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Abstract

Classical studies of measuring image motion by com-
puter have concentrated on the case of optical flow, in which
there is a unique velocity near each point of the image. In
[5], we introduced a generalization of optical flow in which
a range of parallel velocities can occur near each point in
the image. Such image motion arises in many natural situ-
ations, such as camera motion in a cluttered 3-D scene or
a stationary camera viewing falling snow. We refer to these
image motions as optical snow. In the present paper, we
show how the aperture problem manifests itself in this type
of image motion.

1 Introduction

It is well-known that image motion is a strong cue for
visual navigation and 3D scene reconstruction. Most com-
puter vision methods for measuring image motion assume
that there is a unique velocity vector at each point in the
visual field (see review [1]). This type of motion is called
optical flow. Recently we considered a more complex form
of motion that we calloptical snow,in which there is a 1D
set of parallel velocities near each image point [5]. Such
image motion arises when an observer moves relative to a
densely cluttered 3-D scene. An example is a stationary ob-
server viewing falling snow, or an observer moving laterally
past a tree (Fig. 1).

Despite the seeming complexity of optical snow, infor-
mal observation tells us that this type of motion provides a
rich set of visual cues about depth and 3-D spatial layout.
Humans can navigate well in cluttered environments as can
other animals such birds and squirrels, for example, moving
through the branches of a tree. These observations motivate
the novel computer vision problem of how to recover the
properties of optical snow. In [5], we showed how to re-
cover the direction of optical snow (see Sec. 2 below). In
the present paper, we analyze the case that the objects in the
scene have oriented spatial structure. This results in a mo-

moving observer

Figure 1. Optical snow arises when a cam-
era/observer moves relative to cluttered 3D scene.

tion ambiguity much like the aperture problem in classical
optical flow. We show how an analogous problem emerges
for optical snow.

2 Background

Let I(x, y, t) be a time varying image. The image flow
constraint equation [4] says that if a local image patch is
translating with velocity(vx, vy), then this local velocity is
constrained by:
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Eq. (1) can be expressed in the frequency domain as fol-
lows. The 3D Fourier transform ofI(x, y, t) is defined:

Î(fx, fy, ft) =
∫ ∫ ∫

I(x, y, t) e−2πi(fxx+fxy+ftt) dx dy dt

Using the derivative property of Fourier transforms,∫
∂I(u)
∂u

e−2πi fudu = −2πi f
∫
I(u) e−2πi fudu



we can take the 3D Fourier transform of Eq. (1). This
yields:

− 2πi (vx fx + vy fy + ft) Î(fx, fy, ft) = 0 . (2)

Eq. (2) implies that all non-zero frequency components of
Î(fx, fy, ft) lie on the plane:

vx fx + vyfy + ft = 0 . (3)

The observation that a translating image yields a plane
in the 3D frequency domain was first made in [8]. Many
computer vision algorithms have since been based on this
observation. These algorithms recover a velocity(vx, vy)
in each local patch of the image by finding the plane that
best fits the 3D power spectrum of that local patch [3, 2, 7].

In [5], we showed how to extend this translation model
of image motion to the case in which there is not one,
but rather a large set of parallel velocities within an im-
age patch. Consider an image patch in which the objects
all move in the same direction but at different speeds. For
example, if the observer is moving then the image speed of
each object that is visible in the patch varies with the depth
of that object. Since the velocity vectors are assumed to be
parallel, each velocity is of the form(α vx, α vy). ¿From
Eq. (3), a set of parallel image velocities produce multiple
planes in the frequency domain,

α vx fx + α vy fy + ft = 0 . (4)

Each of these motion planes intersects the(fx, fy) plane,
i.e. ft = 0, along the line

α vx fx + α vy fy = 0 . (5)

Because the motion planes all intersect at this line, we say
the planes have abow tiedistribution of power in the 3D
frequency domain (see Fig. 2a).

Let the bowtie angleθb be the angle from thefx axis
to the line of Eq. (5). This angle is measured from thefx
axis towards thefy axis. The line of Eq. (5) is in direc-
tion (cos θb, sin θb) in the (fx, fy) plane. Since by defini-
tion (αvx, αvy) is perpendicular to the line of Eq. (5), the
direction of(vx, vy) is (− sin θb, cos θb).

For example, consider an image sequence of vertically
falling snow (recall Fig. 1). Since the image velocities
would be of the form(0, α), it follows that θb = 0, and
so all the motion planes pass through thefx axis.

In [5], we introduced a technique for recovering the di-
rectionθb for the motions present in an image patch. We
sum the power in awedgeof frequencies in(fx, fy, ft) (see
Fig. 2b), specifically, the frequencies above and below the
origin. 1 The wedge is then rotated through various angles

1The wedge is defined by a slopevmax which is chosen by the user. In
[5], we usedvmax = 4 pixels/frame which is a very fast motion.
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Figure 2. (a) Bow tie distribution of power in fre-
quency domain. (b) A wedge is used to estimate
the orientation of the bow tie .

θ at fixed angular increments. For eachθ, the total power in
the wedge is measured.

LetW (θ) denote the power in the wedge as function of
θ. W (θ) has a 180 degree periodicity.

KEY OBSERVATION 1: The functionW (θ) has a mini-
mum whenθ = θb, that is, when the wedge is in the same
direction as the bow tie, as in Fig. 2.

The only power in the wedge atθ = θb is due to image
velocities that are greater thanvmax. These results were
presented in [5].

3 Aperture problem

The contribution in the present paper is to show how
the classical “aperture problem” manifests itself in optical
snow. In many scenes, objects will be dominated by par-
ticular orientations. For example, in a crowd scene or in a
forest, the dominant orientation is vertical. In the context
of optical flow, it is well-understood that if an image has
oriented structure then only the component of velocity that
is normal (perpendicular) to this oriented structure can be
measured. Thisaperture problemcan be expressed using
Eq. 1. If the direction of the image gradient( ∂I∂x ,

∂I
∂y ) is

constant over a local space-time image patch, then only the



velocity component that is parallel to the image gradient can
be recovered within that patch [6]. What is the correspond-
ing phenomenon in optical snow?

3.1 Example 1: parallel cylinders

We begin by considering the case of a 3D scene consist-
ing of infinitely long parallel cylinders like trees in a forest.
These parallel cylinders are assumed to be perpendicular to
the optical axis of the camera so that the cylinders are paral-
lel in the image as well in 3D. Letθn be such that the image
direction(cos θn, sin θn) is normal to the axis of the cylin-
ders. The spatial gradient of intensities in the image must
thus be parallel to(cos θn, sin θn). Since all power in the
2D frequency domain(fx, fy) is parallel to the spatial gra-
dient direction, all power must lie on frequencies(fx, fy)
parallel to(cos θn, sin θn), that is,

(fx, fy) · (− sin θn, cos θn) = 0. (6)

For example, if the trees are vertical in the image thenθn =
0o andfy = 0.

If the camera were to translate through such a cluttered
scene, then optical snow would result. For any small im-
age patch2, image power would be contained in a family of
planes, namely a bowtie as in Fig. 2. But because the spa-
tial frequencies containing the image power must obey Eq.
(6), which in the 3D frequency domain is a plane, it follows
that the bow tie distribution of power must be restricted to a
set of radial lines within the plane of Eq. (6). (See Fig. 3.)
These lines define a set ofnormal velocitiesin the image.
From the discussion up to Eq. (6), these normal velocities
are in direction(cos θn, sin θn).

We emphasize that there is no relationship between the
angleθn and the angleθb. The angleθn is the direction
of the gradient of image intensities and the angleθb is the
direction of the image velocities of the objects.

Let us next address howθn can be measured. Because
the power is concentrated in the plane of Eq. (6), the func-
tionW (θ) has a maximum when this plane is contained in
the wedge.

KEY OBSERVATION 2: The functionW (θ) has a maxi-
mum whenθ = θn, that is, when the wedge is in the same
direction as the gradient of the image intensities.

Note that this specialθ depends entirely on the orienta-
tion of the cylinders, rather than on the image velocities
(αvx, αvy). In particular, the maximum ofW (θ) is in the
direction normal to the cylinder axis.

The above observation is not so surprising for the case of
the cylinders, since the normal velocity has to be perpendic-
ular to the orientation of the cylinders. The analysis is more

2We exclude a patch containing the focus of expansion, since the as-
sumption of parallel velocities would fail.

Figure 3. θn is the direction of the gradient of image
intensities.

interesting when we generalize it to cases in which a range
of spatial orientations is present in the image.

3.2 Example 2: parallel ellipsoids

A more general synthetic case to consider is a cluttered
scene consisting of 3D elongated ellipsoids. For simplicity,
suppose that the major axis of each 3D ellipsoid is parallel
to the image plane and that the camera motion is vertical.
The major axis of the 3D ellipsoids plays the same role as
axis of the cylinders in Example 1, namely the angleθn is
defined to be perpendicular (normal) to this major axis.

Fig. 4 shows the functionsW (θ) for four scenes, which
differ in the y/x aspect ratio of the ellipsoids. Fig. 4(a)
showsW (θ) that is produced when the major axis of the el-
lipsoids is aligned with the camera’sx axis. Since the major
axis of each ellipsoid is perpendicular toθn, the minimum
of W (θ) occurs atθ = 0o and the maxima atθ = ±90o.

Fig. 4(b) showsW (θ) for the same scenes, except that
the ellipsoids are now rotated so that the major axis is -30
degrees from thex axis. Sinceθn is perpendicular to the
major axis, we haveθn = −30o + 90o = 60o. When the
y/x aspect ratio is 1, we obtain essentially the same curve as
in Fig. 4(a). As the aspect ratio shrinks, the position of the
minimum ofW (θ) stays the same because of the camera
motion hasn’t changed, but the position of the maxima of
W (θ) shifts. If the aspect ratio were to shrink to zero, the
maxima ofW (θ) would shift all the way toθ = θn = 60o.

3.3 Example 3: a real forest

Let us next consider a real scene containing oriented
structure. The sequence was shot through the window
of a horizontally moving car using a Hitachi MPEG MP-
EG10W camera. The optical axis was perpendicular to the
direction of motion of the car. The scene was a densely treed
area. The trees were bare of leaves, and the visible branches
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Figure 4. Plots of W (θ) for two ellipsoid sequences.

of the trees were at many different depths. A single frame
from the sequence is shown in Fig 5a.

The camera produces images of size352 × 240 at 30
frames/sec. Sequences of 128 images were extracted and
converted to grey scale images. To demonstrate the opti-
cal snow effects, we considered a128 × 128 upper-middle
area of each frame (see outlined region in Fig. 5a.). The
3D Fourier transform was calculated and the functionW (θ)
was computed. The minima inW (θ) occurs at±90◦ which
is as expected since the motion is horizontal (θb = ±90o).
(Recall Key Observation 1.)

The width of the peak at half-height is approximately
50 degrees and so the width of the valley is 130 degrees.
This broad minimum is due to the predominance of vertical
structure (trees) over non-vertical structure (branches) in the
scene. If we compare the plot in Fig. 5 with those in Fig. 4,
we see that a half-height peak-width of 50 degrees corre-
sponds to an “effective” aspect ratio of about 0.25. We see
that the functionW (θ) provides us with both the direction
of normal velocity in the image, as well as an estimate of the
range of spatial orientations contributing to the space-time
image structure.

4 Conclusions

Classical frequency-based optical flow methods [3, 2, 7]
assume that there is a unique velocity in each image patch
and attempt to find this velocity by fitting a plane to the
power spectrum of the image patch. Here have considered
a new type of motion called optical snow in which a range
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Figure 5. (a) Frame from a image sequence of a
forested area. (b) W (θ).

of parallel velocities are present in a patch. We have shown
previously [5] how to estimate the direction of these parallel
motions by extending the classical frequency-based model.
In the present paper, we extended our analysis to cases in
which the spatial structure of the image is dominated by
particular orientations. We show how the aperture problem
manifests itself in these cases and how the direction of the
normal velocities can be understood and measured.
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