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Abstract

Images obtained with catadioptric sensors contain sig-
nificant deformations which prevent the direct use of classi-
cal image treatments. Thus, Markov Random Fields (MRF)
whose usefulness is now obvious for projective image pro-
cessing, can not be used directly on catadioptric images be-
cause of the inadequacy of the neighborhood. In this paper,
we propose to define a new neighborhood for MRF by using
the equivalence theorem developed for central catadioptric
sensors. We show the importance of this adaptation for a
motion detection application.

1. Introduction

The interesting properties of omnidirectional vision has
led to the development of different acquisition systems such
a camera networks, rotating cameras or catadioptric sen-
sors [3]. Catadioptric vision consists in associating a con-
vex mirror with a projective camera whose the optical axis
is aligned with the axis of the mirror (Fig. 1). The main
advantage of these sensors is the acquisition of an omnidi-
rectional image with a single shot. However, catadioptric
image contains significant deformations due to the geome-
try of the mirror and to the sampling of the camera [5](Fig.
1). These deformations have important consequences for
the image processing and the direct application of classical
operators can not provide satisfactory results.

Thus, although, since the eighties, MRF have permitted
to solve many problems in image processing such as image
segmentation, image restauration, motion detection and so
on, they become unsuitable if they are applied in the same
way for catadioptric images. Indeed, MRF use a local de-
pendence between pixels from a predefined neighborhood
which has to be reconsidered because of the deformations
of the catadioptric image.

Figure 1. Omnidirectional sensor and omnidi-
rectional image.

The aim of this paper is then to propose an adaptation
of the MRF for the catadioptric images from the definition
of a new neighborhood system which takes into account the
deformations. We define this neighborhood from the equiv-
alence between the catadioptric image formation and the
projection of the 3D points on the image plane via a uni-
tary sphere [7].

2. Markov Random Fields in Image Processing

Spatial MRF have been introduced by Besag [4] and pop-
ularized in image processing by Geman and Geman [6].
These models are defined from a graphG = (S,U) where
S = {s1, s2, · · · , sN} is the set of vertices (named set of
sites in the case of MRF) andU the set of edges. In this
graphG, two sitessi andsj are neighbors if there exists an
edgeuij ∈ U between them. Thus, the set of neighbors of
a sites is notedVs.
FromV = {Vs|s ∈ S}, we define the setC whose elements



c (Fig 2), named cliques, are the parts ofS which verify






∃s ∈ S such asc = {s}
or

∀{s, t} ⊂ c, t ∈ Vs

Consider a random fieldX = {X1, · · · , XN} of realization
ω = {ω1, · · · , ωN}

Definition 1 X is a MRF according toV if :

(i) ∀ω P (X = ω) > 0

(ii) ∀(s, ω)
P (Xs = ωs|Xr = ωr, r 6= s) =
P (Xs = ωs|Xr = ωr, r ∈ Vs)

(1)

A Markov field is a random field where each site is only
influenced by its neighboring sites. Using the characteri-
zation (1) does not permit to obtain a simple expression of
joint distributionP (X = ω). However, this distribution can
be easily obtained from the Hammersley-Clifford theorem
[4] which establishes the equivalence between the Markov
fields and the Gibbs fields.

Problems such as image restauration, classification and
segmentation can be schematized as follows: from observa-
tionsY (known information) in the image or in the sequence
(grey level, color, edges, displacements,. . .), we want to
find the set of labelsX (hidden information) which could
originate these observations. The solution of these prob-
lems requires to clarify the relation between the labels and
the sites. However, these models are not sufficient to solve
these inverse problems. Indeed, because of the loss of in-
formation during the image formation and because of the
noise in the observations, these inverse problems are gener-
ally ill-posed according to Hadamard. We have to make an
additional hypothesis on the researched set of labels. Thisis
why we add a constraint nameda priori knowledge which
forces the set of labels to be Markovian.

The bayesian estimation permits to modelize jointly the
labels and the observations thanks to the coupled random
field (X, Y ) with the probability distributionPXY . For ex-
ample, if we consider the bayesian estimator Maximuma
Posteriori (MAP), the researched markovian field of labels
x is solution of

arg min
x∈Ω

U(x, y) = arg min
x∈Ω

(U1(x, y) + U2(x)) (2)

whereU1 is the term linked to the data which expresses the
relation between observationsy and labelsx and whereU2

describes the markoviana priori of the label field and is
decomposed into a sum of local potentials which depends
on the neighboring system:

U2(x) =
∑

<s,s′>∈C

V2(s, s
′). (3)

(a) (b)

(c) (d)

Figure 2. Neighboring system and associated
cliques. Neighborhood (a) and cliques (c) of
first order, Neighborhood (b) and cliques (d)
of second order.

In the case of classical images, the neighboring systems
are defined by the closest pixels (Fig 2). However, this
kind of neighborhood is not suited to catadioptric images
because of the deformations generated by the mirror. In-
deed, a pixel at a distanced of pixel p does not have the
same influence on the latter ifp is placed either in the cen-
ter of the image or in the periphery (Fig 3).

Figure 3. d(P1, P2) = d(P3, P4) when P1 does
not have physically the same influence on P2
than P3 on P4.



3. Central Catadioptric MRF

3.1 Catadioptric Image Formation and
Equivalence Theorem

Baker and Nayar classified catadioptric sensors into two
categories according to the number of viewpoint [1]. Thus,
sensors with a single viewpoint, named central catadiop-
tric sensors, permit a geometrically correct reconstruction
of the perspective image from the original catadioptric im-
age. This category is made of parabolic mirror associated
to orthographic camera and hyperbolic, elliptic and plane
mirrors with perspective camera. The second category with
several viewpoints has geometric properties very less sig-
nificant and is made of the other possibilities of association
between mirrors and cameras. In this paper, we are only
interested in central sensors for which Geyer and Daniilidis
have demonstrated the equivalence with a two-step projec-
tion via a unitary sphere centered on the focus of the mirror
(the single viewpoint) [7]. This two-step projection consists
first in projecting a 3D point to the sphere from the center
of the sphere. The next step consists in projecting the point
on the sphere to the image plane from a point placed on the
optical axis (Fig 4). The positions of this point of projection
and of the image plane are determined with the calibration
of the sensor.

Figure 4. Equivalence between the catadiop-
tric projection and the two-step mapping via
the sphere.

This equivalence is very interesting since it allows to
perform image processing in a new space in which the de-
formations are taken into account. Many authors used this
space in order to compute the derivative of catadioptric im-
age [5], the pose of the sensor [9] or to detect catadiop-
tric lines [2]. We also propose to use this space in order to
determine the most appropriate neighboring system for the
central catadioptric MRF.

(a) (b)

Figure 5. (a) Neighborhood at the periphery
of the image, (b) Neighborhood in the center
of the image.

3.2 Central Catadioptric Neighboring
System

Let P the projection for which any pointPi in the cata-
dioptric image associates its equivalent pointPs in spherical
coordinates on the unitary sphereS2 (Fig 4),

P :
S → S2

s 7→ (1, θs, φs)
(4)

Then, we define the new neighborhood as follows:

∀s ∈ S, P(s) = (1, θs, φs)

Vs =







t ∈ S, t 6= s P(t) = (1, θt, φt) such as
|θt − θs| ≤

1
N

and
(|φt − φs| ≤

1
M

or |φt − φs| ≥ 2π − 1
M

)







,

(5)

4. Experimentation

In this part, we present results obtained from a marko-
vian modelling adapted to catadioptric images in the case
of motion detection.
Consider two consecutive imagesI(t) andI(t + 1) from
a sequence acquired from a fixed catadioptric sensor. The
problem consists in detecting the moving parts in the image
between the instantst and t + 1. For this, we poseE =
{es, s ∈ S} the label field wherees have values in{0, 1}
(0=motionless site,1 = mobile site) andO = {os, s ∈ S} is
the observation field. We consider the following markovian
energy:

U(e, o) =
∑

s∈S

f(es, os) + λ
∑

<s,s′>∈C

(1 − δ(es, e
′
s)) (6)



(a) (b)

(c) (d)

(e) (f)

Figure 6. (a) Image at instant t, (b) Maximum
of likelihood, (c) classical markov λ = 0.6,(d)
catadioptric markov λ = 0.6, (e) classical
markov λ = 1.2,(d) catadioptric markov λ =
1.2.

where

f(es, os) =

{

1 − 1
1+exp(|I(s,t)−I(s,t+1)|−α) if es = 0

1
1+exp(|I(s,t)−I(s,t+1)|−α) if es = 1,

and

δ(x, y) =

{

1 if x = y

0 if x 6= y.

We have compared our markovian modelling adapted to
the central catadioptric images with a modelling obtained
from a classical neighborhood of first order (Fig 2(a)). Con-
stantsN andM are chosen in order to obtain a catadioptric
neighborhood similar than the first order neighborhood in
the center of the image. We setα = 3 (threshold from
which we consider the pixels in motion). Between instants
t andt + 1, three persons are moving in front of the cam-
era. Maximum of likelihood given in Fig. (6) is minimized
by the deterministic algorithm I.C.M. [6] with two values
of λ. If λ = 0.6, the dependence between the neighbors is
not sufficient in order to remove the noise. Withλ = 1.2,
the catadioptric neighborhood allows to remove all the false
positive in contrary to the classical neighborhood. In the
latter case, we can also note that a block effect appears in
the results.

5. Conclusion and perspectives

In this paper, we have proposed an adaptation of the
markovian modelling to the central catadioptric images. Ex-
perimentations show very encouraging results. In the same
way than Heitz et al [8] for the classical case, it should be
very interesting to develop a multi-scaling method in order
to reduce the sensitivity of the initialization of the determin-
istic algorithms and to speed-up the treatment.
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