
Mastering Stacking of Diverse Shapes with Large-Scale Iterative
Reinforcement Learning on Real Robots

Thomas Lampe∗, Abbas Abdolmaleki∗, Sarah Bechtle∗, Sandy H. Huang∗, Jost Tobias Springenberg∗,
Michael Bloesch, Oliver Groth, Roland Hafner, Tim Hertweck, Michael Neunert, Markus Wulfmeier,

Jingwei Zhang, Francesco Nori, Nicolas Heess, Martin Riedmiller

Abstract— Reinforcement learning solely from an agent’s self-
generated data is often believed to be infeasible for learning on
real robots, due to the amount of data needed. However, if done
right, agents learning from real data can be surprisingly efficient
through re-using previously collected sub-optimal data. In this
paper we demonstrate how the increased understanding of off-
policy learning methods and their embedding in an iterative
online/offline scheme (“collect and infer”) can drastically
improve data-efficiency by using all the collected experience,
which empowers learning from real robot experience only.
Moreover, the resulting policy improves significantly over the
state of the art on a recently proposed real robot manipulation
benchmark. Our approach learns end-to-end, directly from
pixels, and does not rely on additional human domain knowledge
such as a simulator or demonstrations.

I. INTRODUCTION

Recent years have seen significant progress in learning
based approaches for the control of real robots. Notably,
reinforcement learning has been used to produce high-quality
controllers in simulation that can then be transferred to the
real world with sim2real approaches [1], [2], [3], [4], [5],
[6], [7], while learning from demonstrations in the form of
teleoperated robot trajectories (behavior cloning) directly in
the real world has been shown to be surprisingly data-efficient
and effective [8], [9], [10], [11].

In contrast, reinforcement learning (RL) directly on real
robots has received comparatively less attention, despite
several attractive properties. Unlike behavior cloning (BC),
RL does not rely on expert data. Therefore it is not bounded
by the performance of a human teleoperator, does not require
potentially expensive teleoperation rigs, and is thus also
applicable to robots that cannot be effectively teleoperated. In
addition, unlike sim2real, learning directly on real robots does
not require a simulator that is carefully matched to reality.
Thus it can directly take advantage of the diversity of the
real world, and, for instance, of sensors that are available on
real robots but hard to simulate.

There are several reasons why RL on real robots has
received less attention in recent years. These include questions
of data-efficiency, the difficulty of establishing a safe and
effective data collection scheme, and also the difficulty of
algorithm tuning and of making suitable hyper-parameter
choices that avoid instabilities or premature convergence,
especially in an online setting.

∗Primary authors; correspondence: THOMASLAMPE@GOOGLE.COM. All
authors affiliated with Google DeepMind, London N1C4AG

However, RL algorithms have improved considerably dur-
ing the last decade. In particular, modern variants of off-policy
and offline algorithms are considerably more data-efficient
and less sensitive to parameter choices than their predecessors.
Importantly, they also allow for a variety of learning scenarios
where data collection and policy optimization are interleaved
in flexible ways. This makes it possible, for instance, to
start and stop data collection as needed, to reuse data from
prior experiments and mix different data sources (like self-
generated and expert data, or data from different policies), and
also to test different algorithm variants and hyper-parameter
choices with the same set of data.

This flexibility and its implications have been highlighted
by the “Collect-and-Infer” paradigm [12], which emphasizes
the idea that data collection and policy optimization are two
distinct processes that can be optimized separately. In this
paper we take inspiration from Collect and Infer, and explore
how the aforementioned flexibility can be used to create
practical and surprisingly robust and data-efficient iterative
schemes for real-robot RL.

As a test case we consider RGB Stacking [4], a robot
manipulation benchmark that involves stacking of geometric
shapes, which emphasizes precision and the understanding
of geometric affordances. The contact dynamics of this task
are non-trivial to replicate in simulation, thus making it an
interesting test case for real robot learning.

Our approach consists of two pairs of online/offline
stages, where we collect data during the online phase and
subsequently perform offline policy optimization. In the first
iteration we (1) perform online off-policy RL to learn an
initial policy and collect a diverse dataset. This is followed
by (2) a first round of offline policy optimization during
which we explore different algorithm settings and model
architectures. (3) In the online phase of the second iteration
we evaluate the policies from (2), which sheds light on suitable
hyperparameter settings and collects additional, higher-quality
data. (4) The final policy is then obtained through offline
policy optimization using the full dataset collected so far.

This scheme provides significant flexibility in each phase.
For instance, this allows multi-task training for exploration,
efficient exploration of different algorithm parameters, and the
ability to restart learning with a different network architecture,
thus avoiding premature convergence. Overall, this results
in a robust and data-efficient learning scheme. Furthermore,
training directly on real data removes the need for expensive

ar
X

iv
:2

31
2.

11
37

4v
1 

 [
cs

.R
O

] 
 1

8 
D

ec
 2

02
3



tuning of a simulator, and allows the policy to take advantage
of sensors not available in simulation. The final policy solves
the task near flawlessly, outperforming previously published
results on this benchmark by a large margin.

II. BACKGROUND

A. Markov Decision Processes

We consider the problem setting of a Markov Decision
Process (MDP), defined by a state space S, action space
A, transition model P : S × A × S → R+, reward
function r : S × A → R, discount factor γ ∈ [0, 1), and
initial state distribution µ0. A policy πθ(a|s, k) specifies
a distribution over actions a ∈ A, given a state s ∈ S
and task identifier k ∈ [1, N ]. The action-value function,
or Q-function, for a policy πθ is the expected return from
taking action a in state s and then following this policy:
Qπ(s, a; k) = Es′∼P(s,a)[rk(s, a) +Ea′∼π(s′)[Q

π(s′, a′; k)]].

B. Multi-task RL and Scheduled Auxiliary Control (SAC-X)

In the multi-task RL setting, there are N tasks, each of
which has a corresponding reward function rk. In this work,
we use multi-task RL for both the initial data collection phase
and for offline RL, to gather more diverse data and stabilize
learning, respectively.

In particular, we use Scheduled Auxiliary Control (SAC-X)
[13], which is a multi-task off-policy actor-critic algorithm.
The policy and Q-function networks each have a shared torso
across tasks, with a separate output head per task. SAC-X is
a hierarchical agent, where data is gathered by a scheduler
choosing which of the task policies to execute. In the SAC-Q
variant, the scheduler chooses tasks to execute in order to
maximize the reward of a predefined main task.

SAC-X trains policies with multi-task policy iteration,
alternating between policy evaluation (i.e., updating the Q-
functions) and policy improvement (i.e., updating the policies).
In the policy evaluation step, for each task k, given a batch of
transitions {s, a, s′, {rk}Nk=1} and the current per-task policy
πold
k , any policy evaluation algorithm can be used to update the

corresponding per-task Q-function Qk. In this work, we use
n-step return combined with distributional Q-learning [14].

For the policy improvement step, SAC-X uses either
Stochastic Value Gradients [15] or maximum a posteriori
policy optimization (MPO) [16]. In this work we use MPO
for this step, although in theory any policy improvement
algorithm could be used, e.g. Soft Actor Critic [17].

III. METHOD

Our approach, dubbed CHEF, is inspired by the Collect and
Infer paradigm introduced by [12]. It consists of four stages:

1) Collect a real-world dataset
2) Hyperparameter exploration: offline RL to train policies
3) Execute policies on real robots, and collect this data
4) Fine-tune policies on all collected data
In this framework, no data is wasted—in Stages 1 and

3, we collect real-world data, while in Stages 2 and 4, we
train policies on the collected data. No new data is collected
in Stages 2 and 4. In Stage 3, we evaluate policies with no

Confidential — Google DeepMind

Stage 3
Execute

Collect Infer

Stage 2
Hyperparameter 

selection

Stage 1
Collect

Stage 4
Fine-tune

train policies with multi-
task policy iteration

execute policy for main 
task (no training)

Fig. 1: Illustration of our approach, CHEF, and how it relates
to the more general collect-and-infer paradigm. We collect
data in Stages 1 and 3, and train policies with offline RL on
the data in Stages 2 and 4.

additional training; this is necessary regardless for evaluating
the performance of policies trained fully offline.
COLLECT (Stage 1). We use SAC-Q to train multi-task
policies from scratch on real robots. The SAC-Q algorithm
uses the scheduler to decide which sequence of task policies to
execute in each episode. By optimizing policies for different
tasks and sequencing them in multiple ways, this algorithm
achieves better coverage of the state space compared to single
task training, and thus collects to a more diverse dataset. We
continue Stage 1 until the policies for all tasks have converged
(albeit to a sub-optimal solution), and store all interaction
data for future use.
HYPERPARAMETER EXPLORATION (Stage 2). In Stage
2, we train agents in an offline RL setting where the
transitions come from the dataset collected in Stage 1. We
collect no new data in this phase. We sweep over a variety
of hyperparameters, for instance network architecture and
training algorithm parameters. We train agents with multi-task
policy iteration; this is exactly the same as in Stage 1, except
now the transitions come from a fixed dataset rather than
from executing the scheduler on a real robot. This works
surprisingly well, despite observations made elsewhere that
typical off-policy RL algorithms cannot be directly applied
in the offline RL setting, due to extrapolation error [18]. In
contrast we here find that multi-task training with a suitable
architecture sufficiently stabilizes offline learning if data-
coverage of the state-action space is good (as promoted by
our multi-task data collection).
EXECUTE (Stage 3). We execute fully-trained policies
from each of the hyperparameter choices in Stage 2, on
real robots, and save all the data gathered. This allows
us not only to determine which of the hyperparameters
results in the best policy, but also to gather extra high-
quality data. This minimizes the additional data necessary for
hyperparameter selection. In contrast, naı̈ve hyperparameter
selection would require either training from scratch for each



choice of hyperparameters, or selecting hyperparameters
based on what works best in simulation, and hoping that
those work on the real system.
FINE-TUNE (Stage 4). We then use all of the data gathered
so far (from Stages 1 and 3) to fine-tune the best policies
offline, based on the real-world evaluations from Stage 3.

IV. RELATED WORK

A. Offline RL for robot learning

Offline RL is the data-driven formulation of the reinforce-
ment learning problem. The aim is still to maximize reward;
however, the agent can no longer interact with the environment
and collect additional transitions [19]. Recent actor-critic al-
gorithms for offline RL include Critic Regularized Regression
[20] for simulated continuous control tasks; conservative Q-
learning [21], which learns a lower bound on the policy
value for stabilizing offline RL; and QT-Opt [22], a self-
supervised vision-based framework. More recently in [23],
goal-conditioned offline Q-learning is used to learn robotic
skills of discrete actions from previously collected offline data
without access to specified rewards; this enables learning a
variety of skills on real robots. Beyond actor-critic algorithms,
in [24] a reward model is learned from human preferences
to annotate existing offline datasets, which is then used to
perform batch RL [25]. In [26] a teacher student learning
setup is presented where a dataset collected by a suboptimal
teacher is used for offline RL to warm-start the student policy.
In this work we present an offline RL algorithm that learns an
actor and critic in a multi-task fashion, alternating between
online data collection and offline learning to master the RGB
Stacking task from [4] and used in [26].

B. Multi-task RL for robot learning

Multi-task RL holds the promise of amortizing the cost
of single task learning by providing a shared representation
across tasks. An approach to multi-task RL is to condition
policies on tasks [27], [13], [28] or to distill single task
policies into a shared multi-task policy [29], [30], [31], [32],
[33].

Other works create a mapping between tasks and individual
policy parameters, in order to select the adequate policy for
the specific task at hand [34], [35]. All these approaches
present fairly hierarchical setups to solving the multi-task RL
problem. In [36] the authors show that scaling up multi task
RL with real robot data enables transfer and even zero-shot
generalization. Similarly, this work focuses also on using real
robot data for actor-critic learning; however, our work aims
to minimize the amount of real robot data needed, by training
policies with offline multi-task RL.

V. BENCHMARK DESCRIPTION

Block stacking has long been a standard benchmark task
for robotic manipulation, with early work on vision-based
block stacking from [27]. Recent works have tackled this
problem by learning a curriculum of the different stages
of the task [13], combining human demonstrations and RL
[1], [24], enabling sim-to-real transfer [1], [2], [3], [4], and

learning a generalist transformer-based policy from expert
demonstrations [11].

The RGB Stacking benchmark we consider in this work
was first presented in [4], [26]. The task setup consists
of 5 distinct block stacking configurations, that consist of
parameterized geometric shapes of red, green and blue objects.
This is a challenging benchmark for robotic manipulation.
In contrast to our work that learns to master stacking purely
from data collected on the real robot, the authors in [4]
adopt a sim-to-real approach with a final fine-tuning stage on
hardware. The manipulator used in this work is the Rethink
Sawyer robot [37], which is controlled here in task space,
with a 5-dimensional action consisting of the end effector’s
translational velocity in Cartesian space, the wrist rotation
velocity, and the velocity of the arm’s parallel gripper. The
policy has access to a mixture of proprioceptive observations
(positions, velocities and forces of the end effector and
joints) and 3 low-resolution (128x128) images from stationary
cameras attached to the workspace. The observations notably
exclude the positions of the objects; while those are tracked
for the purpose of automation and reward computation, the
agent must learn to act from vision alone.

The role of the shapes is color-coded: the red object should
be stacked on the blue one, and a third green one serves as
a distractor. Due to the different shapes of the objects, an
agent is forced to learn about various geometric properties,
including slanted faces, lengths, and off-center balancing.

This task remains challenging for existing methods to
master, especially because success depends both on the
contact physics of objects and on force interactions, e.g.
when objects are not oriented in a way that would enable
stacking, and need to be carefully nudged onto their side.
Both aspects can prove difficult to model in simulation with
sufficient fidelity to enable transfer, and are also hard to
demonstrate via teleoperation due to limited force feedback.

In this work, we are specifically considering the “skill
mastery” sub-task, where the goal is to achieve maximum
performance with a single policy on five test object triplets
(Fig. 2b), and the test objects are available during training.

VI. EXPERIMENT SETUP

A. Sub-tasks

The SAC-Q multi-task learning algorithm described in
Section II-B requires defining a set of sub-tasks. For the
sub-task rewards we use the components of the composite
reward in [4]. These form a natural curriculum from simpler
to more complex multi-stage behaviors, to achieve the main
stack-leave task. We describe them conceptually below; for a
full description including mathematical formulations, see [4].
open Proportional to the opening angle of the gripper.
reach-grasp Sum of a shaped component for moving close

to the red object, and a sparse component for triggering
the gripper’s contact detection.

lift Shaped reward, proportional to the red object’s height.
place Shaped reward, decreases non-linearly as the red object

approaches a position directly above the blue object.



(a) Robot setups used in the RGB Stacking benchmark,
showing the Sawyer arm, basket, and attached cameras.

(b) Triplets 1 to 5 (top to bottom)
in the skill mastery challenge.

(c) Cropped, scaled images given to the agent.

0 50 100
environment steps 1e6

0.0

0.1

0.2

st
ac

k-
le

av
e

su
cc

es
s

(d) Average stack-leave success in COLLECT.

Fig. 2: The robot, objects, and agent inputs comprising the RGB Stacking benchmark, and learning in the COLLECT stage.

stack Sparse reward, non-zero when the red object is on top
of the blue object, with a small tolerance.

stack-leave Sparse reward, non-zero when the conditions for
stack hold, and the tool center point of the gripper is at
least 10cm from the red object’s center of mass.

B. CHEF Stages

As per the CHEF approach in Section III, we perform
training in distinct stages, concretely performed as follows:
COLLECT: Online RL for approximately 330k episodes.

This stage is distributed across a fleet of identical setups,
with 10 robots collecting episodes, writing their data to
a shared experience replay, and retrieving the newest
online-trained policy after each episode. We train the
policies until the task return converges (Fig. 2d).

HYPERPARAMETER EXPLORATION: We vary several hy-
perparameters, described in Section VII. Candidate
policies are trained for 2M update steps each, at which
point performance has reliably converged.

EXECUTE: Evaluating the policies generated in the previous
stage results in approximately 70k additional episodes.
All of these evaluations are performed for the stack-
leave sub-task only, even for multi-task policies.

FINE-TUNE: We continue training the best policy from the
previous stage for another 2M steps, using the combined
400k episodes from both data collection phases.

C. Model Architecture

For both the critic and the actor network, we use a Residual
Neural Network [38] (ResNet) for the shared torso, with
a separate MLP head per task. Details are provided in
the supplementary material1. Most parameter settings are
shared across all experiments, and are chosen based on prior
simulation experiments. The most influential parameter we
vary is the number and size of ResNet channels; these will
be compared in the results below.

D. Evaluation

In the EXECUTE stage, we evaluate each candidate policy
for 200 episodes. Between episodes, a hand-written controller

1https://sites.google.com/view/robochef

Method Triplet Average
1 2 3 4 5

BC (S2R + R) [4] 76% 61% 71% 88% 78% 75%
CRR (S2R + R) [4] 87% 68% 75% 88% 89% 82%
R-MPO (S2R + R) [26] 82% 55% 73% 92% 89% 78%
R-CRR (S2R + R) [26] 54% 61% 74% 94% 94% 75%

COLLECT 6% 22% 27% 47% 29% 26%
HYPERPARAM. 92% 89% 93% 92% 97% 92%
EXECUTE 62% 50% 63% 74% 71% 61%
FINE-TUNE 96% 97% 95% 95% 98% 96%

TABLE I: Comparison between prior work and the four CHEF
stages. Performance for HYPERPARAMETER EXPLORATION
is for the best policy, chosen for fine-tuning later. Performance
for EXECUTE is the average of all evaluations. For baselines,
S2R denotes sim-to-real R denotes real-data used.

randomizes the positions of all objects in the workspace, and
moves the end effector to a random position.

As a performance metric, we report the percentage of
episodes deemed “successful”, defined by the stack-leave
reward component being 1 at the end of the episode. Each
episode lasts for 20 seconds, at a control rate of 20 Hz.
Episodes are terminated prematurely if the wrist force-torque
sensor registers a force above 20N at any time.

VII. RESULTS

We first present the final performance of the policy
trained through our approach, compared to state-of-the-art
as baselines (Table I). A single iteration of offline RL is
in fact already sufficient to outperform the baselines (92%
vs 82% for the strongest baseline). This is a remarkably
large improvement, compared to the policy at the end of the
COLLECT stage (26%). We attribute this large jump to the
fact that the algorithm now has access to the full experience
from the start of training. Additionally, no care needs to
be taken to avoid overfitting when the data distribution is
still narrow, so the size of the model can be increased.
Nonetheless, performance after this first offline phase is not
optimal. It is only after the second round of collect-and-infer
that performance reaches near-optimality (96%).

In the remainder of this section, we will discuss the three
design choices we investigated in the HYPERPARAMETER EX-
PLORATION stage: inclusion of real-world-only observations,

https://sites.google.com/view/robochef


multi-task offline learning, and network size. We will also
present several ablations, on how the final FINE-TUNE policy
is trained and how the COLLECT and HYPERPARAMETER
EXPLORATION stages are designed.

A. Hyperparameter Exploration: Observations

One of the main motivations for learning purely from
real data, rather than also leveraging simulators, is the
ability to rely on sensor data that is difficult to simulate.
In particular, good performance on some test triplets involves
gentle interaction with the objects. For Triplet 2, the blue
object may need to be flipped over in order to stack on top
of it, as illustrated in Fig. 3. This must be done without
exceeding wrist force-torque thresholds, which would trigger
an episode termination. That in turn requires the use of the
robot’s wrist force sensor, which was left out in previous
work because the large sim-to-real gap of these measurements
was found to hinder transfer.

Using only simulation-capable observations leads to an
average success rate of 43% on the relevant Triplet 2. In
contrast, including haptic observations, namely forces and
torques for both wrist and joint sensors, significantly increases
the success rate to 78% after the first round of offline
RL, with all other settings being equal. Qualitatively, this
leads to more deliberate policies that carefully nudge the
bottom object when necessary, and reliably avoid force-torque-
based early terminations. For Triplet 2, the percentage of
episodes terminated early drops from 30.2% without haptic
observations, to 5.6% when including them. Examples of
this behaviour are provided in the supplementary video.

B. Hyperparameter Exploration: Network Size

An advantage of offline learning is that it enables us to
switch the network architecture after the initial COLLECT
phase. For collection, it can be preferable to use a smaller
model, to reduce the risk of overfitting and increase the speed
of parameter updates: we used a ResNet with channel sizes
of {16, 32, 32} and an embedding size of 32. However, for
the final offline policy, a larger model is preferable, to ensure
that the policy can be fit with maximum precision. Increasing
the channel sizes to {64, 128, 128, 64} and the embedding
size to 256 yields a higher success rate (Table II-B).

C. Hyperparameter Exploration: Multi-task Offline Learning

Despite the previously described advantages of offline RL,
it can be unstable [18]. Behavioral cloning (BC) provides a
mechanism for stabilizing learning, but its performance is
limited in our setup, because the COLLECT dataset contains
many non-successful episodes. If we filter the data to include
only successful episodes, BC still suffers from poor data
coverage. In contrast, offline RL can utilize the entire dataset,
and obtains higher performance than BC (Table II-C).

The better performance of our offline RL approach hinges
on the use of multi-task RL, as well as non-expert data and
the overall data distribution [39]. We use an SAC-Q multi-task
critic as described in Section II-B, with the same six sub-tasks
as used during the initial COLLECT stage. For comparison,

Method Triplet Average
1 2 3 4 5

VII-B Small network 87% 80% 86% 89% 91% 86%
Large network 92% 89% 93% 92% 97% 92%

VII-C

Multi-task RL 87% 80% 86% 89% 91% 86%
Single-task RL 51% 75% 60% 90% 93% 74%
Filtered BC 78% 60% 48% 80% 91% 71%
Filtered RL 1% 3% 7% 27% 13% 11%

VII-D

Iteration 1 91% 73% 76% 92% 91% 84%
Fine-tuning 2M 97% 90% 94% 96% 98% 95%
Re-training 2M 93% 78% 91% 96% 99% 91%
Re-training 4M 96% 87% 93% 96% 98% 94%

TABLE II: Success rates for ablations of our approach.

we ran single-task offline RL for only the stack-leave reward,
and this performs significantly worse. Likewise, multi-task
offline RL struggles to learn with the same success-filtered
dataset as used for BC, as the critic overestimates the value
of non-covered states and actions.

D. Ablation: Fine-tuning

For the final stage, we fine-tune the best policy, based on the
results from the EXECUTE stage. Every mini-batch consists
equally of samples drawn from the non-expert, multi-task
dataset from the COLLECT stage, and the more success-heavy,
single-task dataset produced during the EXECUTE stage.

Compared to training from scratch, fine-tuning reaches
similar performance in half as many learner updates—2M
as opposed to 4M (Table II-D). When training from scratch
for only 2M updates, performance is noticeably lower on
the challenging Triplet 2. To put the reduction of required
compute into scale, it takes approximately 18 days to train the
large network for 2M learner updates, on 16 Google Cloud
TPU v3 accelerators.

E. Ablations in Simulation

While we did not use simulation for pre-training or transfer,
we did rely on it to inform the design of the COLLECT and
HYPERPARAMETER EXPLORATION stages.

A key component of our approach is sharing the critic
network torso across tasks. In simulation, we ablate this for the
same RGB stacking benchmark, but with state features instead
of image inputs. In the online RL setting, which is analogous
to COLLECT, we found that sharing the critic torso leads to
both faster learning and better performance for the main stack-
leave task, whereas sharing the actor torso is less crucial (Fig.
4a, right). Note that much of the data in the experience replay
is off-policy with respect to an individual task’s policy, since
during data collection, the scheduler sequences all the task
policies together. Sharing the critic torso enables learning
from this off-policy data, as shown by the shorter delay
between when the data collection policy obtains non-zero
reward for stack-leave (Fig. 4a, left) and when the task policy
starts learning from this data. We hypothesize that sharing
the critic torso enables learning a shared representation that
simplifies critic learning for harder, sparse-reward tasks like
stack-leave. We found that when the critic torso is not shared,
the critic for stack-leave overestimates the return.



Fig. 3: Successful stacking attempt for triplet 2. The agent first aligns the blue object with the basket’s edge and then carefully
pushes against it in order to flip it into an orientation that the red object can be stacked onto.

0 10 20 30
environment steps (×106)

0

5

10

st
ac

k-
le

av
e r

ew
ar

d

All Tasks

0 10 20 30
environment steps (×106)

0

50

100

150

200
Stack-Leave Only

shared critic and actor torso
shared critic torso

shared actor torso
neither torso shared

(a) Online RL, analogous to COLLECT. The reward for stack-leave across
training, for the data collection policy (left) and the task policy (right). Sharing
the critic torso improves sample efficiency and final performance. When the
critic torso is not shared, there is a delay from when the data collection starts
obtaining reward for stack-leave after around 5M environment steps, compared
to when the stack-leave policy learns from this data, more than 5M steps later.

0 2 4 6 8
learner updates (×106)

0

100

200

300

lif
t r

ew
ar

d

Lift

0 2 4 6 8
learner updates (×106)

st
ac

k 
re

w
ar

d

Stack

shared critic torso
no critic torso sharing

shared critic torso [single-task dataset]
single-task offline RL

(b) Offline RL, analogous to HYPERPARAMETER EXPLORATION. Plots show
performance of the lift and stack task policies. Sharing the critic network torso
across tasks does not impact performance on lift, but is essential for learning
stack, a harder and sparse-reward task. The multi-task setup is important for
both gathering data (i.e., COLLECT) and learning from this data, as shown by
the worse performance on stack (orange dotted and grey lines, respectively).

Fig. 4: Ablations in simulation, on sharing network torsos during online and offline learning, and how the dataset is gathered.

In the offline RL setting, analogous to HYPERPARAMETER
EXPLORATION, sharing the critic network torso is even more
important. Here we focus on a subset of four tasks: reach-
grasp, lift, place, and stack. We first gather 40k episodes
with multi-task online RL, as in COLLECT. Without a shared
critic torso, the agent learns the lift task (Fig. 4b, left) but
cannot learn the sparse-reward stack task (Fig. 4b, right).

We also run two other ablations in this offline RL setting.
First, we instead gather the dataset with single-task online RL,
where the reward is the composite reward used in [4]. Second,
instead of using multi-task offline RL, we train a policy to
optimize the single composite reward. Both cannot learn to
stack consistently. These ablations indicate the importance of
using a multi-task setup. Gathering the dataset in a multi-task
setup improves coverage and includes trajectories that perform
well for each of the individual tasks. Training policies offline
in a multi-task setup enables using the learning signal from
easier tasks to simplify learning for harder tasks.

VIII. DISCUSSION

We presented the CHEF schema, a specific implementation
of the collect-and-infer paradigm, targeted toward off-policy
actor-critic reinforcement learning. By separating the learning
into distinct stages for exploration-driven data collection,
offline hyperparameter search, greedy execution, and offline
fine-tuning, we achieved maximum reuse of collected data for
improved data efficiency, while also maintaining flexibility
with regards to architecture and hyperparameters.

We applied this schema to the RGB Stacking benchmark,
on real robots. Our approach not only reduced the required
amount of system interaction, but also achieved near-perfect
success, significantly improving upon the state-of-the-art. Our

ablations highlighted several key features of the approach:
First, using end-to-end RL to train directly on real robots,
without the need for a simulator, allowed the use of relevant
sensors that were previously ignored due to limited fidelity
in simulation (Section VII-A). Second, offline RL coupled
with multi-task exploration was able to utilize the large
quantity of non-successful data produced during early training,
outperforming filtered BC (Section VII-C). In addition, using
a multi-task critic network architecture was key for stabilizing
offline RL (Sections VII-C, VII-E). Finally, by using fine-
tuning in the second offline training stage, we achieved similar
performance compared to training from scratch, with half the
computational cost (Section VII-D).

In this work, using a set of sub-tasks that form a curriculum
towards the desired main task worked well. In future work,
we would like to explore how the selection of tasks affects
these findings, in particular as increasingly large models are
being used to train many tasks across many domains at once
(e.g. [8], [9], [11]).

To solve the RGB Stacking benchmark task, we only
needed to perform the EXECUTE and FINE-TUNE stages
once. If required, we could also repeat these stages until
the desired performance is obtained, while accumulating the
collected data. Such iterative Collect-and-Infer would allows
the algorithm to ’hill-climb’ to high performance via offline-
RL starting from initial data. Additionally, the question arises
whether repeating the HYPERPARAMETER EXPLORATION
stage is optimal, or whether additional exploration would be
required. While the answer may depend on the specific task
considered, therein lies the strength of the general Collect-
and-Infer framework, to choose the specific stages as needed.



REFERENCES

[1] Y. Zhu, Z. Wang, J. Merel, A. Rusu, T. Erez, S. Cabi, S. Tunyasuvu-
nakool, J. Kramár, R. Hadsell, N. de Freitas, et al., “Reinforcement
and imitation learning for diverse visuomotor skills,” arXiv preprint
arXiv:1802.09564, 2018.

[2] R. Jeong, Y. Aytar, D. Khosid, Y. Zhou, J. Kay, T. Lampe, K. Bousmalis,
and F. Nori, “Self-supervised sim-to-real adaptation for visual robotic
manipulation,” in 2020 IEEE international conference on robotics and
automation (ICRA). IEEE, 2020, pp. 2718–2724.

[3] L. Hermann, M. Argus, A. Eitel, A. Amiranashvili, W. Burgard, and
T. Brox, “Adaptive curriculum generation from demonstrations for sim-
to-real visuomotor control,” in 2020 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 2020, pp. 6498–6505.

[4] A. X. Lee, C. M. Devin, Y. Zhou, T. Lampe, K. Bousmalis, J. T.
Springenberg, A. Byravan, A. Abdolmaleki, N. Gileadi, D. Khosid,
et al., “Beyond pick-and-place: Tackling robotic stacking of diverse
shapes,” in 5th Annual Conference on Robot Learning, 2021.

[5] T. Haarnoja, B. Moran, G. Lever, S. H. Huang, D. Tirumala,
M. Wulfmeier, J. Humplik, S. Tunyasuvunakool, N. Y. Siegel, R. Hafner,
et al., “Learning agile soccer skills for a bipedal robot with deep
reinforcement learning,” arXiv preprint arXiv:2304.13653, 2023.

[6] S. Bohez, S. Tunyasuvunakool, P. Brakel, F. Sadeghi, L. Hasenclever,
Y. Tassa, E. Parisotto, J. Humplik, T. Haarnoja, R. Hafner, et al.,
“Imitate and repurpose: Learning reusable robot movement skills from
human and animal behaviors,” arXiv preprint arXiv:2203.17138, 2022.

[7] L. Smith, J. C. Kew, T. Li, L. Luu, X. B. Peng, S. Ha, J. Tan,
and S. Levine, “Learning and adapting agile locomotion skills by
transferring experience,” arXiv preprint arXiv:2304.09834, 2023.

[8] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, J. Dabis, C. Finn,
K. Gopalakrishnan, K. Hausman, A. Herzog, J. Hsu, et al., “Rt-1:
Robotics transformer for real-world control at scale,” arXiv preprint
arXiv:2212.06817, 2022.

[9] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, X. Chen, K. Choro-
manski, T. Ding, D. Driess, A. Dubey, C. Finn, et al., “Rt-2: Vision-
language-action models transfer web knowledge to robotic control,”
arXiv preprint arXiv:2307.15818, 2023.

[10] A. Stone, T. Xiao, Y. Lu, K. Gopalakrishnan, K.-H. Lee, Q. Vuong,
P. Wohlhart, B. Zitkovich, F. Xia, C. Finn, et al., “Open-world object
manipulation using pre-trained vision-language models,” arXiv preprint
arXiv:2303.00905, 2023.

[11] K. Bousmalis, G. Vezzani, D. Rao, C. Devin, A. X. Lee, M. Bauza,
T. Davchev, Y. Zhou, A. Gupta, A. Raju, A. Laurens, C. Fantacci,
V. Dalibard, M. Zambelli, M. Martins, R. Pevceviciute, M. Blokzijl,
M. Denil, N. Batchelor, T. Lampe, E. Parisotto, K. Żołna, S. Reed,
S. G. Colmenarejo, J. Scholz, A. Abdolmaleki, O. Groth, J.-B. Regli,
O. Sushkov, T. Rothörl, J. E. Chen, Y. Aytar, D. Barker, J. Ortiz,
M. Riedmiller, J. T. Springenberg, R. Hadsell, F. Nori, and N. Heess,
“Robocat: A self-improving foundation agent for robotic manipulation,”
2023.

[12] M. Riedmiller, J. T. Springenberg, R. Hafner, and N. Heess, “Collect
& infer – a fresh look at data-efficient reinforcement learnin,” arXiv
preprint arXiv:2108.10273, 2021.

[13] M. Riedmiller, R. Hafner, T. Lampe, M. Neunert, J. Degrave, T. Wiele,
V. Mnih, N. Heess, and J. T. Springenberg, “Learning by playing
solving sparse reward tasks from scratch,” in International conference
on machine learning. PMLR, 2018, pp. 4344–4353.

[14] M. G. Bellemare, W. Dabney, and R. Munos, “A distributional
perspective on reinforcement learning,” in International conference on
machine learning, 2017.

[15] N. Heess, G. Wayne, D. Silver, T. Lillicrap, T. Erez, and Y. Tassa,
“Learning continuous control policies by stochastic value gradients,”
Advances in Neural Information Processing Systems, 2015.

[16] A. Abdolmaleki, J. T. Springenberg, Y. Tassa, R. Munos, N. Heess,
and M. Riedmiller, “Maximum a Posteriori policy optimisation,” in
International Conference on Learning Representations, 2018.

[17] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” in International Conference on Machine Learning, 2018.

[18] S. Fujimoto, D. Meger, and D. Precup, “Off-policy deep reinforcement
learning without exploration,” in International conference on machine
learning, 2019.

[19] S. Levine, A. Kumar, G. Tucker, and J. Fu, “Offline reinforcement
learning: Tutorial, review,” and Perspectives on Open Problems, vol. 5,
2020.

[20] Z. Wang, A. Novikov, K. Zolna, J. S. Merel, J. T. Springenberg, S. E.
Reed, B. Shahriari, N. Siegel, C. Gulcehre, N. Heess, et al., “Critic
regularized regression,” Advances in Neural Information Processing
Systems, vol. 33, pp. 7768–7778, 2020.

[21] A. Kumar, A. Zhou, G. Tucker, and S. Levine, “Conservative q-learning
for offline reinforcement learning,” Advances in Neural Information
Processing Systems, vol. 33, pp. 1179–1191, 2020.

[22] D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Herzog, E. Jang,
D. Quillen, E. Holly, M. Kalakrishnan, V. Vanhoucke, et al., “Qt-
opt: Scalable deep reinforcement learning for vision-based robotic
manipulation,” arXiv preprint arXiv:1806.10293, 2018.

[23] Y. Chebotar, K. Hausman, Y. Lu, T. Xiao, D. Kalashnikov, J. Varley,
A. Irpan, B. Eysenbach, R. Julian, C. Finn, et al., “Actionable models:
Unsupervised offline reinforcement learning of robotic skills,” arXiv
preprint arXiv:2104.07749, 2021.

[24] S. Cabi, S. G. Colmenarejo, A. Novikov, K. Konyushkova, S. Reed,
R. Jeong, K. Zolna, Y. Aytar, D. Budden, M. Vecerik, et al., “Scaling
data-driven robotics with reward sketching and batch reinforcement
learning,” arXiv preprint arXiv:1909.12200, 2019.

[25] S. Lange, T. Gabel, and M. Riedmiller, Batch Reinforcement Learning.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 45–73.
[Online]. Available: https://doi.org/10.1007/978-3-642-27645-3 2

[26] A. X. Lee, C. Devin, J. T. Springenberg, Y. Zhou, T. Lampe,
A. Abdolmaleki, and K. Bousmalis, “How to spend your robot
time: Bridging kickstarting and offline reinforcement learning for
vision-based robotic manipulation,” in 2022 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2022,
pp. 2468–2475.

[27] M. P. Deisenroth, P. Englert, J. Peters, and D. Fox, “Multi-task policy
search for robotics,” in 2014 IEEE international conference on robotics
and automation (ICRA). IEEE, 2014, pp. 3876–3881.

[28] M. Wulfmeier, A. Abdolmaleki, R. Hafner, J. T. Springenberg,
M. Neunert, N. Siegel, T. Hertweck, T. Lampe, N. Heess, and
M. Riedmiller, “Compositional transfer in hierarchical reinforcement
learning,” Robotics: Science and Systems XVI, 2020.

[29] Y. Teh, V. Bapst, W. M. Czarnecki, J. Quan, J. Kirkpatrick, R. Hadsell,
N. Heess, and R. Pascanu, “Distral: Robust multitask reinforcement
learning,” Advances in neural information processing systems, vol. 30,
2017.

[30] A. A. Rusu, S. G. Colmenarejo, C. Gulcehre, G. Desjardins, J. Kirk-
patrick, R. Pascanu, V. Mnih, K. Kavukcuoglu, and R. Hadsell, “Policy
distillation,” arXiv preprint arXiv:1511.06295, 2015.

[31] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training of
deep visuomotor policies,” The Journal of Machine Learning Research,
vol. 17, no. 1, pp. 1334–1373, 2016.

[32] E. Parisotto, J. L. Ba, and R. Salakhutdinov, “Actor-mimic: Deep
multitask and transfer reinforcement learning,” arXiv preprint
arXiv:1511.06342, 2015.

[33] D. Ghosh, A. Singh, A. Rajeswaran, V. Kumar, and S. Levine, “Divide-
and-conquer reinforcement learning,” arXiv preprint arXiv:1711.09874,
2017.

[34] J. Kober, A. Wilhelm, E. Oztop, and J. Peters, “Reinforcement learning
to adjust parametrized motor primitives to new situations,” Autonomous
Robots, vol. 33, pp. 361–379, 2012.

[35] B. Da Silva, G. Konidaris, and A. Barto, “Learning parameterized
skills,” arXiv preprint arXiv:1206.6398, 2012.

[36] D. Kalashnikov, J. Varley, Y. Chebotar, B. Swanson, R. Jonschkowski,
C. Finn, S. Levine, and K. Hausman, “Scaling up multi-task robotic
reinforcement learning,” in 5th Annual Conference on Robot Learning,
2021.

[37] R. Robotics, “Sawyer robot,” https://www.rethinkrobotics.com/sawyer,
2023 (accessed September 1, 2023).

[38] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” 2015.

[39] N. Lambert, M. Wulfmeier, W. Whitney, A. Byravan, M. Bloesch,
V. Dasagi, T. Hertweck, and M. Riedmiller, “The challenges of
exploration for offline reinforcement learning,” arXiv e-prints, pp.
arXiv–2201, 2022.

https://doi.org/10.1007/978-3-642-27645-3_2
https://www.rethinkrobotics.com/sawyer

	Introduction
	Background
	Markov Decision Processes
	Multi-task RL and Scheduled Auxiliary Control (SAC-X)

	Method
	Related Work
	Offline RL for robot learning
	Multi-task RL for robot learning

	Benchmark Description
	Experiment Setup
	Sub-tasks
	chef Stages
	Model Architecture
	Evaluation

	Results
	Hyperparameter Exploration: Observations
	Hyperparameter Exploration: Network Size
	Hyperparameter Exploration: Multi-task Offline Learning
	Ablation: Fine-tuning
	Ablations in Simulation

	Discussion
	References

