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Abstract— Painting is an artistic process of rendering visual
content that achieves the high-level communication goals of an
artist that may change dynamically throughout the creative
process. In this paper, we present a Framework and Robotics
Initiative for Developing Arts (FRIDA) that enables humans to
produce paintings on canvases by collaborating with a painter
robot using simple inputs such as language descriptions or
images. FRIDA introduces several technical innovations for
computationally modeling a creative painting process. First,
we develop a fully differentiable simulation environment for
painting, adopting the idea of real to simulation to real
(real2sim2real). We show that our proposed simulated painting
environment is higher fidelity to reality than existing simulation
environments used for robot painting. Second, to model the
evolving dynamics of a creative process, we develop a planning
approach that can continuously optimize the painting plan
based on the evolving canvas with respect to the high-level goals.
In contrast to existing approaches where the content generation
process and action planning are performed independently and
sequentially, FRIDA adapts to the stochastic nature of using
paint and a brush by continually re-planning and re-assessing
its semantic goals based on its visual perception of the painting
progress. We describe the details on the technical approach as
well as the system integration. FRIDA software is freely avail-
able at: https://pschaldenbrand.github.io/frida/.

I. INTRODUCTION

Painting is the artistic process of rendering visual content
that achieves an artist’s high-level, semantic goals. As op-
posed to its straightforward analogue printing—i.e., creating
a copy of an original input—painting is a dynamic process
where an artist’s initial goals are generally vaguely defined
and may change dynamically during the creative process [1],
[2] and the artist’s goals are specified semantically and at a
high-level.

In this paper, we consider how we can enable robots with
painting abilities. To this end, we introduce a Framework and
Robotics Initiative for Developing Arts (FRIDA) that can
computationally model creative processes such as painting
to support human creativity. FRIDA showcases a fully inte-
grated robotic system (Fig. 2) that can take inspirations from
a human user in the text or image format, e.g., “two soldiers
from different countries dancing,” to produce an artistic
painting (Fig. 1). FRIDA does so by modeling painting as a
planning problem where a canvas constitutes the state space
and brush strokes are available actions. Here, the objective
is to find a sequence of actions, e.g., brush strokes, that
would result in a final canvas that satisfies an artist’s goals
or intentions. An additional objective is to allow for the
adjustment of goals based on the progressive execution of
a plan. Contrary to existing robot painting systems where
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Fig. 1. Human users interacting with FRIDA can describe semantic goals
using a variety of simple input such as (a) natural language and style images,

(b) source images to be painted precisely, and (c) sketches with language
description and style images. Input image sources: [3], [4], [5], [6].
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Fig. 2. Planning, in FRIDA, is designed to achieve the high-level goals
of the human user, which are specified with multi-modalities. FRIDA plans
in a simulated environment created from real robot data and continually
optimizes its plan based on visual perception to ensure the artist’s intentions
are realized.
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Fig. 3.
a fully programmed sequence of actions is blindly executed
by a robot, FRIDA’s painting approach interleaves content
generation and action planning to achieve continual content
optimization.

FRIDA’s core technologies draw on two insights of the
artistic process [1]: 1) art has high-level, semantic goals,
and 2) art is a dynamic process which needs to adapt and
reconsider its goals constantly during the creation process. To
achieve high-level semantic goals, we design loss functions
to compare the semantic goals (or user inputs) and the current
canvas. Instead of computing the loss using the pixel values,
we use the feature values from pre-trained deep neural
networks (DNNs) as the features extracted from DNNs tend
to correlate well with human perception of image style [7],
[8], [9] and multi-modal alignment [10], [11]. We hypothe-
size that using DNN features would result in paintings that
are semantically relevant to high-level goals as opposed to
merely replicating (or printing) a given input. In order to
plan using feedback from DNNs, we create a differentiable,
simulated painting environment which enables our planner to
optimize brush actions directly toward semantic goals using
stochastic gradient descent. Inspired by the idea referred to
as Real2Sim2Real used in other robotics problems [12], the
simulation environment is created by modeling real brush
strokes generated by the robot which reduces the Sim2Real
gap.

Capturing the dynamic nature of painting is a challenge
when framing it as a robot painting problem. The majority of
existing work in robot painting models the painting process
as analogue printing, that is, an input image is the same as
their final goal to reproduce in painting. Departing from those
views, our approach follows the idea of planning with partial
information in robotics where an initial plan is generated to
initiate the execution but continuously gets updated as a robot
acquires more information from an environment.

Our contributions:

FRIDA’s embodiment and workspace.

1) A robotics framework and initiative for interdisci-
plinary research to promote human creativity, address-
ing technical challenges in core robotics fields in-
cluding planning, simulation, and human-robot inter-
action in the domain of visual arts. FRIDA’s complete
software stack is open sourced (https://github.
com/pschaldenbrand/Frida);

2) A differentiable, high-fidelity painting simulation envi-
ronment developed using Real2Sim2Real methodology
that reduces the Sim2Real gap from prior works;

3) A planning algorithm for performing multiple tasks
that have high-level, semantic goals under stochastic
circumstances;

4) An intuitive interaction interface, e.g., human users
can describe semantic goals using natural language,
sketches, and/or style images.

II. RELATED WORK

A. Simulated Painting

Stroke-Based Rendering (SBR) recreates a given target
image using a set of primitive elements that usually resemble
brush strokes of paint. Procedural SBR methods generally
use rules and heuristics to generate the stroke plan [13],
[14]. Planning-based SBR methods use search, optimization,
or learning models such as Reinforcement Learning or Re-
current Neural Networks to generate a stroke plan with an
objective of replicating an input image [15], [16].

Recent SBR methods expands the input space to incor-
porate high-level goals to generate brush stroke simulated
paintings based on language descriptions and/or style speci-
fication [10], [9], [17]. While these methods present appre-
ciable results in simulation, technical challenges specific to
transitioning from simulation to real robots have not been
addressed.

B. Robot Painting

There have been numerous robot-created paintings includ-
ing notable works that had competed in an annual competi-
tion in 2016-2018 [18], but technical details of most works
have not been published. Based on published works, exist-
ing robot painting approaches can roughly be categorized
into two groups: engineered systems and learning-enabled
systems.

1) Engineered robotic painting systems: use well mea-
sured equipment to ensure that the planning environment is
accurate to the real environment and use rules and heuristics
for planning. The Dark Factory portraits [19] utilize a highly
accurate robotic arm with known models of brush shape
and size. They plan a full sequence of actions a priori such
that the plan can be blindly executed. E-David [20] uses a
simulated environment constructed to be similar to its paint-
ing equipment then draws strokes perpendicular to gradients
in the target image. In general, the engineered systems are
capable of high-fidelity reproductions of input images as they
meticulously engineer to minimize the sim2real gap in their
setup; however, they are not generalizable to different equip-
ment or settings. Furthermore, these approaches generally do
not support more than replicating a given image.
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Fig. 4. The process of rendering a stroke, given its parameters, onto an existing canvas in our differentiable simulated painting environment.

Fig. 5. Our brush shape model has three parameters: thickness (h), bend
(b), and length ().

2) Learning-enabled robotic painting systems: generally
use simulation environments to plan brush strokes and then
execute the plan using a physical robot. Due to a huge
sim2real gap, brush stroke plans based directly on simulation
methods [10], [9] produce poor-quality paintings or are even
infeasible on real robot systems. It has been shown that
additional constraints help reducing the sim2real gap to
enable robots to paint according to a generated plan [21],
[22], but such rigid constraints sometimes result in vague
or imprecise outcomes. In line-drawing, [23] used reinforce-
ment learning to learn both the SBR instructions and the
low level robot instructions for the reproduction of sketches.
Their approach is designed to plan once and execute a given
plan as is without observation feedback in the loop. In
painting, however, visual feedback is crucial as painting is a
continuously evolving process [1].

C. Brush Stroke Modeling

Brush strokes can be represented using a height map
and a color map as in [24] where Generative Adversarial
Networks are used to map a user input trajectory into a
synthesized brush stroke. In their work, both training and
testing were done using data synthesized using a volumetric
oil painting simulator based on WetBrush [25]. While the
outputs appear impressive in simulation, the challenge still
remains unanswered how such a simulated input can be
translated into a real painting, for example, by a robot.

Wang et al. [26] use brush parameters such as the width,
drag, and offset of the brush’s bristles to create a very
accurate brush stroke model. They use pseudospectral op-
timal control to optimize trajectories of brush strokes to
fit the target calligraphy character, which works well with
calligraphy where an initial path is given in a reasonably
accurate form and the brush strokes are clearly separated
by white space. In the painting domain, however, a more
generalizable approach is needed due to the fact that the
shapes of brush strokes used in painting are highly flexible
and unconstrained and that brush strokes frequently overlap
with previous ones.

III. METHODS
A. Brush Stroke Model

Inspired by [26], we parameterize the space of brush
strokes using three parameters as shown in Fig. 5. In addition
to brush shape attributes, i.e., the length [ of the stroke, and
the amount b that the stroke bends up or down, the thickness
h of the stroke specifies how far the brush is pressed
proportionally to the canvas. A brush stroke is parameterized
by its shape, denoted by (h, [, b), the location coordinates on a
canvas (z,y), orientation €, and color p in the RGB format.
The stroke trajectory can then be represented by a cubic
Bézier curve where the horizontal coordinates are a linear
interpolation between O and [, and the vertical coordinates
are 0 at the end points and b in the center points.

B. Real Data to Simulation

Whereas existing models such as [26] use only shape
features of the rendered images that would require some
model of a brush tool for a robot control interface, our
definition of thickness connects the parameter space with
a brush tool and a robot. During the calibration phase, we
generate random brush strokes to train the param2stroke
model, a Neural Network comprised of two linear layers fol-
lowed by two convolutional layers and an bilinear upscaler,
that translates a brush stroke shape tuple directly into the
appearance map of the brush stroke. The brush stroke shape
tuple can deterministically be translated into control inputs
for a real robot.

A rudimentary approach to creating a differentiable, sim-
ulated robot painting environment would be to allow the
robot to paint randomly and continuously to collect a large
enough dataset of paired robot actions to the effects on the
canvas to model this relationship. While this method works
well in simulated environments [24], [21], [16], [17], where
thousands of brush strokes can be produced on the order
of seconds, generating a similarly large-sized real dataset is
impractical. Painting in real life is slow, and if the brush or
other materials were altered, the entire process would need to
be restarted. Instead, we augment the dataset using existing
differentiable functions, such as rigid transformations for po-
sitioning and orienting strokes and stamping methodology for
rendering individual brush strokes onto an existing canvas,
to allow our painting environment to be simulated with a
reasonably small number of real brush strokes for modeling.

C. Differentiable Simulated Painting Environment

The stroke rendering process in our simulation is de-
picted in Fig. 4: the param2stroke network translates
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the thickness, bend, and length parameters into a 2d mag-
nitude map of the brush stroke’s predicted appearance. This
magnitude map is then padded such that it is the size of
a full canvas. Then the map is translated and rotated to
the specified orientation and location. The magnitude map
is converted into an RGBA image, and then the stroke is
applied to a given existing canvas. Strokes can be layered
upon each other to create a complete simulated painting.
They can also be rendered onto a photograph of the real
canvas for planning throughout the painting process. The
whole rendering process is differentiable, meaning that the
loss value computed using the rendered canvas can be
differentiated, back-propagated through the simulator, and
a Stochastic Gradient Descent algorithm updates the brush
stroke parameters such that the parameters minimize the loss
function.

D. Planning Algorithm

Algorithm 1 sketches our planning algorithm for painting
with visual feedback given high-level semantic goals. The
optimize function compares the goals (image or text) with
the simulated painting according to one or more objective
functions detailed in Section III-E. The simulated painting
is the rendering of the brush stroke plan onto the current
canvas—i.e., the current image observed by the camera sensor.

To start the paint function, n_strokes brush strokes are
randomly initialized by sampling uniformly over the brush
stroke parameters. An initial pass at optimization can be
performed with initial high-level goal(s), then the plan is
optimized to use the full objective(s). The first batch_size
brush strokes from the plan are executed, then the remainder
of the plan is re-optimized based on the executed brush
strokes and objective(s).

E. High-Level Goal Objective Functions

To enable our system to achieve high-level goals, we
employ a variety of objective functions from recent image
synthesis literature. Each objective function has a loss func-
tion that compares the brush stroke plan (p) to the target input
(t) which may be language or an image. A plan p,,¢,; for the
next time step is rendered into a raster image using a differen-
tiable simulated environment (). These objective functions
can be used in different combinations to achieve high-level,
artistic tasks, e.g., painting from language description with
or without a specified style, painting images conceptually, or
painting from a sketch.

Image-Text Similarity Objective (Eq. 1) This objective
optimizes the brush stroke plan (p) such that the cosine
distance between the CLIP [27] embeddings of both the
painting and the language description (f) is minimized,
guiding the painting to resemble the content of the text, as

Algorithm 1: Painting Planning Algorithm

1 Def optimize (plan, targets, objectives) :

2 canvas = camera()

3 while plan is not optimized do

4 sim_painting = canvas + plan.render()

5 loss =0

6 for objective, target in objectives, targets do
7 L loss += objective(sim_painting, target)

8 # Update plan to decrease loss with SGD

9 plan.update(loss)

10 return plan

11 Def paint (targets, n_strokes, objectives,
init_objectives) :

12 # Initialize a brush stroke plan

13 plan = init brush_strokes(n_strokes)
14 # [optional] Do an initial pass at optimization

15 if init_objectives is not None then

16 L plan = optimize(plan, targets, init_objectives)
17 plan = optimize(plan, targets, objectives)

18 while plan.n_strokes > 0 do

19 # Paint some strokes from plan

20 plan.execute(batch_size)

21 plan = plan[batch_size:]

22 # Update Plan

23 plan = optimize(plan, target, objective)

is common in recent CLIP-guided text-to-image synthesis
methods [9], [10], [28], [11].

Style Objective (Eq. 2) Given an example style image, the
style objective guides the painting to resemble the colors,
shapes, textures, and other style features of the given image.
This objective was created for style transfer methodology [7],
[8]. The style objective minimizes the Earth Mover’s Dis-
tance (E'M D) between style features that are extracted using
a pretrained object detection model (VGG [29]), from the
brush stroke plan (p) and the style image ().

Simple Replication Objective (Eq. 3) Image replication is
not considered a high-level goal. Instead, it is a straightfor-
ward minimization of the Lo distance between the rendered
brush stroke plan and the target image (t).

Semantic Replication Objective (Eq. 5) Following [30],
features can be extracted from the convolutional layers
of CLIP which are rich in both semantic and geometric
information. For a high-level semantic replication objective,
we minimize the Lo difference of features extracted from the
target image and painting from the last convolutional layer
of CLIP (CLIP,.ony).

IV. ROBOT SETUP DETAILS

We used a Rethink Sawyer robot [31] as a machine to
test our approach. Any Robotics Operating System (ROS)
compatible machine with a similar morphology to the Sawyer
could feasibly be adapted to execute our approach with only
minimal changes to the robot interface code.



Length

- - - -— — - -——

Bend -~ -~ - - —_— —~ ~~
Thickness - —_ -_ - - - -
Fig. 6. Depictions of interpolating between minimum and maximum

values of each of the three stroke shape parameters with the trained
param2stroke model.

Training Test
Real  DiffVG  FRIDA Real  DiffVG  FRIDA
— — W W
L Nn - | -
w S ~ N »
— - - —-— i -
~ N\ -~ gy O G
e S emi w \V o
o Vo & @
o W - _R A e
L, 0.028  0.012 L 0.028 0.018

Fig. 7. We compare using Diff VG [32] and FRIDA’s param2stroke
model for modeling brush stroke shapes. The average L1 distance computed
on 50 samples between the modeled and real brush strokes is displayed at
the bottom.

A photograph of our painting equipment and setup can be
seen in Fig. 3. We use a Canon EOS Rebel T7 to perceive
the canvas. For all examples in this paper, we used 11 x 14
inch canvas board as painting surfaces. Premixed acrylic
paints are provided to the robot in palette trays with up
to 12 color options available. Alternatively, from an initial
painting in simulation, the colors are discretized to a user-
specified number using K-Means cluster; palette preparation
is performed accordingly by a human. A rag and water
are provided for the robot to clean paint off of the brush,
which is performed when switching colors. The brush is
rigidly attached to the robot’s end effector and is always
held perpendicular to the canvas. Indirect, diffused lighting
is necessary, since direct lighting can cause too much glare
from the wet paint into the camera. The locations of all the
painting materials (canvas, paint, water rag) with respect to
the robot are explicitly programmed.

V. RESULTS
A. Simulated Painting Environment

The trained param2stroke model can produce strokes
with continuous parameter values as seen in Fig.6. Fig. 7
shows the difference between real brush strokes and FRIDA’s
modeled brush strokes using the same input parameters.
We also compare these strokes to DiffVG [32] which was
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Fig. 8. Comparing the simulation environments of three painting methods
painting with various numbers of brush strokes: (a) Huang et al. 2019 [16],
(b) Schaldenbrand & Oh 2021 [21], (c) FRIDA (proposed)
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Fig. 9. We compare the Sim2Real gap between FRIDA and two existing
methods. The MSE between the simulated plan and the real painting is
displayed below each pair.

used for brush stroke planning in [22]. The average L; loss
between the modeled and real strokes was significantly (p-
value < .01) less for FRIDA’s stroke model than DiffVG.

We qualitatively compared our approach to Huang et al.
2019 [16] and Schaldenbrand & Oh 2021 [21]. Fig. 8 com-
pares the brush strokes in early stages of painting simulation
where we can observe drastic differences.

Fig. 9 shows the comparison in terms of the sim2real gap
for entire paintings. In simulation, Huang et al. 2019’s Rein-
forcement Learning (RL) model is able to almost perfectly
replicate a given image due to their unconstrained stroke
model, e.g., allowing strokes that are huge in size and have
varying opacity; however, when we fed the strokes to a paint-
ing robot, the painting produced was vastly dissimilar to both
the simulation and target image. Schaldenbrand & Oh 2021
constrained the brush stroke parameters (length, width, color,
and opacity) such that a robot was more capable of executing
the strokes; however, the constraints made it challenging for
their RL model to accurately replicate a target image. For
the proposed approach, we used our simulation to recreate
the target image using the Simple Replication Objective (Eq.
3) and did not re-plan with perception for fair comparison.
Our proposed approach shows clearly visible improvement
in recreation both in simulation and real painting.
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Fig. 11. FRIDA painting with text input “Albert Einstein Dancing” in the

style of van Gogh’s The Starry Night with and without replanning. The left
most images are the initial plan followed by the plan after 200 brush strokes
performed. Below, the mean squared error between the current plan versus
the initial plan is plotted.

B. Dynamic Planning and Adaptation

We painted with and without FRIDA’s dynamic replanning
system and plotted the deviation from the initial plan in Fig.
11. Without replanning, the difference between the current
and initial plan grows linearly as the plan is executed from
simulation to reality stroke by stroke. With replanning, the
plan changes more significantly from the initial plan as the
algorithm adapts to the stochastic execution of the plan,
resembling the creative process of human artists [1].

C. Fainting with High-Level Goals

1) Painting from Language Description with Specified
Style: We use the two loss functions from the StyleCLIP-
Draw [9] approach of generating visual content using a style
image and language description with our simulated painting
environment by concertedly optimizing the Style Objective
(Eq. 2 and the Image-Text Similarity Objective (Eq. 1).
Results can be seen in Fig. 10.

StyleCLIPDraw images tend to lack the original composi-
tional elements of the style image. To retain the style image’s
composition, we do an initial optimization to replicate the
style image. The initial brush stroke plan is now in a local
minimum which will be adapted with the full style and
text objectives. Fig. 10 shows that faces and colors appear
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Fig. 12. FRIDA’s paintings using the Simple Replication Objective (Eq.
3) versus the High-Level Semantic Replication Objective (Eq. 5).
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High-Level 50% 80% 100% 70% 80% 30%

Fig. 13. Results from two surveys assessing how well paintings replicated
the reference image and how well they retained the high-level content.
Percentages shown are preferences for Semantic Loss (Eq. 5) paintings.

where they were initially located in the content image thereby
providing a method of transferring compositional elements
of style.

2) Painting Images Conceptually: We compare painting
using the Simple and Semantic Replication Objectives in Fig.
12. We hypothesized that the Semantic Replication Objective
would better capture high-level content of the target image.
To test this quantitatively, we recruited 103 Amazon Mechan-
ical Turk participants to (1) “select the painting that looks
the most like the target image” and (2) “select the painting
that captures the high-level ideas of the reference image’s
scene better” and to explain how they made their decision.
We refer to these surveys as the replication and high-level
questions, respectively. Simulated paintings were used to
avoid noise generated by human error in palette preparation
of which six pairs were generated with 10 evaluators for
each question, painting pair. 73.3% and 68.3% of participants
selected Semantic Replication Objective paintings for the
replication and high-level questions, respectively. These two
averages were both significantly larger than 50% at a p-value
of 0.01 and were not statistically distinct. While the two
questions were different, we noticed that participants claimed
to use many of the same features to make their decisions for
each question which included colors, shapes, and particular
details such as grass and clouds. A breakdown of selections
for each painting pair is in Fig. 13.

3) Sketch to Painting: User generated sketches can be
used to guide the composition of the painting using the
Semantic Replication Objective as seen in Fig. 1.



VI. LIMITATIONS

Our system has been simplified in many ways: painting
with discrete color options, brush strokes assumed to be
independent, no modelling of the wetness of paint, not
modeling how much paint is on the brush, and the brush
being fixed perpendicular to the canvas. In future work we
hope to explore methods to reduce these limitations.

The second insight of art from [1] is that the painting
process is adaptable and dynamic enough that new styles
can emerge. While our system does adapt its goals as it
paints, our definition of dynamic in the system is far more
constrained than that of [1]. In future work we hope to have
a system that can explore more and create novelty as it plans.

VII. CONCLUSIONS

We introduce FRIDA, a robotics framework that compu-
tationally models the creative process of painting including
stochastic nature of acting with paint and a brush. FRIDA is
also a robotics initiative to promote human creativity, rather
than replacing it, by providing intuitive ways for humans to
express their ideas using natural language or sample images.
Whereas visual content generation in simulation and that
in physical robot painting have been separated in existing
work, FRIDA’s differential planning environment enables
seamless interweaving of various deep neural networks-based
content generation models and the actual painting planning.
FRIDA’s simulation environment developed from real data,
an idea known as real2sim2real, reduces the sim2real gap
and achieves higher-fidelity to the robot’s capabilities than
prior learning-enabled painting robots. FRIDA’s planning
environment enables use of pretrained models as feedback
functions, which we have shown can achieve high-level
content replication in a survey. FRIDA is open sourced to
advocate interdisciplinary research and education in robotics
and arts.
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Fig. 14. During the calibration phase, the robot makes random brush strokes
to create training data for the brush stroke shape model which learns the
relationship between the robot parameters and the appearance of a brush
stroke.
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APPENDIX

A. Robot Calibration

Minor shifts in the canvas location, different brushes, and
altered lighting conditions can greatly divide the simulation
from reality. To account for shifts in the canvas location, a
photograph of the canvas is taken, a user uses their mouse
to click the corners of the canvas, then the canvas can
be isolated from the camera’s field of view and oriented
properly. There will still be a difference in the coordinate
locations of where the robot intends to paint and where it
actually paints. To close this gap, the robot paints 16, small
dots evenly distributed across the canvas. The robot then
takes a picture of the canvas and computes a homography
to translate where the points were intended to be located to
where they were actually painted. This homography can be
used to ensure that the location that the robot paints on the
real canvas corresponds accurately with the simulated canvas.

To calibrate the camera’s color and lighting perception,
we use a color checker device with 24 colors standard in
the photo and video industry. A transformation function is
estimated between the perceived color checker values and
the true RGB values, and is used for further perception of
the canvas.

When a new brush is attached to the robot, the system
needs to determine how far the brush protrudes from the
end effector and what the brush is capable of producing
when painting. A human operator uses the robot’s keyboard
interface to lower the brush onto the canvas setting two
values: the lightest touch of the brush on the canvas and the
hardest brush on the canvas. Then, the robot makes a series
of random brush strokes on the canvas, sampling uniformly
from the three brush stroke parameters detailed in Section
II-A. Examples of such random brush strokes can be seen
in Fig. 14.

For brush stroke modeling, the starting and ending points
of a stroke have fixed height i values at 0.2, which corre-
sponds to a light touch of the brush. This is to keep the brush
shapes consistent, since when the brush first presses to the
page, it is impossible to predict which way the bristles will
fan out. Setting a small h ensures that the bristles will not
fan out drastically until the stroke moves along its trajectory
and it consistently drags behind this trajectory.

Stroke Shape Model Performance Versus Number of Training Examples
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Fig. 15. Increasing the number of brush strokes used for training/validation
of param2stroke from left-to-right versus the logarithm of the error of
the model.

B. Brush Stroke Shape Modelling

We investigated the number of random strokes needed to
accurately train the param2 st roke model which translates
the stroke shape parameters to the appearance of the stroke.
In Fig. 15, we plot the number of strokes in the training and
validation sets versus the logarithm of the mean absolute
error on the test set. The models were tested on a held out
set of 42 strokes. 20% of the stroke-parameter pairs were
used for validation to avoid over-fitting param2stroke,
and we used five-fold cross validation to compute the log
absolute error standard deviation to depict how much the
error can fluctuate depending on which random strokes were
used for training. The error generally decreases steadily with
more strokes used for training, however, the improvement
in performance is small after about 100 training/validation
strokes.

We modeled three parameters that affect the shape of the
stroke, however, there are many variables that we do not
account for because of how challenging it is to perceive
them. This noise is depicted in the error standard deviation
of Fig. 15 as well as some qualitative examples of real versus
modeled brush strokes in Fig. 7. Based on our observations,
the most significant unaccounted for variable is the amount
of paint on the brush. As seen in Fig. 14, some strokes are
lighter or darker depending on how much paint was used.
It is a technical challenge to estimate how much paint is on
the paint brush and what part of the brush it is on, and we
will investigate this in future work. Despite this noise, the
model is still capable of learning the most likely appearance
of the stroke. In some instances, as depicted in Fig. 7, the
model’s predicted brush stroke looks more likely than the
real brush stroke, since the real brush stroke ran out of paint.
The model is capable of learning the full, continuous range
of stroke shapes accurately, as seen in Fig. 6.

C. Faint Colors and Mixing

FRIDA does not currently support automatic paint mixing.
Instead, FRIDA relies on a human operator to mix a discrete



number of paints and provide them. The paint colors are
determined during the initial planning algorithm step (Algo-
rithm 1). The brush stroke colors can be clustered with the
K-Means algorithm, then displayed to a human operator in
a figure similar to that in Fig. 9.

Under certain circumstances, color discretization can sig-
nificantly alter the perceived content of the painting, e.g.,
a very colorful simulated painting is generated but when
discretizing to a small number of colors, the content is no
longer apparent. For this reason, we frequently discretize
throughout the optimization process to force the algorithm to
operate under the constraint of the limited number of paint
colors the user specified.

Painting with an unconstrained order of paint colors leads
to two problems: (1) switching colors frequently which
creates long execution times spent cleaning the paint brush
between colors and (2) touching wet, dark paint on the canvas
while painting with a light color and dragging it around to
other canvas regions. To solve both of these problems, we
order the brush strokes in the plan from light to dark. This
minimizes the amount of time spent cleaning the brush, and
eliminates the ability of the brush incidentally picking up
wet, dark paint and spreading it around where light paint
should be. Like discretization, ordering the brush strokes
by color also affects optimization, so we frequently sort the
strokes throughout the optimization process.



