furthermore, a two-sided guarantee is
available by a similar proof strategy.

B. Conformal Policies for Sensorimotor Control

We introduce the formal framework of a conformal policy.
The policy is a sensorimotor control algorithm π(xs, f, q)
that observes a state xs, a conformal quantile q, and a
predictor f . The latter predicts future values that could
influence decision-making, e.g. the future geometry of the
terrain for locomotion [34], the future position of other
agents [35], or the low-level dynamics of the robot [36].
We do not make any specific assumption on the nature of
the policy or the predictor. For a conformal policy to have
formal safety guarantees, it must be eventually safe:

Assumption A1 (Eventually safe.): A policy π(xs, f, q) is
eventually safe if there exist αsafe < α, qsafe, and K ∈ N
satisfying{

∀k ∈ [K], qk ≥ qsafe
}

=⇒ 1

K

K∑
k=1

1{s(xk, yk) > qk} ≤ αsafe.
(8)

Here, the policy is run with quantile qk to produce the values
(xk+1, yk+1).
The assumption may at first look strange because the in-
equality does not involve π. However, one must remember
that the actions of π produce the future values of xk and yk.
The assumption therefore encodes the idea that if the policy
makes enough errors, it can revert to a situation where its
prediction error is lower. For example, the robot can slow
down, making the task of perception and scene understanding
easier. Under this assumption, the sets will cover at the
correct frequency:

Corollary 1: Under Assumption A1, we have that

1

T

T∑
t=1

errt ≤ α+ o(1). (9)

Proof: Assumption A1 implies the decision policy is
safe over time [27] with respect to the miscoverage loss. By
Theorem 1 of the same, the miscoverage loss is controlled.

The validity of switching policies is also addressed as the
special case of this proposition.

Of course, it is worth noting that a tacit assumption
in our problem setup is the existence of online feedback,

i.e., that the predictor can verify its forecasts against the
ground-truth after a limited amount of time. Though not
entirely benign, this assumption is valid in several real-world
scenarios. For example, a legged robot will observe whether
its predictions about the terrain geometry are valid after
walking over it [34], or an agent could verify the accuracy
of trajectory predictions for other agents several time steps
after the prediction intervals are formed [35].

IV. SIMULATION EXPERIMENTS

A. Experimental Setup

We evaluate our approach in a simulation highway en-
vironment, where an autonomous driving agent must drive
as fast as possible while avoiding other vehicles [37]. We
instantiate the environment with 4 lanes, 50 other cars, and
the ego vehicle. The action space of the ego-vehicle consists
of 5 discrete actions: switching to the left lane, switching to
the right lane, speeding up, slowing down, and maintaining
the current speed. At each time step, the observation consists
of the relative x and y positions and relative x and y velocities
of the closest five vehicles to the ego-vehicle, normalized
between -1 and 1. The ego-vehicle can only observe other
agents in front of it. A visualization of the environment is
shown in Figure 1. The agent can move in a specified speed
range. A rollout stops when the ego-vehicle collides with
other vehicles or after 40 seconds.

B. Base Policies Training

We consider two base policies. A policy trained only with
a non-collision reward, denoted as πsafe, and a policy trained
with both the non-collision reward and the speed reward,
πspeed. The minimum speed of the ego-vehicle is 20m/s,
so no policy can immediately stop. We train both πsafe and
πspeed with Deep Q-Network (DQN) [38] for 200K steps.
For πsafe, we have a collision reward of -1 and for πspeed,
we have an additional high-speed reward of 0.5. Both policies
are 2-layer MLPs with 256 neurons for each layer.

C. Predictor Training

We train a predictor to forecast the nearest distance to the
surrounding vehicles l three steps into the future. The input to
the predictor is the history of the past five observations. We
normalize l into the [0, 1] interval by applying the following
transformation l̃ = 2/(1+e(0.1l)). We collect a dataset of 30k
rollouts with πspeed and πsafe. During the data collection,
the ego-vehicle speed range is between 20m/s and 30m/s.
We use a 3-layer MLP followed by a Sigmoid layer as the
predictor with 64, 128 and 64 neurons for each layer. The
predictor is trained until convergence with an MSE loss and
a learning rate of 0.001.

D. Conformal Policies

We use two policies for evaluation. The first, πswitch,
switches between πsafe and πspeed as a function of a
threshold qsafe of the predicted future distance l̃t and its

Fig. 2: Pareto plot for the simulation environments com-
paring the performance of πswitch to other baselines. Each
method has its own Pareto curve. Each Pareto curve is
constructed by varying the switching threshold qsafe. Each
point in the curve is the average speed and the episode
duration (an episode terminates if there is a collision or
reaches 40 seconds) at a particular qsafe over 500 realiza-
tions. The red star is the performance of πsafe. Our approach
always achieves a higher speed than the baselines at the same
collision frequency.

estimated quantile q̃t at 1 − α = 90% coverage computed
with [22]. Specifically,

πswitch(x, l̃t, q̃t) =

{
πsafe(x), if (l̃t + q̃t) ≥ qsafe

πspeed(x), otherwise.
(10)

Note that this policy satisfies Assumption A1 by design.
The second policy, πRL(x, l̃t, q̃t), is directly trained with
DQN with the same reward of πspeed. Ideally, πRL will
automatically learn to modulate its speed as a function of
its uncertainty. Note, however, that this design is not strictly
guaranteed to satisfy Assumption A1.

E. Baselines

We compare against the following baselines for uncer-
tainty estimation of l̃. Bayesian Dropout [2]: We add a
0.1 dropout rate at each linear layer of the predictor and
compute uncertainties from five runs. Ensemble [39]: We
train five networks with five disjoints subsets of the data.
HAU [4]: Heteroscedastic Aleatoric Uncertainty (HAU).
No Quantile: This is equivalent to πswitch but without
quantiles in (10). Essentialy, the policy switches to πsafe

if l̃t ≥ qsafe. Orthonormal Certificates [40]: We learn a
set of linear functions that map the training data to zero. We
use the predictor’s second-to-last hidden layer as a feature
representation for the input. We project these features to a
100-dimensional space representing the linear certificates.
We train this additional linear layer with the target label
being 0 for 100 epochs.

F. Evaluation Results

We consider two metrics: the average rollout duration and
the ego-vehicle’s average rollout speed. We compute the met-
rics by averaging the results over 500 different environment
realizations. We train the predictor and the base policies
within a speed range of [20, 30]m/s. We then evaluate
all baselines by changing the speed range to [20, 40]m/s.

Speed 20-30 Speed 20-40 Speed 20-50
Duration Speed Duration Speed Duration Speed

πspeed 33.6 ± 11.0 29.0 ± 1.2 19.4 ± 11.7 35.1 ± 2.9 13.3 ± 9.0 36.0 ± 2.5
πnq
RL 32.7 ± 11.5 29.3 ± 0.9 19.4 ± 11.3 34.5 ± 3.1 20.3 ± 11.7 34.1 ± 2.6

πRL 32.2 ± 11.3 29.4 ± 0.8 25.0 ± 11.7 32.1 ± 3.0 20.1 ± 11.9 34.0 ± 2.1
π1
RL 33.2 ± 11.3 29.3 ± 0.9 13.1 ± 8.6 36.0 ± 2.3 13.3 ± 9.0 36.0 ± 2.5

π2
RL 34.4 ± 10.6 29.4 ± 0.9 16.5 ± 9.5 35.6 ± 2.8 16.7 ± 10.6 36.3 ± 2.6

π3
RL 33.5 ± 11.6 28.8 ± 1.4 18.0 ± 10.8 33.8 ± 3.5 19.5 ± 11.8 34.2 ± 3.1

πswitch 38.7 ± 4.5 24.2 ± 1.5 37.8 ± 4.7 23.9 ± 1.8 34.9 ± 8.0 25.3± 2.3

TABLE I: Comparison between different variants of con-
formal policies trained end-to-end with RL to πspeed and
πswitch. Interestingly, no agents trained with RL manages to
use conformal quantiles as effectively as a switching policy.

This will result in the policy observing both in and out
of distribution states during evaluation. At evaluation time,
we vary the switching threshold qsafe in Eq. (10) to study
the trade-off between safety and speed that each method
provides. The results of these experiments are reported in
Fig. 2. Our approach consistently outperforms the baselines
and enables faster driving for each safety constraint. The
improvement provided by our approach is larger for more
stringent values of qsafe, indicating that it better detects and
reacts to dangerous conditions. Finally, our approach adds
relatively no extra computation (only the update of Eq. 4)
and requires no changes to the model, and yet outperforms
ensemble methods, which increase the runtime computation
budget fivefold. Beyond better performance, our approach
also provides a formal guarantee of 1− α = 90% coverage,
which we verify empirically in Fig. 3.

In Table I, we compare different variants of conformal
policies trained end-to-end with RL to πspeed and πswitch.
In the following, we describe the details of these baselines.
πRL represents an agent that observes, in addition to the state
xt, the future prediction l̃t and its conformal quantile q̃t. The
most important baseline for πRL is the agent πnq

RL, which
observes only l̃t and has no access to quantile uncertainties.
We additionally ablate a set of reward designs for πRL (all
the following have access to both l̃t and q̃t). π1

RL is trained
with an additional penalty on the norm of q̃t. This should
push the agent to stay in known states, actively avoiding
distribution shifts. The agent π2

RL is trained with a penalty of
q̃t·l̃t. This should push the agent only to become conservative
when the probability of collision rises (due to an increase
in l̃t), and quantile regression detects the state as out of
distribution. The rationale is that, in distribution, the agent
does not need to minimize the distance to other cars. π3

RL is
trained with both a penalty on the norm q̃t and a penalty
on q̃t · l̃t. For the latter three agents, we keep the basic
reward constant but select, for each agent separately, the
weighting coefficient of the penalty terms to maximize their
performance.

All policies are trained in the speed range [20, 30]m/s
with DQN for 200K iterations and evaluated in three different
speed ranges, increasingly out of the training distribution.
Table I indicates that πswitch is the safest agent by a signifi-
cant margin. The second-best performer is πRL, with a 25%
longer survival time in the [20, 40]m/s range than the other
ablations. Nonetheless, no agents trained with RL manage to
use the predictions and quantiles as effectively as a switching

Fig. 3: Left: Prediction and conformal quantile estimation in
one simulation rollout for speed range of [20,30]m/s. The
ground truth value of l̃ is shown in blue and the prediction
and quantile are shown in red. Right: Coverage with a sliding
window size of 5 time steps. We show the coverage for l̃
for speed range of [20,30]m/s, which is higher than the
specified value 0.9 (red dotted line) most of the time.

policy. This indicates that traditional RL algorithms can fail
to account for the known unknowns. Our hypothesis for this
behavior is that at training time (by definition), the agent only
sees data in distribution, thereby with a small q̃t. Therefore,
it does not learn how to act when q̃t is large. Understanding
how to make the policy take further advantage of the extra
information and outperform our hand-designed πswitch is an
interesting avenue for future work.

V. PHYSICAL EXPERIMENTS

A. Experimental Setup

We evaluate our approach on an active perception problem
on a physical quadruped. In these experiments, we only
consider conformal policies with switching behaviors, i.e.,
πswitch, given their better performance with respect to end-
to-end conformal policies like πRL, as shown in the previous
simulation experiments.

We attach a RealSense T265 tracking camera on the front
of a Unitree Go1 quadruped. We use the built-in SLAM
module of the camera to estimate the quadruped state. The
objective is to have the quadruped follow a given trajectory as
accurately and fast as possible. As the robot moves fast, the
built-in SLAM module may generate SLAM errors, meaning
the algorithm cannot estimate the current robot state. Such
errors are correlated to the quadruped planned path and
speed. We design πswitch to speed up or slow down the
quadruped to trade off the trajectory tracking quality with
speed.

We use the built-in MPC to control the quadruped by
providing the robot linear velocity commands in the x and
y direction and the yaw angular velocity command. Given
a tracking trajectory consisting of waypoints (xi, yi, θi), i ∈
[0, ..., N], where xi, yi, θi is the robot coordinates and orien-
tation in the world frame, the robot commands are computed
by a P controller such that vx(t) = kpx · (x̂t − xi), vy(t) =
kpy · (ŷt − yi), vθ(t) = kpθ · (θ̂t − θi). (x̂t, ŷt, θ̂t) are
the estimated robot coordinates and orientations given by
SLAM, and (xi, yi, θi) is the nearest waypoint from the
given trajectory to the current robot state. By adaptively
changing P gains kpx, kpy, kpθ, our policy can speed up or

Fig. 4: Tracking error for in (left) and out (right) distribution. Fig. 5: Tracking time for in (left) and out (right) distribution.

Fig. 6: Plots of coverage with a sliding window size of 4
seconds generated with our method. On the left, we show
the coverage for SLAM error prediction for a hard trajectory
with within distribution P gains. On the right, we show that
with out of the distribution P gains. In both cases, the average
coverage over the entire rollout (labeled at the bottom right)
is higher than the specified value 0.8, marked by the red
dotted line.

slow down the quadruped to track fast or avoid SLAM errors,
respectively. The policy runs at 10 Hz.

B. Predictor Training

We train a predictor to forecast whether the SLAM system
will issue a tracking error in the future. Specifically, the
predictor takes in the observation of robot states and velocity
commands of the past 5 steps, the current nearest waypoint,
the next 3 waypoints to track, and SLAM errors received
in the past 5 steps. Then, it predicts whether a SLAM
error will occur at time step t + 2, which we define as
l̃t. The predictor is trained on a dataset collected on 43
randomly sampled trajectories. Each trajectory is generated
by linearly interpolating two keypoints uniformly sampled
from [−2, 2]m to create a zig-zag trajectory. The robot
follows the trajectory with a constant kp of 1.5. The predictor
is a one-layer MLP with 128 neurons and a single output. As
there are more negative than positive samples, we train the
predictor with weighted binary cross entropy: the positive
samples’ loss is multiplied by a factor 5.

C. Policy Design

Our policy πswitch takes the prediction l̃t and the quantile
q̂t at 1 − α = 80% coverage given by the conformal PID
controller. πswitch uses these two to modulate the robot’s
speed. Specifically, when l̃t + q̃t ≥ qsafe, πswitch slows
down the quadruped by updating kp(t) = clip(0.8 ∗ kp(t−
1), kpmin, kpmax). Conversely, when l̃t + q̃t ≤ qsafe, i.e.
the probability of failure is low, the policy speeds up the

robot by increasing the P gain to kp(t) = clip(1.1 ∗ kp(t−
1), kpmin, kpmax). qsafe = 0.8 is a specified threshold
and kpmin, kpmax are the lower and upper bound of kp.
In practice, we notice the predictor can give many false
positives, impacting the overall performance. πswitch detects
the false positive by checking if l̃t − q̃t < (1 − qsafe) and
l̃ + q̃t > 1.1. If this condition is satisfied, πswitch detects a
false positive and speeds up the quadruped instead of slowing
down.

We use as baseline policy No Quantile as in the simulation
experiment. This policy modulates the robot speed only
according to l̃t and qsafe, without any uncertainty associated
with the prediction.

D. Evaluation Results

We evaluate the above policy on three closed trajectories
with different difficulties. We use a triangle as the easy
trajectory, a rectangle as the medium hard trajectory, and
a hexagon as the hard trajectory. When the distance between
the robot’s estimated position and the last waypoint is lower
than 0.1m and at least 75% of waypoints are achieved, the
robot stops tracking. As it’s hard to obtain the ground-truth
quadruped positions, we denote the tracking error as the
distance between the start and end points of the quadruped
and record the time to finish tracking.

The predictor is trained with data collected with a fixed P
gain of 1.5. Experiments in distribution have kpmin = 1.2,
kpmax = 1.8, therefore quite close to the predictor training
data. Experiments out of distribution have kpmin = 0.8,
kpmax = 4, much beyond what the predictor was trained for.
For both in-distribution and out-of-distribution experiments,
we repeat each trajectory three times and compare the
tracking error and time for our policy and the No Quantile
baseline policy.

The results are summarized in Figure 4, 5 and 6. As shown
in Figure 4, in both in-distribution and out-of-distribution
scenarios, the policy using both the prediction and the
quantile achieves a lower tracking error with a slightly longer
tracking time. For the easy trajectory, πswitch achieves a
similar tracking error to the baseline policy for in distribution
experiment. The benefit of quantile shows up in the out-of-
distribution experiments, where tracking error difference is
more significant. Similarly, for the hard trajectory, the ben-
efits of the quantile show up more in the out-of-distribution
scenarios. For the medium trajectory, πswitch is much better
at tracking error compared to the baseline policy for in distri-

bution case. We attribute this to the bad performance of the
predictor on this rectangle trajectory. As shown in Figure 5,
for easy and medium trajectory, πswitch takes longer to track
as it slows down more to avoid SLAM errors. πswitch is
faster than the No Quantile policy for the hard trajectory
with out-of-distribution states. This is because the predictor is
overly conservative on this out-of-distribution trajectory and
generates many false positives. Figure 6 shows the average
coverage over a window of 4s for a hard trajectory for both
in-distribution and out-of-distribution states using πswitch. In
both cases, the coverage is higher than the desired threshold
of 1− α = 0.8, empirically validating the formal guarantee
from the conformal quantiles.

VI. CONCLUSIONS

We studied conformal policy learning, a method for safe
robotic control under distribution shift. The theoretical results
prove that the conformal policy is sure to quickly exit
regimes where its internal notion of uncertainty is flawed,
causing its error rate to be too high. Physical and simulation
experiments validate these claims in robotic control setups
and show practical benefits compared even to strong base-
lines under distribution shift. Directions for future work in-
clude designing novel algorithms to improve the performance
of RL controllers when provided with explicit uncertainty
measures.

REFERENCES

[1] J. M. Hernández-Lobato and R. Adams, “Probabilistic backpropaga-
tion for scalable learning of bayesian neural networks,” in Interna-
tional Conference on Machine Learning, 2015, pp. 1861–1869.

[2] Y. Gal and Z. Ghahramani, “Dropout as a bayesian approximation:
Representing model uncertainty in deep learning,” in international
conference on machine learning. PMLR, 2016, pp. 1050–1059.

[3] R. Koenker and G. Bassett Jr, “Regression quantiles,” Econometrica:
journal of the Econometric Society, pp. 33–50, 1978.

[4] A. Kendall and Y. Gal, “What uncertainties do we need in bayesian
deep learning for computer vision?” Advances in neural information
processing systems, vol. 30, 2017.

[5] O. Ian, “Risk versus uncertainty in deep learning: Bayes, bootstrap and
the dangers of dropout,” in Advances in Neural Information Processing
Systems Workshops, 2016.

[6] V. Vovk, A. Gammerman, and G. Shafer, Algorithmic Learning in a
Random World. Springer, 2005.

[7] J. Lei, M. G’Sell, A. Rinaldo, R. J. Tibshirani, and L. Wasserman,
“Distribution-free predictive inference for regression,” Journal of the
American Statistical Association, vol. 113, no. 523, pp. 1094–1111,
2018.

[8] A. Fisch, T. Schuster, T. S. Jaakkola, and R. Barzilay,
“Efficient conformal prediction via cascaded inference with
expanded admission,” in International Conference on Learning
Representations, 2021. [Online]. Available: https://openreview.net/
forum?id=tnSo6VRLmT

[9] Y. Romano, E. Patterson, and E. J. Candès, “Conformalized quantile
regression,” in Advances in Neural Information Processing Systems,
2019.

[10] A. N. Angelopoulos, S. Bates, J. Malik, and M. I. Jordan, “Uncertainty
sets for image classifiers using conformal prediction,” in International
Conference on Learning Representations (ICLR), 2021.

[11] Y. Romano, M. Sesia, and E. Candès, “Classification with valid and
adaptive coverage,” in Advances in Neural Information Processing
Systems, H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and
H. Lin, Eds., vol. 33. Curran Associates, Inc., 2020, pp. 3581–3591.

[12] A. N. Angelopoulos and S. Bates, “A gentle introduction to
conformal prediction and distribution-free uncertainty quantification,”
2021. [Online]. Available: https://arxiv.org/abs/2107.07511

[13] H. Papadopoulos, K. Proedrou, V. Vovk, and A. Gammerman, “In-
ductive confidence machines for regression,” in Machine Learning:
European Conference on Machine Learning, 2002, pp. 345–356.

[14] R. Luo, S. Zhao, J. Kuck, B. Ivanovic, S. Savarese, E. Schmerling,
and M. Pavone, “Sample-efficient safety assurances using conformal
prediction,” in International Workshop on the Algorithmic Foundations
of Robotics. Springer, 2022, pp. 149–169.

[15] H. Yang and M. Pavone, “Object pose estimation with statistical
guarantees: Conformal keypoint detection and geometric uncertainty
propagation,” in Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, 2023, pp. 8947–8958.

[16] A. Z. Ren, A. Dixit, A. Bodrova, S. Singh, S. Tu, N. Brown, P. Xu,
L. Takayama, F. Xia, J. Varley et al., “Robots that ask for help:
Uncertainty alignment for large language model planners,” arXiv
preprint arXiv:2307.01928, 2023.

[17] I. Gibbs and E. J. Candès, “Adaptive conformal inference under
distribution shift,” in Advances in Neural Information Processing
Systems, 2021.

[18] ——, “Conformal inference for online prediction with arbitrary dis-
tribution shifts,” arXiv preprint arXiv:2208.08401, 2022.

[19] M. Zaffran, O. Féron, Y. Goude, J. Josse, and A. Dieuleveut, “Adaptive
conformal predictions for time series,” in International Conference on
Machine Learning, 2022.

[20] O. Bastani, V. Gupta, C. Jung, G. Noarov, R. Ramalingam, and
A. Roth, “Practical adversarial multivalid conformal prediction,” Ad-
vances in Neural Information Processing Systems, vol. 35, pp. 29 362–
29 373, 2022.

[21] A. Bhatnagar, H. Wang, C. Xiong, and Y. Bai, “Improved online
conformal prediction via strongly adaptive online learning,” arXiv
preprint arXiv:2302.07869, 2023.

[22] A. N. Angelopoulos, E. J. Candès, and R. J. Tibshirani, “Conformal pid
control for time series prediction,” arXiv preprint arXiv:2307.16895,
2023.

[23] A. P. Dawid, “The well-calibrated bayesian,” Journal of the American
Statistical Association, vol. 77, no. 379, pp. 605–610, 1982.

[24] A. Dixit, L. Lindemann, S. X. Wei, M. Cleaveland, G. J. Pappas, and
J. W. Burdick, “Adaptive conformal prediction for motion planning
among dynamic agents,” in Learning for Dynamics and Control
Conference. PMLR, 2023, pp. 300–314.

[25] L. Lindemann, M. Cleaveland, G. Shim, and G. J. Pappas, “Safe
planning in dynamic environments using conformal prediction,” IEEE
Robotics and Automation Letters, 2023.

[26] A. Muthali, H. Shen, S. Deglurkar, M. H. Lim, R. Roelofs, A. Faust,
and C. Tomlin, “Multi-agent reachability calibration with conformal
prediction,” arXiv preprint arXiv:2304.00432, 2023.

[27] J. Lekeufack, A. N. Angelopoulos, A. Bajcsy, M. I. Jordan, and
J. Malik, “Conformal decision theory: Safe autonomous decisions from
imperfect predictions,” Published online at https://conformal-decision.
github.io/static/pdf/ submission.pdf , 2023.

[28] A. Loquercio, M. Segu, and D. Scaramuzza, “A general framework
for uncertainty estimation in deep learning,” IEEE Robotics and
Automation Letters, vol. 5, no. 2, pp. 3153–3160, 2020.

[29] N. Sünderhauf, O. Brock, W. Scheirer, R. Hadsell, D. Fox, J. Leitner,
B. Upcroft, P. Abbeel, W. Burgard, M. Milford, and P. Corke, “The
limits and potentials of deep learning for robotics,” Int. Journ. on
Robotics Research, vol. 37, no. 4-5, pp. 405–420, 2018.

[30] A. Farid, D. Snyder, A. Z. Ren, and A. Majumdar, “Failure predic-
tion with statistical guarantees for vision-based robot control,” arXiv
preprint arXiv:2202.05894, 2022.

[31] G. Kahn, A. Villaflor, B. Ding, P. Abbeel, and S. Levine, “Self-
supervised deep reinforcement learning with generalized computation
graphs for robot navigation,” in 2018 IEEE International Conference
on Robotics and Automation (ICRA), 2018.

[32] E. Kaufmann, M. Gehrig, P. Foehn, R. Ranftl, A. Dosovitskiy,
V. Koltun, and D. Scaramuzza, “Beauty and the beast: Optimal meth-
ods meet learning for drone racing,” in IEEE International Conference
on Robotics and Automation (ICRA), 2019.

[33] K. Chua, R. Calandra, R. McAllister, and S. Levine, “Deep rein-
forcement learning in a handful of trials using probabilistic dynamics
models,” in Advances in Neural Information Processing Systems, 2018,
pp. 4754–4765.

[34] A. Loquercio, A. Kumar, and J. Malik, “Learning visual locomotion
with cross-modal supervision,” in IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2023, pp. 7295–7302.

https://openreview.net/forum?id=tnSo6VRLmT
https://openreview.net/forum?id=tnSo6VRLmT
https://arxiv.org/abs/2107.07511
https://conformal-decision.github.io/static/pdf/submission.pdf
https://conformal-decision.github.io/static/pdf/submission.pdf

[35] A. Bajcsy, A. Loquercio, A. Kumar, and J. Malik, “Learn-
ing vision-based pursuit-evasion robot policies,” arXiv preprint
arXiv:2308.16185, 2023.

[36] L. Smith, Y. Cao, and S. Levine, “Grow your limits: Continuous
improvement with real-world rl for robotic locomotion,” arXiv preprint
arXiv:2310.17634, 2023.

[37] E. Leurent, “An environment for autonomous driving decision-
making,” https://github.com/eleurent/highway-env, 2018.

[38] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
nature, vol. 518, no. 7540, pp. 529–533, 2015.

[39] B. Lakshminarayanan, A. Pritzel, and C. Blundell, “Simple and
scalable predictive uncertainty estimation using deep ensembles,”
Advances in neural information processing systems, vol. 30, 2017.

[40] N. Tagasovska and D. Lopez-Paz, “Single-model uncertainties for deep
learning,” in Advances in Neural Information Processing Systems,
vol. 32, 2019.

https://github.com/eleurent/highway-env

	Introduction
	Related Work
	Method
	Conformal control methodology
	Conformal Policies for Sensorimotor Control

	Simulation Experiments
	Experimental Setup
	Base Policies Training
	Predictor Training
	Conformal Policies
	Baselines
	Evaluation Results

	Physical Experiments
	Experimental Setup
	Predictor Training
	Policy Design
	Evaluation Results

	Conclusions
	References

