
Dextrous Tactile In-Hand Manipulation Using a
Modular Reinforcement Learning Architecture

Johannes Pitz, Lennart Röstel, Leon Sievers and Berthold Bäuml

Fig. 1: The torque-controlled DLR-Hand II [1] performing in-hand manipulation. The cube is rotated to a goal orientation which can be reached by three
π/2 rotations (see Fig. 6 for all 24 goal orientations; here start in 3, end in 20). The task is performed purely tactile without external sensors (no cameras
– Agile Justin [2] is blindfolded). The lower row shows the estimated cube state from the trained deep differentiable particle filter.

Abstract— Dextrous in-hand manipulation with a multi-
fingered robotic hand is a challenging task, esp. when performed
with the hand oriented upside down, demanding permanent
force-closure, and when no external sensors are used. For the
task of reorienting an object to a given goal orientation (vs.
infinitely spinning it around an axis), the lack of external
sensors is an additional fundamental challenge as the state
of the object has to be estimated all the time, e.g., to detect
when the goal is reached. In this paper, we show that the
task of reorienting a cube to any of the 24 possible goal
orientations in a π/2-raster using the torque-controlled DLR-
Hand II is possible. The task is learned in simulation using a
modular deep reinforcement learning architecture: the actual
policy has only a small observation time window of 0.5 s but
gets the cube state as an explicit input which is estimated via
a deep differentiable particle filter trained on data generated
by running the policy. In simulation, we reach a success rate
of 92% while applying significant domain randomization. Via
zero-shot Sim2Real-transfer on the real robotic system, all 24
goal orientations can be reached with a high success rate.
(Web: dlr-alr.github.io/dlr-tactile-manipulation)

I. INTRODUCTION

Many important application domains, like industrial man-
ufacturing or housework, still has still to be done by humans.
One important reason for this is the need for dextrous fine
manipulation. In particular, the task of in-hand manipulation,
i.e., reorienting an object inside a hand, is often needed but
challenging due to the intricate multi-contact dynamics, the
coordination of the many degrees of freedom (DOF) of a
multi-fingered hand, and the estimation of the state of the
manipulated object. In this paper, we extend our previous
work [3] on learning purely tactile in-hand manipulation

The authors are with the DLR Institute of Robotics and Mechatronics,
Technical University of Munich, and Deggendorf Institute of Technology.
Contact: {johannes.pitz|berthold.baeuml}@dlr.de

with a torque-controlled hand from being able to rotate a
cube around a single axis, to reorienting the cube to any
of the 24 possible orientations in a π/2-raster (see Fig. 1).
We solve the task in a realistic setting by holding the hand
upside down, hence, demanding permanent force closure, and
without external sensors (like cameras) but using only the
fingers’ integrated position and torque sensors. The task is
learned from scratch using a modular deep reinforcement
learning architecture where learning the manipulation strat-
egy is separated from learning an estimator for the cube state.
Fig. 2 and Fig. 3 give an overview of the robotic and task
setup as well as the control architecture.

A. Related Work

In a seminal work, OpenAI [4] presented for the first
time dextrous in-hand manipulation of a cube on a hand
facing upward. In order to execute the goal-oriented policy,
the necessary cube state was estimated from images of
multiple cameras. Recently, Handa et al. [5] showed real-
world results on the same task with a simpler camera setup.
In contrast to this, in the setting we study here, permanent
force closure has to be kept because of the hand pointing
downward. Additionally, we use only the hand’s integrated
position and torque sensors without visual feedback, which
is more realistic but also creates a significantly harder state
estimation problem.

In our previous work [3], we used the same setting as pre-
sented here, but the task was to rotate the cube continuously
around the vertical axis. And Qi et al. [6] even showed to
do so with diverse objects. For the task we present here,
the object not only has to be rotated around an arbitrary
axis but also a state estimator for tracking the cube state
is required as a specific goal orientation has to be reached.
Purely in simulation, Khandate et al. [7] presented tactile

ar
X

iv
:2

30
3.

04
70

5v
1

 [
cs

.R
O

]
 8

 M
ar

 2
02

3

dlr-alr.github.io/dlr-tactile-manipulation

Fig. 2: Robot and task setting. Each finger of the four-fingered hand has
three active q1, q2, q3 and one passive joint q4. The cube should be rotated
from a start orientation to a goal orientation Rgoal. We define the (positive)
angle between the current orientation R and the goal orientation Rgoal as
θ = d(Rgoal, R). During training steps S1-S3 (cf. Table III) the ground
truth cube state is provided to the policy, whereas during testing a deep
particle filter is used to estimate the state.

in-hand manipulation where simple geometric shapes could
be continuously rotated around the x-, y-, and z-axes while
keeping force closure. Also only in simulation and with state
estimation from visual input, Chen et al. [8] have shown
goal-based reorientation of diverse objects with the hand
upside down in some experiments. For a more extensive
discussion of the large body of work on in-hand manipulation
in simulation, we refer to our previous paper [3].

B. Contributions

• We show that purely tactile (using only torque and
position sensors) in-hand manipulation for reorienting
a cube to any of the 24 goal orientations is possible.

• We devise a modular learning architecture, separately
training the policy for the actual finger control using
the cube state as part of the observations, and a dif-
ferentiable particle filter-based estimator [9] using only
torque and position sensor readings.

• We show how we iteratively refine policy and estimator,
modify the reward, and utilize domain randomization
and asymmetric observations to successfully combine
both modules.

• In simulation, a success rate of 92% is reached de-
spite significant domain randomization. With zero-shot
Sim2Real transfer, all goal orientations are reached on
the real DLR-Hand II.

II. MODULAR LEARNING ARCHITECTURE

A. Motivation

Although the trend in machine learning is to learn ev-
erything end-to-end in one giant neural network model,
sometimes it is still useful to modularize the architecture,
e.g., to gain insights into the system during execution and
especially during learning. To solve the in-hand manipulation
task described above the controller needs to keep track of
the object state during execution. Otherwise, it would not
be possible to distinguish different multiple π/2 orientations
of the cube. Now, it could be possible to train a recurrent
network controller to solve this task in simulation, but if
the policy does not work on the real robot it seems next to
impossible to analyze what is going wrong.

Fig. 3: Overall system architecture. The DLR-Hand II [1] provides joint-
level high-fidelity impedance control by using the integrated torque sensors,
acting as a configurable spring-damper system. By sending desired joint
angles as a unifying interface, free space motion as well as detailed control
of the forces in contact can be realized at a moderate update rate (10 Hz)
of the policy network. Via a lowpass filter, the dynamics of the system
are explicitly reduced to ease the Sim2Real transfer. The input of the
policy network is calculated from the desired goal orientation, the measured
joint angles as well the estimated cube pose and stacked over the last
0.5 seconds. The cube state (position and orientation) is estimated by a
learned differentiable particle filter using the measured and the commanded
finger angles, this way it is getting information about contacts.

B. Modules

The overall architecture is depicted in Fig. 3 and comprises
the following components (details are described later in the
respective sections).

1) State Estimator: When considering the necessary in-
formation for performing goal-oriented reorientation, the
state of the cube is an obvious choice for the abstraction layer
and has been used as such in in-hand manipulation [4, 8, 10].
But unlike these works, we want to estimate the object’s state
in a purely tactile manner. Thereto, we employ a variant
of differentiable particle filters [11, 12], a learning based-
method which we have proven to work in the context of
in-hand manipulation in Röstel et al. [9].

2) Network Controller: Relying on a separate module
to estimate the cube state allows using a simple multi-
layer perceptron (2 layers with 512 units) for the controller
network (i.e., without memory like an LSTM network).
Sievers et al. [3] showed that such a network can learn
complex in-hand manipulation tasks even with a short time
horizon of 0.5 s. The advantages are that the network is easier
to train and investigate in predefined configurations.

III. LEARNING THE CONTROLLER

The controller network is trained as the policy in the
reinforcement learning framework. We use the off-policy
algorithm Soft Actor-Critic (SAC) [13]. Our custom im-
plementation of the algorithm and the simulation using the
physics engine PyBullet [14] already proved to be suitable
for real-world robotics [3].

The overall control architecture is summarized in Fig. 3.
Note that in our prior work, we limited the range of the
fingers by working with smaller joint ranges. Now, for the
more intricate goal rotation task, we work with the full range
of motion. And we found that due to the increased range, we
had to modify the controller such that the policy π outputs

TABLE I: Observation

Name Q-function Policy

Joint angles qt
Desired angles q̄t−1

Control error q̄t−1 − qt
Goal orientation Rgoal

Cube state (xt, Rsym,t) (x̂t, R̂sym,t)

Delta rotation R−1
goalRt R−1

goalR̂t

Cube linear velocity vt = ẋt

Note: The complete input to the neural networks consists of a time stack
of length S = 5 of the respective quantities shown above. To exploit the
symmetries of the cube, its orientation R is reduced with the octahedral
group to Rsym. Rotations are passed in as quaternions.

angles relative to the current joint angles (instead of directly
outputting the pre-filter desired joint angles q̃).

q̃t+1 = clip(qt + π(ot)
τmax

Kp
, qmin, qmax) (1)

The full observation ot passed to the policy is shown in
Table I and explained in Section III-C. Kp is a constant of
the underlying impedance controller and τmax the maximally
allowed torque.

Moreover, we now use 120 workers running the simu-
lation to collect data instead of 12. Increasing the number
of workers helps to cope with a wider range of domain
randomization. To make use of the off-policy nature of SAC
we also increase the replay buffer size by a factor of 10 to 1.5
million steps. All details of the training including the learning
and simulation parameters can be found on accompanying
website.

A. Learning Environment

Although the task we want to solve is to reorient a cube
into any of 24 possible π/2 goal orientations (cf. Fig. 6),
during training we continue to sample new goal orientations
once the current one is reached. Learning with this task
should improve Sim2Real performance by preventing short-
sighted behavior and increasing robustness towards initial
conditions.

1) Initial state: The environment is reset by setting a
random orientation for the cube and placing it on top of
another fixed cube. Then the hand closes, the same way it
can be done on the real system and the fixed cube disappears.
After a few more simulation steps we use this state as the
first observation for the learning algorithm.

2) Termination: An episode ends in a failure if the cube
drops down (reaches -5 cm in x3 direction) or moves more
than 10 cm away from the origin. Successfully reaching the
goal is defined as holding the cube within |x| < 2.5 cm and
delta orientation angle θ < 0.4 rad (cf. Fig. 2) for 400 ms (4
update steps). Only these conditions generate a termination
signal for the learning algorithm. Additionally, we reset the
environment without sending a termination signal if a goal
is not reached after 10 s or if a total of 120 s has passed,
to ensure that the replay buffer always contains data from
different instances of the domain randomization.

B. Reward

During training (cf. Section III-E) we use two different
reward functions. Initially, we use the ”goal” reward function
rg introduced by Chen et al. [8].

rg =
λθ

θ + εθ
− clip(λpos‖x‖4, 0, λclip) +


λdrop, if drop
λsucc, if succ.
0, else.

The first term rewards small delta orientation angle θ, with
some εθ to avoid singularities. The second term penalizes de-
viations in the cube position. Reaching the goal or dropping
the cube is explicitly included. Different terms are weighted
by λ factors and we omit the time index t when it is clear
from the context.

Later we switch to a ”simpler” reward funtion rs based
on the relative change of the position ∆xt = ‖xt‖−‖xt−1‖
and delta orientation ∆θt = θt − θt−1.

rs = clip(−λ′θ∆θ,−∞, λ′clip)− λ′pos∆x. (2)

Note that we do not explicitly reward success or drop events.
Successfully reaching goals is desirable for the policy due
to the dense reward and dropping the cube is penalized by
the position component of the reward.

The main advantages of the simpler reward function are
better interpretability of the final episode reward (because the
physical quantities enter linearly), and clipping the maximal
reward per step forces the policy to prioritize generalizing
across the randomized domains versus optimizing for high
reward in specific environment configurations. In the future,
we want to avoid using the goal reward completely.

C. Observations

Thanks to the modular learning architecture we can train
the policy independently from the estimator. However, that
increases the importance of the modeled sensor noise. Of-
ten asymmetric observations are used to exploit privileged
information in the form of additional observations to the
Q-function (or Value-function) [3, 4, 10]. In this work, we
separate the policy and Q-function observations completely,
such that we can pass ground truth states to the Q-function
and (potentially extremely) noisy signals to the policy.
Additionally, only the Q-function receives the linear cube
velocities. See Table I for a complete overview.

D. Domain Randomization

For a successful Sim2Real transfer we apply domain
randomization during simulation. See Table II for the most
important parameters and the website for a complete list.

1) Sensor noise: Sensor noise is sampled at each step, all
other randomizations take place before a new episode starts.
We apply gaussian noise to the joint angles and the cube
state. But note, we add sensor noise only to the policy inputs
(cf. Section III-C) and we do not add additional noise if the
policy receives cube states predicted by the estimator (i.e.
S4, S5 in Table III and the benchmark).

TABLE II: Domain randomization

Parameter Distribution1 Notes2

Per Step

q [rad] N (0, 0.02)
x [m] N (0, 0.01) S4, S5, B: off
R [rad] N (0, 0.2) S4, S5, B: off

Per Episode

qoff [rad] U(−0.04, 0.04)
ηlat U(0.81, 0.99)

ηspin
[
Nm
N

]3 LogU(2× 10−4, 2× 10−2) B: fixed

2) Controller: We use sticky actions [15] to imitate com-
munication delays on the real system. We sample Kp, Kd,
parasitic stiffness, and joint angle offsets qoff as identified
in Sievers et al. [3].

3) Cube: We sample the cube’s mass, size, and initial
pose. We apply small random forces and torques to the cube.

4) Friction: It is crucial to randomize friction parameters
(lateral ηlat and spinning ηspin for finger links and cube). See
Section V-E for an explanation and the empirical impact of
the spinning friction on the policy’s performance.

E. Trainnig Procedure and Curriculum

The policy used in the experiment sections and the ac-
companying video was trained in a multi-step procedure,
see Table III for an overview and the policies’ performance
on the benchmark (Section V-A). Initially (S1, S2) the policy
receives the true cube states from the simulator, with added
noise, and later (S5) we pass in the cube states that the
estimator predicts at the time (cf. Section III-F).

During the first step (S1) we trained on the goal reward rg
and use a curriculum that slowly increases the gravity until
it reaches g (common for in-hand manipulation [3, 8]).

Every time we train a new policy we use all the weights
(and optimizer states) to initialize a fresh replay buffer and
continue learning in a slightly modified setup. In S2 we
change the reward function and increase the filter constant of
the first-order lowpass (to slow down the dynamics, which
is easier to simulate and safer to execute in the real world).
In S5 we switch the policy input to use the predicted cube
states.

The total training time was around two weeks on machines
with up to 80 cores. Details are on the project website.

F. Estimator In-the-Loop

Given a policy that works well in simulation and a fully
trained estimator (cf. Section IV), we perform one last train-
ing to fine-tune the policy to work with estimated states. We
run the estimator along the simulation and pass the estimated
cube states to the policy (without added noise), while the Q-
function still receives the true states. Additionally, we add
a term to the reward function to incentivize the policy to

1LogU refers to the loguniform distribution.
2Shows if we switch off or fix the randomization during some training

stages, cf. Table III. B refers to the benchmark (Section V-A).
3Given our parametrization, PyBullet computes the effective spinning

friction between the fingertips and the cube as ηspinηlat/0.9.

perform actions that lead to predictable state transitions. To
that end, in the ”estimator” reward re, we punish estimation
errors in position and orientation.

re = rs + clip(λ′′pos‖x̂− x‖2 + λφφ
2, 0, λ′′clip) (3)

with φ = d(R̂, R) (the angle between the estimated and true
orientation). We terminate episodes if ‖x̂− x‖ > 1.5 cm or
φ > 0.8 rad to ensure that there won’t be episodes in the
replay buffer where the estimator is, for example, π/2 off,
such that the manipulation works as expected but a lot of
negative reward is accumulated.

IV. LEARNING THE STATE ESTIMATOR

The hand-object system is fully described by considering
the state of the hand and the state of the cube. Because joint
positions and velocities are measured directly through pro-
prioceptive sensors, we are only concerned with estimating
the state of the cube

st = (xt, Rt, vt, wt)
T ∈ R3 × SO(3)× R3 × R3 (4)

with cartesian position xt, orientation Rt, lateral velocity vt
and rotational velocity wt.

Estimating the state of the system only from tactile feed-
back is especially challenging because no global information
about the manipulated object is available. We identify two
main sources of uncertainty:
• Uncertain dynamics, arising from the imprecisely mod-

eled, contact-based interactions between the hand and
the object (such as friction effects).

• Ambiguities of the object shape itself, that prevent
uniquely determining the pose of the object solely from
tactile information.

Bayesian filtering methods may be used to systematically
account for these uncertainties, however, the uncertain,
highly non-linear dynamics preclude the use of analytical
or simulated dynamic models. We employ D2P2F [9], a
differentiable particle filter [11, 12] variant that was shown
to be suitable for purely tactile state estimation.

Particle filters keep a set of particles {(w(i), s(i))}i=1,...,N

with weights and states. Differentiable particle filters learn
expressive functions that are applied to the particles, imple-
menting the prediction and update steps within the Bayesian
filtering framework. Specifically, D2P2F learns a generative
proposal distribution Fϕ(·|s(i)

t−1, zt, ut) and an update model
Gϕ(s

(i)
t−1, zt, ut), where zt = (qt, q̇t) is an observation

vector, consisting of the measured joint angles and joint
velocities, and ut is the control input, consisting of the
desired joint angles q̄t. The estimator is updated with a rate
of 100 Hz (cf. Fig. 3). We refer to Röstel et al. [9] for a more
detailed description of D2P2F.

A. Training

We take the predicted state ŝt as the composition of the
weighted mean of particle positions, the medoid of particle
rotations, and the weighted mean of lateral and rotational

TABLE III: Training seqeunce

Step Training rate b

S1 Train policy π′0 on reward rg with true cube state. 0.68
S2 Refine policy on reward rs, resulting in π0. 0.99
S3 Train an estimator f0 on data generated from π0. 0.74
S4 Iteratively refine an estimators fi on data from π0

and cube state from fi−1 in-the-loop.
0.76

S5 Refine policy on reward re to π1 with fi in-the-loop. 0.92

velocities. We optimize for the weights of Fϕ and Gϕ of the
D2P2F by minimizing the loss function

Lϕ =
1

T

T∑
t=1

∑
j

cjdj(ŝj,t, sj,t)
2, (5)

for a trajectory of T timesteps, where dj(·) is the distance
function associated with the j-th components of s; the euclid-
ian distance for cartesian dimensions and the angle between
two orientations respectively. The weighting coefficients cj
account for different scales of dimensions. We set cx = 1.0,
cR = 100.0 and cv = cw = 0.1. The filter is trained on
rollouts of the policy in simulation in a supervised manner.

The training is conducted in three stages: First, the pro-
posal model is trained for 1-step-ahead prediction (T = 1)
with a single particle until convergence. Then, the filter is
trained on sequences of T = 100 timesteps by backpropaga-
tion through time. For this, initial particles are sampled from
a Normal distribution N (s0, σ), where σ corresponds to the
standard deviation of the training data and s0 is the true
initial state plus a small bias term during training. Finally,
additional training data is generated in simulation where the
policy receives predictions from the current model as input.
The newly collected in-loop data is appended to the original
dataset and the model is trained for 2 epochs. After that, the
filter model used for data collection is updated. This process
is repeated iteratively until the fraction of in-loop to offline
data samples is 1/2, at which point we found that generating
more in-loop samples does not decrease prediction errors.

V. EXPERIMENTS

A. Benchmark Protocol

Since we have no external tracking system we cannot
compute rewards on the real robot. Instead, we check if the
combination of estimator and controller can reach all 24 π/2
orientations of the cube.

The cube is passed in by a human the same way we
initialize episodes in simulation. Then, a goal is selected
and the robot has to rotate the cube to match the goal
orientation. If the cube drops the episode is stopped and
deemed unsuccessful.

When we benchmark a policy in simulation we perform
8 runs for each combination of the 24 goals and 3 spinning
friction values (ηspin = 2× 10−4, 1× 10−3, 1× 10−2). We
fix the spinning friction because it strongly influences the
result. Moreover, we fix the cube size to its nominal size of
8 cm, again due to the high influence (whilst the real cube
can be measured accurately). Other domain randomization is
still active.

Fig. 4: Position prediction error d(x, x̂), and rotational prediction error
d(R, R̂) during iterative training of the estimator in-loop with the policy.

Fig. 5: Prediction (solid lines) and ground truth (dotted lines) of cube
position x for an exemplary manipulation sequence.

B. Evaluating the Policy

In Table III we detail the training steps and report inter-
mediate success rates on the benchmark. After the first step,
the policy is already able to reach all goals but not very
reliably. After fine-tuning on the ”simple” reward function,
the policy reaches almost 100% success rate, even if executed
with noisy (simulator) states. However, taking the estimator
in-the-loop reduces the performance drastically. Iteratively
refining the estimator improves the performance slightly.
Finally, fine-tuning the policy on the latest estimator iteration
shows a great improvement on the benchmark. We also show
the success rates for each goal individually in Fig. 6 along
with the results on the real robot. On the real system, we
performed 4 runs for each goal, hence, the results are only
qualitative.

C. Evaluating the Estimator

We evaluate the prediction accuracy of the state estimator
during in-the-loop rollouts with different parameters of do-
main randomization. As shown in Fig. 4, prediction errors
decrease over the iterative training procedure, although the
estimator was trained until convergence on the data generated
in the offline setting. This confirms the importance of training
the estimator on data that is generated in conjunction with
the policy. However, note that the improvement in prediction
accuracy only results in a minor performance improvement
on the benchmark task (compare S3, S4 in Table III).

During many manipulation episodes, the prediction error
in the x3-component accumulates over time as shown in
Fig. 5. This can be explained by the fact that the height
of the position can not be uniquely determined by holding
the cube on its four sides. Only when a finger reaches the
upper edge of the cube (compare Fig. 2) conclusions on the
x3 position can be drawn.

Fig. 6: Average success rates b for each of the goal orientations with visualizations of all 24 multiple π/2 orientations (the octahedral group). Note that
goal 3 is the initial orientation of the cube (i.e. does not require a rotation). See Section V-A for details regarding the testing protocol.

D. Real-World Experiments

We employ the policy π1, obtained from the iterative
training procedure, on the real system. We refer the reader
to the accompanying video or the project website to see
the robot successfully reaching each of the 24 π/2 goal
orientations (Fig. 1 shows one example). In Fig. 6, we
additionally plot the experimental success rate over 4 trials
for each goal orientation. Interestingly, the robot can reach
many of the 24 goal orientations very reliably, some of
which showed lower success rates in simulation (across the
whole domain randomization). This means that for these
movements the contact interactions are modeled well and
lie in an area where the controller works. On the other
hand, some goal orientations, such as goal 6 are much more
difficult for the real robot, while they are almost always
solved in simulation. This needs further analysis but we
assume that the controller exploits certain interactions in the
simulation that are not realistic/not modeled correctly.

E. Spinning Friction

The spinning friction is particularly important to random-
ize for Sim2Real performance because, e.g., slight differ-
ences in spinning friction can yield qualitatively different
behavior when the object is held by only two fingers (being
stuck or swinging down). Identifying the nominal values
is difficult because they heavily depend on the concrete
contacts. Therefore, we randomize the friction in a wide
range to ensure that the policy experiences these qualitative
different behaviors and can find a robust strategy.

In Fig. 7, we show that the wide range of values we
expose the policy to makes the problem significantly harder
in simulation. Although we collected the data for the plot
with the same sampling strategy as during the training, the
policy performs significantly better at the lower end of the
sampled friction values than at the upper end. This shows
that it is important to identify and simulate the system as
precisely as possible to avoid that the policy focuses on
unrealistic environment configurations if it cannot generalize
across the whole domain.

F. Discussion

A key advantage of the modular learning approach we
use is that the prediction of the estimator can be readily
inspected and interpreted: during the development of the
iterative training procedure, we were able to identify and
address weaknesses of the estimator, the policy, and the
interplay between the components.

Fig. 7: Mean success rate of the policy π1 evaluated on the 24 goals
benchmark with filter in-the-loop, plotted over a range of spinning friction
values ηspin.

During inference, we can inspect the predicted estimate
(see Fig. 1), which facilitates debugging the models in real-
world settings. Specifically, we found this to be crucial for
identifying discrepancies between the simulation and the real
system. We argue that the benchmark setting described in
Section V-A is particularly well suited for detecting modeling
errors: the dexterous manipulation task requires precisely
controlled movements of the fingers, and success depends
on the intricacies of the contact-induced dynamics between
the hand and the object (see Section V-E).

VI. CONCLUSIONS

We have shown that purely tactile in-hand manipulation
(with the hand upside down) for the task of reorienting a cube
to a goal orientation is feasible. In simulation, a success rate
of 92% (with significant domain randomization) is achieved,
and via zero-shot Sim2Real-transfer to the torque-controlled
DLR-Hand II, all 24 goal orientations could be reached with
a high success rate. For learning the task, we introduced a
modular deep reinforcement learning architecture with two
components: the policy for controlling the fingers which
explicitly gets the cube state as an observation, and a deep
differentiable particle filter for estimating this state from
actual and desired joint angles (indirectly using the torque
measurements). This modularity allows for efficient stepwise
training and detailed insight into the components (esp. via
having an interpretable hidden state in the filter instead of a
recurrent policy network).

In the future, we want to simplify the training procedure
by utilizing adaptive domain randomization and make the
policy even more robust by using the estimator uncertainty
as additional input. In addition, we want to integrate the
learning of the policy and the filter in an end-to-end scheme
to further increase performance.

REFERENCES
[1] J. Butterfass, M. Grebenstein, H. Liu, and G. Hirzinger, “Dlr-hand

ii: next generation of a dextrous robot hand,” in Proceedings 2001
ICRA. IEEE International Conference on Robotics and Automation
(Cat. No.01CH37164), vol. 1, 2001, pp. 109–114 vol.1.

[2] B. Bäuml et al., “Agile justin: An upgraded member of DLR’s
family of lightweight and torque controlled humanoids,” in Proc. IEEE
International Conference on Robotics and Automation, 2014.

[3] L. Sievers, J. Pitz, and B. Bäuml, “Learning purely tactile in-hand
manipulation with a torque-controlled hand,” in 2022 International
Conference on Robotics and Automation, ICRA 2022, Philadelphia,
PA, USA, May 23-27, 2022. IEEE, 2022, pp. 2745–2751. [Online].
Available: https://doi.org/10.1109/ICRA46639.2022.9812093

[4] OpenAI, “Learning dexterous in-hand manipulation,” CoRR, 2018.
[Online]. Available: http://arxiv.org/abs/1808.00177

[5] A. Handa et al., “Dextreme: Transfer of agile in-hand manipulation
from simulation to reality,” arXiv, 2022.

[6] H. Qi et al., “In-Hand Object Rotation via Rapid Motor Adaptation,”
in Conference on Robot Learning (CoRL), 2022.

[7] G. Khandate, M. Haas-Heger, and M. T. Ciocarlie, “On the
feasibility of learning finger-gaiting in-hand manipulation with
intrinsic sensing,” in 2022 International Conference on Robotics
and Automation, ICRA 2022, Philadelphia, PA, USA, May 23-
27, 2022. IEEE, 2022, pp. 2752–2758. [Online]. Available:
https://doi.org/10.1109/ICRA46639.2022.9812212

[8] T. Chen, J. Xu, and P. Agrawal, “A system for general in-hand object
re-orientation,” in Proc. of the Conference on Robotic Learning, 2021.

[9] L. Röstel, L. Sievers, J. Pitz, and B. Bäuml, “Learning a state estimator
for tactile in-hand manipulation,” in Proc. Int. Conf. Intelligent Robots
and Systems (submitted, https://bit.ly/395h7ha), 2022.

[10] O. OpenAI et al., “Solving rubik’s cube with a robot hand,” CoRR,
vol. abs/1910.07113, 2019. [Online]. Available: http://arxiv.org/abs/
1910.07113

[11] R. Jonschkowski, D. Rastogi, and O. Brock, “Differentiable particle
filters: End-to-end learning with algorithmic priors,” in Proceedings
of Robotics: Science and Systems, 2018.

[12] P. Karkus, D. Hsu, and W. S. Lee, “Particle filter networks with
application to visual localization,” in Conference on robot learning,
2018.

[13] T. Haarnoja et al., “Composable deep reinforcement learning for
robotic manipulation,” CoRR, vol. abs/1803.06773, 2018. [Online].
Available: http://arxiv.org/abs/1803.06773

[14] E. Coumans and Y. Bai, “Pybullet, a python module for physics sim-
ulation for games, robotics and machine learning,” http://pybullet.org,
2016–2021.

[15] M. C. Machado et al., “Revisiting the arcade learning environment:
Evaluation protocols and open problems for general agents,” J. Artif.
Intell. Res., vol. 61, pp. 523–562, 2018.

https://doi.org/10.1109/ICRA46639.2022.9812093
http://arxiv.org/abs/1808.00177
https://doi.org/10.1109/ICRA46639.2022.9812212
http://arxiv.org/abs/1910.07113
http://arxiv.org/abs/1910.07113
http://arxiv.org/abs/1803.06773
http://pybullet.org

	I Introduction
	I-A Related Work
	I-B Contributions

	II Modular Learning Architecture
	II-A Motivation
	II-B Modules
	II-B.1 State Estimator
	II-B.2 Network Controller

	III Learning the Controller
	III-A Learning Environment
	III-A.1 Initial state
	III-A.2 Termination

	III-B Reward
	III-C Observations
	III-D Domain Randomization
	III-D.1 Sensor noise
	III-D.2 Controller
	III-D.3 Cube
	III-D.4 Friction

	III-E Trainnig Procedure and Curriculum
	III-F Estimator In-the-Loop

	IV Learning the State Estimator
	IV-A Training

	V Experiments
	V-A Benchmark Protocol
	V-B Evaluating the Policy
	V-C Evaluating the Estimator
	V-D Real-World Experiments
	V-E Spinning Friction
	V-F Discussion

	VI Conclusions

