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Abstract—This research explores the efficient and safe landing
and recovery of a swarm of unmanned aerial vehicles (UAVs).
The presented work involves the use of an overarching (central-
ized) airspace optimization model, formulated analytically as a
network-based model with side constraints describing a time-
expanded network model of the terminal airspace in which the
UAVs navigate to one or more (possibly moving) landing zones.
This model generates optimal paths in a centralized manner such
that the UAVs are properly sequenced into the landing areas. The
network-based model is ‘“grown’ using agent-based simulation
with simple flocking rules. Relevant measures of performance
include, e.g., the total time necessary to land the swarm. Extensive
simulation studies and sensitivity analyses are conducted to
demonstrate the relative effectiveness of the proposed approaches.

I. INTRODUCTION

The rapid development and deployment of unmanned sys-
tems has led to their increased use in many mission areas
and has expanded the future concepts and research arenas of
relevance. In particular, the opportunities for low cost robotic
systems and increased distributed and networked capabilities
offer potential for operations involving large teams of such
agents.

Recently, unmanned aerial vehicles (UAVs) have been at
the forefront of extensive use in operational settings. In the
current operational environment, at least one human operator
is required to control a single UAV during flight. As this
technology evolves, there will eventually be tens of UAVs
controlled by a single human operator. The level of autonomy
must increase appropriately in order to reduce operator work-
load and still allow for mission effectiveness and completion.

The employment of such large UAV teams encompasses
a wide range of technological and operational challenges
relevant to multiple mission areas, one of which is the opti-
mized planning for transit and sequencing for landing of these
large teams of UAVs. Consider the ongoing development of
the Navy’s X-47B UAYV, which has recently demonstrated its
ability to successfully land autonomously in test environments
as a precursor to carrier deck landings [1]. However, the
algorithmic foundations for addressing this landing problem
for many aerial agents in an efficient and effective manner
remains a challenging one, largely due to the computational
intractabilities of such optimization problems.

Thus, the main contributions of this work include the con-
struction of a network-based mathematical program optimizing
the transit and landing problem that can provide optimal
solutions (or measures of the optimality gap). However, the
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computational challenges limit the size of the airspace, and
thus, the operational relevance, of the problems currently
solvable using state-of-the-art optimization solvers. Hence, this
paper also proposes a number of heuristic approaches which
extend the solution space to more realistic airspace scales, so
that the optimization model can provide meaningful transit
paths for actual operational scenarios. Further, an additional
contribution is the integration and comparison of these ap-
proaches with traditional agent-based methods, e.g., flocking
of swarms, where the presented optimization models provide
the optimal solutions as baselines for performance and the
agent-based models leverage computational simplicity.

The remainder of this paper further develops this work by
first reviewing the relevant literature in Section II. Section III
formulates the multi-UAV routing and landing problem as a
network-based optimization model, including definition of the
cost function as the total time taken to land all aerial agents
at their destinations. The computational complexity of this
problem motivates the approaches presented in Section IV
to permit tractability of solutions, followed by Section V,
which investigates several illustrative scenarios with numerical
investigations. The paper concludes with summary remarks
and avenues for future research in Section VI

II. RELATED WORKS

The presented work is closely aligned with problems of
airspace management and aircraft sequencing in the termi-
nal environment, such as may be seen in air traffic control
contexts. However, the significant differences are twofold.
Firstly, these airspace or runway management approaches
address the transit of aircraft (coarse spatial and temporal
scales) separately from the scheduling of landings (fine spatial
and temporal scales); however, optimized sequencing of the
many aircraft early in the transit phase can surely impact the
performance at the terminal phase, the integration of which is
addressed by this paper and captured by the objective function
of the total time to transit and land all aircraft. Secondly, many
of the previous works are descriptive, rather than prescriptive,
stochastic models that apply to single airport and runway op-
erations, whereas the presented approach provides a rigorous
formulation and proposed procedures for addressing multiple
landing sites with large numbers of aircraft.

Peterson et al. [2] looked at descriptive models for describ-
ing the nature of the air traffic around Dallas Fort Worth In-
ternational Airport. They use discrete time Markov and semi-
Markov chains (with discrete 15 minute intervals) to determine
the expected delays, and also include six different state spaces,
and an arrival process that is either time-varying Poisson or de-
terministic to capture heavy and light traffic periods. Bolender
and Slater [3] similarly used M/D/2 and M/M/2 queues
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to evaluate the performance of multiple runway operations,
concluding that most airports are not running at maximum
capacity and that the presented models are useful in predicting
arrival performance. Using graph-theoretic approaches, Saraf
and Slater [4] developed an Eulerian circuit-based model used
for real time optimization of arrival scheduling to determine
the best sequence of arriving aircraft. Alternatively, Boesel [5]
used an object-oriented Monte Carlo simulation model that
uses individual objects for the aircraft, where each aircraft
object must travel along pre-designated tracks to aid in the
computations.

More aligned with the presented work, Brooker [6] suggests
the scheduling of aircraft arrivals hundreds of miles away, even
prior to their take-off, thereby enabling the aircraft to arrive on
time, with no holding and only small flight modifications. This
work differs from the traditional priority queuing systems and
M/G/1 queues that are often used to predict performance in
airport arrival systems. This approach can be translated into
the landing of large groups of UAVs, adjusting their flight
paths appropriately to enter directly into final approach with
no holding or delay. More specifically, any delay is absorbed
during transit and set up to approach.

The use of network models is not new to the study of
this problem, where graph representations and specialized
algorithms can be applied to solve these types of problems.
Dell’Olmo [7] explores network models for the transit problem
and try to include what they refer to as “free flight capacity;”
however, they can only account for existing pre-defined air-
ways rather than allow use of the entire volume of the airspace.
The K -King model is presented by Artiouchine et al. [8], using
a chess board in which a king can move in any direction on the
board but only one space at a time. The king is then limited
by rules, e.g., a deconfliction constraint, in which it is not
able to get too close to a fellow king. The kings then need to
go from their current positions to a designated corner of the
chessboard, which can be thought of as a landing site and thus
relevant to the presented work.

Agent-based models (ABMs) have also been used for many
years and in many fields, including seminal work and ex-
tensions of Reynolds’ Boids [9]. For example, Conway [10]
developed an agent-based model to mimic the air traffic
control systems utilized by many major airports to observe the
behavior of the system. She concluded that this was a good
tool for analyzing the behaviors of air traffic in the terminal
environment. More recently, rigorous algorithms describing
flocking of agents have been prolific. Olfati-Saber [11] de-
scribes several algorithms that have been used for the flocking
of agents in both free and restricted space, where free space
reflects the absence of obstacles in the environment. Others,
such as Yu et al. [12], expand on the flocking and obstacle
avoidance behaviors with the use of “fuzzy logic” with good
results, having the agents form up faster with better speed and
distance control than previous algorithms.

The work presented in this paper leverages the advantages
of both network-based optimization methods and agent-based
methods described above, so as to improve the operational

realism and relevance of the proposed research.

III. NETWORK-BASED OPTIMIZATION MODEL
FORMULATION

The advantages of rigorous combinatorial optimization
models include quantifiable measures of the optimality of
solutions; such formulations also allow careful construction
of the objective function and articulation of associated con-
straints. This section presents the mixed integer mathematical
program that provides a representative optimization model of
the routing and landing problem.

An illustrative operational scenario is described as follows.
Consider a large team of unmanned aerial vehicles poised to
return to various landing sites in an efficient and sequenced
manner. Figure 1 graphically shows an example of a reference
scenario with the collective UAV swarm preparing for recovery
at three distant but relatively clustered landing zones. This
scenario and additional reference scenarios described later are
investigated in greater detail in Section V.

Fig. 1. Reference Scenario 1: UAV swarm (bottom left, red UAV icon)
transits to three separate landing sites (upper and center right, blue airport
markers)

We propose a network model with side constraints to
describe the transit and landing of UAVs to landing sites, illus-
trated schematically in Figure 2. For illustration, we consider
the problem in the 2D plane, where the continuous planar
airspace is discretized and represented as a lattice graph. Note,
however, that this model can easily be generalized to three
dimensions, e.g., altitude in addition to latitude and longitude,
which although increases the complexity of the problem, does
not alter the underlying combinatorial optimization formula-
tion.

Given the dynamic evolution of the transit and landing
problem, the underlying graph with set of nodes, /N, and
corresponding data (such as capacity or availability of edges)
may depend upon time. To address this temporal aspect, we
construct a time-expanded network model [13], in which the
graph is replicated for each discrete time step from 0 to a
specified time horizon length, 7', such that each node in the
resulting network represents a spatial tuple along with a time
index. For succinctness, the proposed network model with side
constraints detailed in this paper is referred to as the network
model or network-based model synonymously.
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Fig. 2. Schematic of the network model, identifying supply, demand, and
airspace nodes, and associated edges.

Consider each of the UAVs to initially start in nodes
designated as “source node” or “supply node” (in the standard
terminology for network models), such that at time step ¢ = 0,
these nodes supply the airspace with all UAVs in the swarm,
with edges in the time-expanded network existing only for this
initial time step. The initial locations of the UAVs within the
airspace is denoted Ny C N, where N represents discretized
grid locations in Euclidian space.

Deconfliction of the airspace is addressed by requiring that
a given node can contain at most a single UAV at any given
time step, which relies on a correspondingly appropriate spatial
decomposition of the airspace. The UAV is capable of reaching
any adjacent nodes in a single time step, and cannot remain
in the same node for consecutive time steps (such as for fixed
wing aircraft).

Movement along an edge from node ¢ € N to node j € N
at time step ¢, denoted arc; ;; , is assumed to incur unit cost
and expends one time step to complete, and in this manner,
each UAV in the swarm moves through the network toward
its assigned landing site a € A out of multiple possible sites.
These landing sites are additional nodes (replicated in time)
that are reachable from the airspace via time-expanded edges
in the network, which enable UAVs to land at a given landing
zone at any time step throughout the mission. Once a UAV
reaches a node corresponding to a landing site, it transits to a
terminal “sink node,” which represents the “demand” for the
entire network flow. Figure 2 graphically depicts this network-
based formulation.

Given the above definitions, the network-based optimization
can be formulated as the following mathematical program.
Decision variable X; ; ; represents flow of UAVs along arc; ; ¢
between nodes ¢ € N and 7 € N at time step t € T,
C; ; represents the cost of traveling from node 7 to node j,
by+ represents the flow balance constraint being zero for all
nodes, with the exception of source and sink nodes, req, is
the minimum number of UAVs required to land at airport a,
7% represents the inter-arrival separation required by airport a,
and v; ;; is the upper bound capacity of arc; ; ;.

min > CigXiga (1)

arcijt

SUY Xngi— Y Xint1=bas, NeENVEET  (2)
7 7

t/+7_a
Z Xosinkt <1, V&' €T, Ya€ A 3)
t=t’

ZXa,sink,t 2 T€qa, Ya € A (4)
t

0 < Xi ¢ < i, integer, YV arci ;¢ 5)

The objective function (Equation 1) expresses the total
cost of all UAVs traveling though the airspace. Recall that
for uniform unit cost along each edge in the network, this
objective represents the total time until all UAVs have landed
at their designated landing sites. Each constraint described in
Equation 2 is a flow balance equation, ensuring any supply
that enters a given node must exit the node with the exception
of the UAV and sink nodes. Constraints 3 limit the number of
UAVs that can land in a given landing zone a within 7% time
steps. Constraints 4 ensure that a minimum required number of
UAVs, reqq, land at a given landing zone, and Constraints 5
ensure that v; ;¢, is representing the inter-arrival separation
required by airport arepresenting the inter-arrival separation
required by airport a not exceeded.

Standard construction of the time-expanded network in-
cludes all locations in the planar airspace at all time steps,
which results in a large, memory-intensive model. Given the
constraint on computation, the above network model can be
solved using standard solvers, e.g., GAMS/CPLEX [14], but
only for limited airspace sizes. We quickly discover that there
is an urgent need to reduce the state space by removal of any
excess nodes and edges to make the problem more tractable.
Without steps for node reduction, current computation limits
prevent solving for airspaces in excess of 60 x 60 nodes'. This,
for our purposes, is operationally irrelevant as the airspace
it represents is insignificantly small. We choose to use the
number of nodes to assess computational complexity since
there is a direct relationship between number of nodes and
the number of decision variables in the model.

IV. METHODS FOR REDUCING COMPLEXITY

As mentioned, the “full” airspace model incorporates every
planar airspace location, replicated over all time steps, result-
ing in too large a model to solve meaningfully sized problems
given fixed computation resources. This section identifies a
number of heuristic approaches for the improved construction
of the network model itself, i.e., reduction in the number
of nodes, to extend the solution space to larger scales. The
optimization model formulated in the previous section can then
be solved for each reduced network in less time, or preferably,

' All computations were performed on a high-end workstation with 3.5 GHz
Intel i7 CPU, overclocked to 4.5 GHz, 32Gb of RAM, 640GB SSD, 3 TB of
virtual memory.
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the maximum size of the scenario (e.g., the airspace) that can
be solved is now larger and approaching operational relevance.

The first three heuristics use geometric considerations (both
spatially and temporally) to selectively cut nodes from the
network.

a) Time slice: Our first attempt to reduce the number
of nodes is to eliminate nodes based on when they could be
encountered by any UAV, i.e., the reachable set as a function
of time. Given maximum speeds of the UAYV, straightforward
geometric calculations can determine which nodes to include
for each time step. In other words, let Ny as this reduced set
of nodes using this heuristic, defined as

Ny = {n € N| dist(n,n’ € Ng) < T},

where dist(Z,j) represents Manhattan grid distance between
nodes ¢ and j and corresponds to the reachable nodes (since
we assume the UAV can transit to each adjacent node in a
single time step).

b) Convex hull: This approach uses the convex hull of
the landing site locations and the starting positions of the
UAVs to define valid nodes for the network. This was done by
by taking the convex hull in continuous space, and removing
all the nodes that did not lie within the hull. The assumption
is that the aircraft can navigate freely within the convex hull
boundary. The time slice approach is then applied to only
include reachable nodes in the network. Thus, we define the
set of nodes for this network as

Nevx = {n € N | necvx_hull(No, A) },

where cvx_hull denotes the subroutine which computes the
nodes within the convex hull of the set arguments. Recall
that determining a convex hull of n points has an acceptable
computational complexity of O(nlogn) [15].

¢) Multiple convex hull: Similar to the Convex hull
approach, this heuristic constructs a convex hull of the UAV
start locations with each airport individually first, then takes
the union of these sets to represent the airspace boundaries.
Further refinement by reachable nodes in time is performed.
Then we find that

chvx == U {Tl S Nts | ’flGCVX_hllH(]\TO7 a)}
acA

This approach effectively removes nodes unlikely to be tran-
sited that exist in-between the likely airways to the landing
sites.

The previous heuristic methods, though efficient, rely en-
tirely on geometric cuts of the airspace. Alternatively, we
can leverage agent-based algorithms and sampling techniques
to instantiate large numbers of particles and endow them
with simple rules, e.g., transit towards assigned airports and
avoid nodes already containing a particle. The swarm-inspired
approaches thus leverage Monte Carlo simulation techniques
to inform the construction of the network for the optimization
model. For the following heuristics, let K denote the number
of simulation runs of the randomized transits.

d) Agent-based masks: Large numbers of particles or
agents are randomly instantiated at possible UAV starting
locations and provided several rules, including random process
noise, to transit to assigned landing sites. Over the course of
K Monte Carlo simulation runs, we then track the visited
airspace that the agents occupied in each time step and created
a convex hull for occupied airspace by all agents. Then the
nodes contained within this network model is the set described

by T K
Nypm = U <cvx_hu11<U Nf)) ,

t=1 k=1

where N} represents the set of nodes occupied by the UAVs
at time step ¢ in the k™ simulation run. This procedure gives
us natural time slicing throughout the network, while still
providing enough space for the UAVs to move about without
significant deconfliction issues.

e) Organic masks: Analogous to the Multiple convex
hulls heuristic, this approach separately tracks the set of
particles assigned to each landing site over K Monte Carlo
simulation trials, constructs their respective convex hulls, and
then composes the resulting sets. In this case, we have the
reduced set of nodes defined as

T K
Norg = U (U (cvx_hull(U Nfﬁt> )) ,
acA \t=1 k=1
where now NPF, is the subset of nodes at time step ¢ in
simulation run k occupied by UAVs assigned to airport a.
As with the previous agent-based mask, this approach further
captures the probabilistic locations of UAVs as they transit
(subject to random perturbations and deconfliction tie-breaks)
to their assigned landing sites.

For a fixed airspace size (e.g., 60 x 60) for which the full
airspace (i.e., no reduction in nodes) is still (barely) solvable,
Figure 3(a)-(f) illustrate the general shapes of the resulting
networks for the Full, Time slice, Convex hull, Multiple
convex hull, Agent-based masks, and Organic masks heuristics
in the context of the reference scenario (see Figure 1), with
their respective number of nodes tabulated below.

|N| |le| ‘chx‘ |chvx| |Nabm| |N0rg‘
356,430 || 97,230 | 42,366 | 23,628 | 40,437 | 19,123

As seen, the significant reduction in size can then be
leveraged to solve the optimization model for larger problems.
Presentation of results is deferred to Section V.

V. SIMULATION STUDIES

In this section, we present additional reference scenarios as
part of the experimental design to highlight the computational
trade offs of the proposed network node cutting heuristics. The
solution to the network-based model using the full airspace is
taken to be the true optimal solution, since it contains all of the
nodes and edges that can possibly be included. We compare
all algorithms against this benchmark optimal solution.?

2MATLAB source for the presented simulation and algorithms is available
at http://faculty.nps.edu/thchung.
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The five reference scenarios are described below and, in
addition to Figure 1, are illustrated in Figure 4(a)-(d). For each
scenario, other than landing site configurations, other relevant
parameters are held constant: number of UAVs is 25, airspace
size is 60 x 60, and the landing interval at all airports is one
time step.

1y

2)

3)

4)

Scenario 1 - Close Landing Zones: This is what we
have explored thus far in the previous sections as the
baseline scenario. In this instance we have a small group
of three landing zones in relatively close proximity (i.e.,
they reside in the same quadrant).

Scenario 2 - Dispersed Landing Zones: Scenario 2 has
three landing zones similar to Scenario One; however,
the landing zones are now placed in the three corners
opposite the UAVs’ starting positions.

Scenario 3 - Overflight of Landing Zone: This sce-
nario now has four landing zones, but one of the landing
zones is directly in the path of another. In other words,
two UAV groups for these coinciding paths now must
transit and deconflict in the same restricted airspace for
the two different airports. This feature is to observe the
impact of a more challenging deconfliction setting on
the different algorithms, and see if there is an effect on
the ability to find an optimal solution.

Scenario 4 - Airports in Each Corner: This scenario
has four landing zones, such that the UAVs are initially
located towards the center of the airspace and the landing
zones are located at each distant corner of the airspace.
This experiment allows all of the airports to be equidis-
tant from the stating position of the UAVs and from each

(a) Scenario 2 (b) Scenario 3

(c) Scenario 4 (d) Scenario 5

Fig. 4. Graphical Depiction of Reference Scenarios. Simulation results vary
these scenarios, i.e., different landing site configurations and numbers, while
holding other scenario parameters fixed, i.e., number of UAVs is 25, airspace
size of 60 X 60, and a landing interval of one time step.

other, which maximizes their spatial dispersion and may
lead to an improvement in performance due to earlier
segregation of the UAVs.

5) Scenario 5 - Five Airports at Multiple Distances:
This scenario introduces five landing zones that are
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Comparison of Algorithm Approaches
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Fig. 5. Graph of the mission performance (objective function) to minimize
total time in system, i.e., total time until all UAVs are landed.

at different distances. This more challenging setting
explores the node selection capability of the algorithms
with many landing zones at a variety of distances. The
scenario also tests the network-based model’s ability to
assign UAVs to five landing zones. As such, this scenario
provides the most difficulty from both the set-up and the
computational solution perspectives.

Across these different scenarios, we perform extensive nu-
merical studies and assess the performance for the various
network construction approaches using various metrics, in-
cluding the mission objective of minimal time in system, but
also computational measures of the number of nodes, amount
of memory required for computations, and the runtime of the
optimization. In particular, we can see in Figure 5 that, as
expected, the objective function is minimal for all scenarios
when using the Full network compared to other reduced node
sets. Notably, the mission performance of the sampling-based
approaches (that is, the agent-based and organic heuristics)
are comparable in most of the scenarios (with the exception
of Scenario 5), which highlights their value, depending on
the acceptability of slightly less than optimal solutions. The
geometric approaches, such as the convex hull and multiple
convex hull heuristics, do not yield as good solutions. For
example, in the case of the multiple convex hull algorithm,
the resulting measure for the total time in system can be
approximately 30% greater than the Full solution, which in
cases of urgency may be unacceptable.

In addition to mission performance, however, of interest
in this paper is the computational tractability of these oth-
erwise large swarm transit and landing problems, and so the
computational metrics are further investigated and illustrated
in Figures 6-9. Though the Full network ensures that the
generated solution minimizes the total time in system, the
problem becomes too large for efficient computation as the
airspace and the number of UAVs increases. The multiple
convex hull and organic algorithms have the most node cutting
power (see Figure 6), and are able to reduce the computation
enough to make larger problems more tractable. Even with
the convex hull heuristic, for example, solutions can be found
for significantly larger problems (previously untenable for the

Comparison of Algorithm Approaches
Nodes
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M Agent-based
3] | IMOrganic

I
Iﬂfll Hp | I | \Iu Iﬂw . IH l
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s
4510

Number of Nodes

Fig. 6. This graph shows the significant node reduction capability of the
algorithms with respect to the Full airspace model, with the organic and multi-
convex hull algorithms reducing the number of nodes most significantly.
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300

[ne]
=]
[=]

Time Step

=
=]
=]

300

200

300
200
100

Y Coordinate 0 0
X Coordinate

Fig. 7. Tllustration of transit trajectory evolutions for Scenario 1 for
significantly larger problem scope involving an airspace size of 300 x 300
and 49 UAVs using the convex hull heuristic for reducing the number of
nodes in the network. Each line represents an individual UAV’s path through
the airspace; once the UAV reaches the airport it is shown traveling to an
arbitrary point (representing the abstract sink node).

Full network), such as illustrated in Figure 7, with an airspace
size of 300x300 (versus 60 x 60) and 49 UAVs (instead of
25 UAVs).

In terms of memory resources, however, the least expensive
approach can be seen in Figure 8 to consistently and decidedly
be the multi convex hull method. In cases of limited computa-
tional capabilities, often exhibited in field deployed systems,
this approach may be the most favorable for generating good
solutions, in contrast to its more costly alternatives.

Another metric that can be used to help select which
approach should be used is the computational runtime (mea-
sured in seconds), which may be relevant for time-sensitive
generation of feasible (if not optimal) solutions. As shown in
Figure 9, the presented heuristics offer significant savings in
runtime, generally offering solutions for nearly all scenarios
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Fig. 9. The execution time, as measured in seconds, highlights the variable
amounts of time to find a solution for the different algorithms in GAMS.
Once again, we find the multi-convex hull and organic mask algorithms to
(nearly identically) find the solutions fastest across all scenarios

in less than three minutes. Once again, the simulation-based
heuristics outperform their geometric counterparts in reducing
runtimes, and demonstrate their usefulness across different
landing site configurations.

However, an interesting result of the sampling-based ap-
proaches can be witnessed in certain configurations and sce-
narios. Consider the organic mask heuristic, which yields
transit and landing trajectories illustrated in Figure 10 and
a resulting objective value that is relatively near the Full
network’s benchmark values. However, in many of the simu-
lation studies, the organic mask approach violates the mission
constraint of the minimum number of UAVs at a given airport
(c.f. Constraint 4). In other words, a feasible solution arises
in which fewer UAVs land at a given landing zone than is
required. For example, in reference Scenario 1 with three
airports, the constraint of eight UAVs per landing site is
specified in the network optimization model. Nevertheless, as
seen in the landing sequence diagram shown in Figure 11,
one airport receives only seven UAVs (with ten and eight
at the other two). This requirement constraint is consistently
broken in a number of test scenarios explored. This violation
appears to occur because the nodes remaining after applying

60X60 Airspace
UAYV Optimal Path for 25 UAVs and 3 Airports

Time Step

Y Coordinate

X Coordinate

Fig. 10. Optimal path of UAVs in 60 X 60 airspace using the Organic
mask heuristic. The UAVs start to spread out early in the airspace at they
position for landing. Each line represents an individual UAV’s path through
the airspace; once the UAV reaches the airport it is shown traveling to an
arbitrary point (representing the abstract sink node).
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Fig. 11. Depiction of landing sequence of UAVs at three landing sites using
the Organic mask approach. Notice how Airport 2 has only seven UAVs land
there, where the other two landing zones have ten and eight, although each
landing zone is supposed to have at least eight per. This is an example of the
organic mask algorithm relaxing the “required” constraint.

the organic mask heuristic do not offer enough “maneuver
room” for the UAVs; the closest landing zone takes more
UAVs than the other landing zones to alleviate this space
restriction.

Thus, the ever-present tradespace of computation versus
optimality is highlighted in these studies. Ultimately, the
decision maker employing these swarms of UAVs must assess
and appropriately select which approach is best suited, given
the priorities or constraints on the mission. Based on the
exploration provided in this paper, the multiple convex hull
approach offers one of many promising avenues for further
investigation into larger airspace examples and comparison
with additional simulation models. The multiple convex hull
approach consistently yields nearly optimal solutions, meets
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all mission constraints, and offers a relatively computationally
cheap approach across diverse mission scenarios.

VI. CONCLUSIONS AND FUTURE WORK

The melding of both simulation and optimization can pro-
duce results that are both tractable and more consistently
closer to optimal than simulation alone. Techniques such as
agent-based simulation can be used in traditional optimization
models to gain insight into systems and to give the modeler
a localized area for finding the solution. In this article, we
use agent based models to make otherwise computationally
intractable problems tractable, while still maintaining a near
optimal solution.

Similarly, formulation as an optimization problem gives the
simulation modeler analytic bounds on the behavior that is
desired, and a benchmark for the measure of performance for
a simulation. This benchmark is important for transitioning
or extrapolating insights attained from simulation to real and
operational systems

Some of the techniques developed can be used, not only for
the paths of individual UAVs, but for providing a basis for the
use of heuristic and exact optimization solution methodologies
together. In this example of UAV swarms, a network-based
model can be formulated and used for routing and landing of
large UAV teams, and heuristic models can used for the micro-
level control of collision avoidance and flocking, thereby
providing a more defined balance between distributed and
centralized control.

This work further provides important insight into the level of
command and control that is required in swarming systems. In
general, limitations of agent-based models include suboptimal
collective performance, since the agents are not provided with
a common “big picture” understanding on how to achieve their
goal; they act purely on local and immediate information. The
use of agents in the network-based model produced results
that were suboptimal but near the benchmark optimal solution.
As such, network optimization models should be used for
higher level optimization tasks, for example, landing zone
assignment, general transit routing, and large scale airspace
deconfliction, relegating the low level control for collision
avoidance and flocking to the individual UAV. The most effi-
cient use of resources, both computationally and temporally,
may be to have a combination of centralized and distributed
optimization and control approaches.

Insights from this study identify a number of avenues
for future work. The time-expanded formulation straight for-
wardly enables investigation of moving landing sites, given
their prediction motion models. This extension provides rel-
evance to applications of target-tracking, surveillance, and
task assignment leveraging the network-based optimization
model formulation. The relationship between the centralized
network optimization problem and the decentralized stability
and robustness of flocking algorithms [16], graph-theoretic
coordination algorithms [17], and other distributed multi-agent
algorithms remains an active open area of research. Further,
as realistic dynamics of the aerial platforms was not addressed

in this work, current research efforts leveraging physics-
based modeling (e.g., constant curvature turns) and virtual
environments (e.g., flight simulations including environment
disturbances) are ongoing. These continuing efforts are pre-
cursors to upcoming live-fly field experiments with a fleet of
unmanned aerial vehicles at Camp Roberts, Calif. utilizing
both agent-based and network optimized algorithms in real
operational settings.
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