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Abstract— In this paper, we address the problem of esti-
mating the shape of a planar elastic rod (e.g., a thin flexible
strip of metal) using images of the rod. This is done by
treating configurations of the elastic rod as solutions of a
geometric optimal control problem. The necessary conditions
for optimality provide coordinates over which to perform
inference, and the sufficient conditions provide the gradient
of the shape of the rod with respect to these coordinates.
This optimal control formulation allows for configurations of
the rod to be represented as points in a finite-dimensional
space without having to discretize the shape of the rod. We
consider the estimation problem with and without fiducial
markers attached to the rod. Results from both simulations and
hardware experiments demonstrate the ability of our approach
to track the shape of a deforming elastic rod.

I. INTRODUCTION

Consider a thin, flexible elastic rod of fixed length that is
confined to deform in a plane. One end of the rod is held
fixed while the other is held by a robotic gripper that can
translate and rotate in the plane of the rod. When a camera
is positioned so that its line of sight is orthogonal to the
plane of the rod, we show how to estimate the shape of the
elastic rod as it is being deformed by the robot using images
captured by the camera. The magenta curve in Figure 1 was
obtained using our approximation method.

To demonstrate why this problem seems difficult, consider
an elastic rod that begins in the stable equilibrium configu-
ration shown in Figure 2(a) and is then deformed by moving
the robotic gripper downward. At a certain point during this
deformation, shown in Figure 2(b), the rod experiences an
instability. At this point, a pitchfork bifurcation occurs, and
two stable equilibrium shapes emerge, while the original
stable configuration becomes unstable. The three resulting
equilibrium shapes are shown in Figure 2(c)-(e). Knowing
only the trajectory of the robotic gripper does not provide
enough information to accurately track the rod’s configura-
tion. By using a sequence of camera images, our approach
is able to track the shape of the rod no matter which branch
of the bifurcation the rod follows.

The formulation of our method relies on a description of
elastic rods in equilibrium as local solutions to a geometric
optimal control problem [1], [2]. Pontryagin’s Maximum
Principle [3] provides necessary conditions for optimality,
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Fig. 1: An elastic rod held by a robotic gripper and an
approximation of the rod’s shape.

and the initial values of the costates that aries from these
necessary conditions provide coordinates that describe every
equilibrium configuration the rod can take. These coordinates
can be interpreted physically as the forces and the torque
acting on one end of the rod. Using these coordinates, it
can be shown that the set of all configurations is a smooth
three-dimensional manifold. This manifold is exactly the
space over which to search for configurations that match
the observed shape. A sufficient condition for optimality
provides the gradient of the configuration with respect to
these coordinates. Thus, by using this geometric optimal
control formulation, the state estimation problem can be cast
as a nonlinear optimization problem.

This optimal control formulation offers advantages over
previously proposed methods of tracking deformable objects.
Many previous approaches use finite-dimensional approxi-
mations of contours, such as cubic splines [4], so that they
may perform estimation in a finite-dimensional space rather
than the infinite-dimensional space of continuous curves. In
[5], the finite element method is used to track a deforming
surface, while the boundary element method is used in [6].
In [7], a discrete elastic rod model, developed in [8], is used
to estimate configurations of elastic rods. These approaches
rely on a discretization of the deformable object, and while
this discretization reduces the problem to a finite-dimensional
space, the dimension of the space depends on the resolution
of the discretization. Other approaches work with infinite-
dimensional curves directly, by representing contours as the
locus of zeros of a function, but performing estimation in
these spaces produces many challenges [9].

The optimal control formulation used in this paper pro-
duces a three-dimensional description of configurations of an
elastic rod. However, this finite-dimensional representation is
based upon a continuous description of the rod. Therefore,
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Fig. 2: An elastic rod passing through a bifurcation.

the dimension of the space in which we perform estimation
remains constant when the accuracy of the numerical method
used to solve for the shape of the rod increases. Thus we are
able to work with a continuous description of the rod while
using tools from finite-dimensional estimation. Also, the
estimate provided by our method gives physical information
about the forces and torques acting on the rod, which is not
provided by the curve fitting methods described above.

One application of our estimation and tracking procedure
is a vision-based feedback controller for manipulation of
elastic rods. The coordinates derived from the necessary
conditions for optimality can be used to plan a path of
the robotic gripper that takes the elastic rod from an initial
configuration to some goal configuration while remaining
in static equilibrium [1]. While executing this path, uncer-
tainties in the stiffness or length of the rod may lead to
instabilities. If an instability were to occur, our tracking and
estimation procedure could determine the new configuration
of the rod, and then a path from the current configuration to
the goal configuration could be planned. While the previously
proposed approaches to tracking can be used to estimate the
shape of the rod, they do not provide the coordinates needed
to perform manipulation planning.

A variety of industrial processes that involve robotic
handling of deformable objects could benefit from this work.
Examples include fixturing of sheet metal [10], cutting and
layup of composites [11], installation of a wire harness
[12], assembly of flexible circuit boards [13], and cable
routing [14]. Medical procedures and equipment that involve
manipulation of flexible objects include automated knot tying
and surgical suturing [15], [16], and manipulation of flexible
needles [17]. Other possible applications include elastic rod
based image segmentation [18] and reconstruction [19].

The remainder of this paper proceeds as follows: Section
II reviews the formulation of the planar elastic rod as an
optimal control problem. In Section III, we formulate the
state estimation problem and show how to approximate
configurations of an observed rod. Section IV presents state
estimation and tracking results from simulation experiments,
while Section V presents similar results from hardware
experiments. In Section VI, we close by discussing the
limitations of this approach to state estimation.

II. NECESSARY AND SUFFICIENT CONDITIONS
FOR STABILITY OF PLANAR ELASTIC RODS

In this section, we introduce a model for planar inextensi-
ble elastic rods in equilibrium based on a geometric optimal
control problem. We then review the necessary and sufficient
conditions derived in [2] for a configuration of the rod to be
in static equilibrium.

A configuration of a planar elastic rod of unit length is
described by the two functions q : [0, 1] → SE(2) and u :
[0, 1] → R. q(t) describes the position and orientation of
points along the rod in SE(2), and u(t) is the rate of change
of the rotation component of q(t), i.e., u(t) is the curvature
of the rod. Since the rod is inextensible, the relationship
between q(t) and u(t) can be expressed as

q̇ = q(X1 + uX3)

where

X1 =

0 0 1
0 0 0
0 0 0

 X2 =

0 0 0
0 0 1
0 0 0

 X3 =

0 −1 0
1 0 0
0 0 0


is a basis for se(2), the Lie algebra of SE(2). Let
{P1, P2, P3} be the corresponding dual basis of se(2)∗. We
assume that the base of the rod is held fixed at the origin, so
that q(0) = e, where e is the identity element in SE(2). The
other end of the rod is held by a robotic gripper at some
arbitrary q(1) ∈ SE(2). Denote the space of all possible
q(1) by B = SE(2).

A configuration of the rod is a stable equilibrium config-
uration if it is a local minimizer of elastic potential energy.
Assuming the rod behaves in a linear-elastic manner, the
elastic energy is proportional to the integral of the curvature
squared. Therefore, for a fixed b ∈ B, the rod will be in static
equilibrium if it is a local optimum of

minimize
q,u

1

2

∫ 1

0

u2 dt

subject to q̇ = q(X1 + uX3)

q(0) = e q(1) = b.

(1)

We now state the necessary conditions derived in [2] for a
configuration (q, u) to be a local optimum of (1).

Theorem 1: (Necessary Conditions) A configuration
(q, u) is a normal extremal of (1) if and only if there exists
µ : [0, 1]→ se∗(2) that satisfies

µ̇1 = µ2u µ̇2 = −µ1u µ̇3 = −µ2 (2)

q̇ = q(X1 + uX3) u = µ3 (3)

with q(0) = e and µ(0) =
∑3
i=1 aiPi for some a ∈ A,

where A = {a ∈ R3 : (a2, a3) 6= (0, 0)}.
Proof: See the proof of Theorem 5 in [2].

Theorem 6 in [2] states that the set of all (q, u) which
satisfy (2)-(3) for some a ∈ A is a smooth 3-manifold param-
eterized by a single global coordinate chart, and coordinates
for this global chart are a ∈ A. Thus if we want to estimate
the configuration of some observed rod, A is exactly the
space in which we should search. These coordinates have
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a physical interpretation, as described in [2]. The vector
a = (a1, a2, a3) can be viewed as the vector of reactions
at the fixed base of the rod, i.e., a1 and a2 are the forces
acting on the rod at t = 0 and a3 is the torque acting on
the rod at t = 0. The following theorem provides sufficient
conditions for (q, u) to be a local solution of (1).

Theorem 2: (Sufficient Conditions) Let (q, u) and µ be the
functions obtained by solving (2)-(3) for a particular choice
of a ∈ A. Define the matrices

F =

[
0 µ3 µ2

−µ3 0 −µ1

0 −1 0

]
G =

[
0 0 0
0 0 0
0 0 1

]
H =

[ 0 µ3 0
−µ3 0 1
0 0 0

]
Solve the (linear, time-varying) matrix differential equations

Ṁ = FM J̇ = GM + HJ (4)

with initial conditions M(0) = I and J(0) = 0. Then (q, u)
is a local optimum of equation (1) for q(1) = b if and only
if det(J(t)) 6= 0 for all t ∈ (0, 1].

Proof: See the proof of Theorem 7 in [2].
While the matrix J(t) can be used to determine the stability
of a configuration of the rod, it also contains information
about the relationship between small changes in a and small
changes in q. In particular, the jth column of the matrix J(t)

is the coordinate representation of ∂q(t)
∂aj

with respect to the
basis {X1, X2, X3}. As we will see in the next section, these
gradients of q with respect to a will be useful when trying
to determine the state of the rod from observations.

III. FORMULATION OF THE STATE ESTIMATION
PROBLEM

We saw in the previous section that any configuration of a
planar elastic rod corresponds to a point a ∈ A. We will now
formulate the problem of determining the value of a ∈ A that
corresponds to an observed configuration of an elastic rod.

Consider a planar elastic rod which has a known length of
L (not necessarily unit length). The base of the rod is fixed,
while the other end is held by a robotic gripper. Assume that
the robot is able to provide the position and orientation of
the end of the rod relative to the frame situated at the base of
the rod. Denote this position by (X̄, Ȳ ) and this orientation
by θ̄, and let x̄ = X̄/L and ȳ = Ȳ /L. Also assume that
we are observing the rod with a camera whose line of sight
is orthogonal to the plane in which the rod is deforming
and is placed at a fixed distance from this plane. Let B be
a linear transformation that takes points in the image plane
of the camera to points in the frame situated at the base of
the rod and then scales these points by L. After applying
this transformation to the rod observed by the camera, the
resulting rod will have unit length.

This rod is in some configuration (q, u) which, from the
previous section, we know corresponds to some a ∈ A. Thus
determining the configuration (q, u) of the rod (which is an
infinite-dimensional curve) is equivalent to determining the
finite-dimensional value of a, and we denote this dependence
by (q(t, a), u(t, a)). We will consider the problem of estimat-
ing the value of a in two cases of observations.

A. Estimation with fiducial markers

In the first case, we assume that fiducial markers are placed
at known locations along the rod. Assume that n markers are
located at distinct positions along the rod, given by 0 < L1 <
L2 < ... < Ln < L, and let lj = Lj/L. Let (X̃j , Ỹj) be the
location of the jth marker observed in the image plane, and
let (x̃j , ỹj) = B((X̃j , Ỹj)), i.e. (x̃j , ỹj) is the position of the
jth marker in the plane of the rod scaled by the length of the
rod. For any a ∈ A, let x(t, a) and y(t, a) be the position
coordinates and let θ(t, a) be the orientation of point t along
the configuration (q(t, a), u(t, a)). Define F (a) to be

F (a) =



x(l1, a)− x̃1
y(l1, a)− ỹ1

...
x(ln, a)− x̃n
y(ln, a)− ỹn
x(1, a)− x̄
y(1, a)− ȳ
θ(1, a)− θ̄


(5)

If the configuration corresponding to a matches the ob-
served configuration exactly, then we will have F (a) = 0.
We now have a system of 2n + 3 nonlinear equations. If
we let Ĵ(a) denote the Jacobian of F (a), we can use the
Newton-Raphson method to recursively approximate a by

∆a(i) =

(
Ĵ
(
a(i)
)T

Ĵ
(
a(i)
))−1

Ĵ
(
a(i)
)T

F
(
a(i)
)

(6)

a(i+1) = a(i) −∆a(i) (7)

All that remains is to find Ĵ(a). From the discussion after
Theorem 2, we see that the kth column of J(t) is[

∂x(t, a)

∂ak

∂y(t, a)

∂ak

∂θ(t, a)

∂ak

]T
(8)

Denoting the dependence of J(t) on a explicitly and denoting
the kth row of J(t, a) by Jk(t, a), we have

Ĵ(a) =



J1(l1, a)
J2(l1, a)

...
J1(ln, a)
J2(ln, a)
J1(1, a)
J2(1, a)
J3(1, a)


(9)

We can now use (6)-(7) to recursively approximate a.

B. Estimation without fiducial markers

In the previous case, we assumed that fiducial markers can
be placed along the rod at known lengths and observed by
the camera. In practice, however, this may not be possible.
Thus we will need to estimate a using a continuous image
of the rod.

We begin by assuming that the image of the rod obtained
from the camera can be segmented so that the rod is an
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Fig. 3: Probability of successfully estimating a ∈ A using
fiducial markers.

isolated object in the image. The observed rod will then
consist of a collection of points in the image plane of the
camera. Denote this collection by P and let p be the result
of applying the transformation B to the points in P . We
now pick a positive integer n, which will be the number of
points we will try to match along the observed rod. Define
lj = j/(n+ 1) for j = 1, 2, ..., n, and let

F (a) =



x(l1, a)− x̃1(a)
y(l1, a)− ỹ1(a)

...
x(ln, a)− x̃n(a)
y(ln, a)− ỹn(a)
x(1, a)− x̄
y(1, a)− ȳ
θ(1, a)− θ̄


(10)

where x̃j(a) and ỹj(a) are now defined as follows:

(x̃j , ỹj)(a) = arg min
(x̃,ỹ)∈p

∥∥∥∥(x(lj , a)
y(lj , a)

)
−
(
x̃
ỹ

)∥∥∥∥ (11)

The point (x̃j(a), ỹj(a)) is the closest point on the observed
rod to (x(lj , a), y(lj , a)). We are still using the position and
orientation of the end of the rod provided by the robot.

When using fiducial markers, the points (x̃j , ỹj) are
constant for j = 1, 2, ..., n, so the Jacobian of F (a) is
independent of (x̃j , ỹj), as seen in (9). Without fiducial
markers, the points (x̃j(a), ỹj(a)) depend on the current
guess of a according to (11). However, since p is a finite
collection of points, (x̃j(a), ỹj(a)) changes discretely as a
varies. If we assume that small changes in a do not cause
(x̃j(a), ỹj(a)) to change, then the Jacobian matrix of (10)
is independent of (x̃j(a), ỹj(a)). Therefore, the Jacobain
matrix of (10) is given by (9), and the Jacobian is the same
with or without fiducial markers.

IV. SIMULATION RESULTS

A. State estimation from a random initial guess

The method of approximating a described in the previous
section was implemented using data from simulated elastic
rods. 60,000 values of a were randomly selected from the set
Ā = {a ∈ A : |a1| ≤ 10, |a2| ≤ 10, |a3| ≤ 3}. These values
were used to generate simulated rods by integrating (2)-(3).
The values of x̃1, ..., x̃n, ỹ1, ..., ỹn, x̄, ȳ, and θ̄ from these
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Fig. 4: Probability of successfully estimating a ∈ A without
using fiducial markers.

rods were used as input data in the approximation algorithm.
Another 60,000 values of a were randomly selected from Ā
and used as initial guesses in the approximation algorithm.
Of the 60,000 pairs of goal a values and initial guesses,
30,000 were used for estimation with fiducial markers, and
30,000 were used for estimation without fiducial markers. In
each case, 10,000 were used with 4 markers along the rod,
10,000 with 6 markers, and 10,000 with 8 markers.

To improve the performance of the iteration procedure
given in (6)-(7), a backtracking line search method was used
to adjust the magnitude of the step ∆a(i) in (7) [20]. In this
backtracking line search procedure, the parameter α, which
governs the acceptable decrease in the error during each step,
was chosen to be 0.1, and the parameter β, which governs
the decrease in step size when the acceptable decrease in
the error is not met, was chosen to be 0.5. For each pair of
start and goal a values, we iterated (6)-(7) (along with the
backtracking procedure) until either 50 iterations of (6)-(7)
were performed, the norm of (5) (or (10) in the case without
fiducial markers) was less than 10−6, or the step size in the
backtracking line search was less than 10−10.

Figures 3 and 4 show the probability of success of these
simulations as a function of the distance between the goal
value of a and the initial guess of a with and without fiducial
markers, respectively. A simulation was deemed successful
if the Euclidean distance between the estimated a value and
the goal a value was less than some specified tolerance. For
48.01% of the 60,000 simulations performed, the Euclidean
distance between the estimated and goal a values was less
than 1. For the other 51.99%, the distance was greater than
10. Therefore, in Figures 3 and 4, the tolerance for success
was chosen to be 1.

The results exhibit a clear monotonic trend, with the
probability of success decreasing as the initial guess moves
further away from the goal value (the spike near 25 in Figure
4 is due to a small sample of points at this particular distance
between starting and goal a values). Both cases exhibited
nearly identical behavior, and there was no clear distinction
between having 4, 6, or 8 markers in either case. Thus, for
the elastic rods considered, having fiducial markers attached
to the rod did not provide any advantage in terms of the
probability of success, nor did having more than 4 markers
along the rod.

Having markers attached to the rod did, however, decrease
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Fig. 5: Bifurcation in A corresponding to Figure 2.

the computation time of the estimation procedure. The aver-
age computation times for successful simulations was 0.1545
sec and 0.3470 sec for simulations with and without markers,
respectively. When the simulation was not successful, the
average computation times were 2.2320 sec and 1.9972 sec
for simulations with and without markers, respectively. The
computations were performed using Matlab on a MacBook
Pro laptop with a 2.53 GHz Intel Core 2 Duo processor.

B. Tracking through a bifurcation

We next used our algorithm to track the bifurcation shown
in Figure 2. To do this, we assumed no fiducial markers were
attached to the rod and chose n = 4. The solid lines in Figure
5 represent the trajectories in A of the three deformations in
Figure 2, with blue lines corresponding to stable equilibrium
shapes and red lines corresponding to unstable shapes. The
labels in Figure 5 show the a values that correspond to each
configuration in Figure 2. At the bifurcation point (labeled
2(b)), the previously stable configuration becomes unstable
and two new stable configurations are created. The green
circles in Figure 5 represent the estimated values of a along
these three trajectories.

To obtain these estimates, the simulation was initialized
at the configuration in Figure 2(a) with the exact value of
a given as the initial guess. Then the observed rod was
updated to the next configuration (corresponding to moving
the gripper downward) and the estimate was allowed to
converge. The estimate of each configuration was used as
the initial guess for the next configuration. This was done
for the three branches shown in Figure 5. When passing
through the bifurcation point, the tracking algorithm had no
trouble estimating the correct branch of the bifurcation to
follow. If the only information used was the end position
and orientation of the rod, the tracking procedure followed
the unstable (red) branch no matter which branch the actual
rod followed. In a physical experiment, the rod would never
follow this unstable branch.

V. EXPERIMENTAL RESULTS

Hardware experiments were conducted using an industrial
Adept robot to deform an elastic rod. One end of the rod was
held by the robot, and the other end was fixed to a stationary
table. Markers were placed along the rod and tracked using

(a) (b) (c)

(d) (e) (f)

Fig. 6: Tracking the shape of a deformed elastic rod. Magenta
curves are produced using our state estimation procedure.

a camera. The intrinsic parameters of the camera were
calculated using OpenCV’s cvCalibrate2 function for a set of
70 images of a checkerboard pattern in different poses. Using
the location of the robot’s end effector in various positions,
the extrinsic camera parameters were calculated using the
function cvFindExtrinsicCameraParams2. The experimental
setup is shown in Figure 1.

A. Tracking through a continuous motion

We first tracked the rod through a continuous motion in A,
i.e., a path that contained no unstable configurations. Figure
6 shows six configurations sampled along the trajectory. The
magenta curve in each image is the approximation of the
shape obtained using our tracking procedure. The path in
A corresponding to the trajectory in Figure 6 is shown in
Figure 7 by the solid blue curve. The green circles in Figure
7 represent the estimated shapes. Both Figures 6 and 7 show
that we were able to accurately track the shape of the rod as
it was deformed by the robot.

B. Tracking through an instability

We next attempted to track the rod along a trajectory
that contained an unstable configuration. Figures 8(a) and
(b) show the rod in the instants shortly before and after
the instability occurred. We found that using the value of
a corresponding to the estimate in Figure 8(a) as the initial
guess for the rod shown in Figure 8(b) resulted in the
estimate converging to a local minimum of the error and not
to the correct value of a. Two such local minima are shown
in Figures 8(c) and (d). When this occurred, we provided a
new randomly selected initial guess from Ā and restarted the
estimation procedure. We repeated this process 800 times for
the instability shown in Figure 8, and an average of 3.6 new
initial guesses needed to be supplied before the procedure
converged to the correct value of a.

As can be seen in Figures 8(c) and (d), the local minima do
not pass through the fiducial markers on the rod. Therefore,
one can determine whether the algorithm has converged to
the correct value of a or a local minima of ‖F (a)‖ simply by
comparing the value of ‖F (a)‖ to some specified tolerance.
Thus, the process of determining when to randomly pick a
new guess of a can be done automatically.
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VI. CONCLUSIONS
We have presented a procedure for shape estimation and

tracking of an elastic rod being deformed by a robot based
on an optimal control formulation of the rod. The advantages
of our approach over other methods are: (1) we work with
a continuous description of the rod and do not rely on a
discretization, (2) even though we model the rod as a con-
tinuous curve, we are able to represent configurations of the
rod as points on a three-dimensional smooth manifold, and
(3) the dimension of the space in which we are performing
estimation does not grow as the accuracy of the numerical
method used to solve for the shape of the rod increases.
Results from simulation and hardware experiments show that
our estimation procedure is able to accurately estimate and
track the shape of a deforming elastic rod.

One particular area in which our procedure could be
improved is the process of picking initial guesses of a
after an instability. Selecting new guesses of a at random,
as was done in Section V(B), is not an efficient strategy,
since it was reported in Section IV(A) that unsuccessful
estimations require roughly 2 seconds of computational time.
One way to decrease the computation time would be to place
a force/torque sensor at the base of the rod. Since the value
of a can be interpreted as the vector of forces and torques
acting on the rod, the measurements from the sensor could
be used as an initial guess of a. A further extension would be
to use the force and torque measurements along with visual
tracking as an estimator for a.

Other areas for future work include extending this method
to three dimensional rods. An optimal control formulation for
three dimensional elastic rods is given in [1]. While fiducial
markers could be tracked using a motion capture system,
the problem of tracking from a single camera image seems
difficult due to the possibility of occlusions. Another possible
extension is estimation of material properties. Just as the
the gradient of the rod’s configuration (q, u) with respect to
a is given by J(t), one can also compute the gradient of
(q, u) with respect to the material parameters of the elastic
rod. Observations could then be used to estimate the rod’s
bending and torsional stiffnesses.
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