
HAL Id: hal-04714493
https://hal.science/hal-04714493v1

Submitted on 30 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Segmentation and Classification of Airborne GNSS-R
Reflectivity Signals with Speckle Noise Mitigation
Sarah El Hajj Chehade, Hamza Issa, Georges Stienne, Serge Reboul

To cite this version:
Sarah El Hajj Chehade, Hamza Issa, Georges Stienne, Serge Reboul. Segmentation and Classifi-
cation of Airborne GNSS-R Reflectivity Signals with Speckle Noise Mitigation. International Con-
ference on Localization and GNSS (ICL-GNSS), Jun 2024, Antwerp, France. pp.1-7, �10.1109/ICL-
GNSS60721.2024.10578377�. �hal-04714493�

https://hal.science/hal-04714493v1
https://hal.archives-ouvertes.fr


Segmentation and Classification of Airborne
GNSS-R Reflectivity Signals with Speckle Noise

Mitigation
Sarah El Hajj Chehade

LISIC
Universite Littoral Cote d’Opale

Calais, France
0009-0005-3008-9987

Hamza Issa
LISIC

Universite Littoral Cote d’Opale
Calais, France

0000-0003-3822-0394

Georges Stienne
LISIC

Universite Littoral Cote d’Opale
Calais, France

0000-0002-6757-8611

Serge Reboul
LISIC

Universite Littoral Cote d’Opale
Calais, France

0000-0002-2278-6134

Abstract—This article is dedicated to the study of Global
Navigation Satellite System Reflectometry (GNSS-R) techniques
for remote sensing applications, focusing on classifying the
reflectivity of airborne signals to differentiate reflective surfaces
along satellite traces. We propose an automatic segmentation
algorithm using an online change point detector and off-line
change point localization estimate. Given the presence of speckle
noise in GNSS signals, a homomorphic log-transformation is
applied to mitigate this noise. The system is shown to detect
different land-forms in real flight experiments in France, using
K-means clustering to identify sand, water bodies, and plain land.

Index Terms—GNSS-R, Speckle noise, Homomorphic transfor-
mation, Change point detection, Change point localization.

I. INTRODUCTION

The evolution of Global Navigation Satellite Systems
(GNSS) has significantly expanded the scope of remote
sensing applications for Earth surface and atmosphere
monitoring. The Global Navigation Satellite System
Reflectometry (GNSS-R) methodologies provide regional and
global coverage and facilitates Earth Observation purposes
through providing data from remote and inaccessible terrains
through the use of refracted, reflected, and dispersed GNSS
signals. The unique features of GNSS signals, particularly
the use of L-band frequencies, keep them highly suitable
for diverse remote sensing applications [1]. In recent
years, GNSS-R has become a reliable remote sensing
technology, providing precise measurements of important
surface characteristics with a high level of temporal resolution
and wide coverage [2]–[4]. The wide range of applications
showcases its adaptability, from estimating wind speed [5],
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[6] to measuring ocean salinity [7], monitoring sea levels
[8], [9], and assessing the cryosphere on land for aims like
detecting sea ice [10], [11] and estimating snow depth [12],
[13]. GNSS-R applications in land observation focus mainly
on detecting in-land water bodies [14], [15], determining
plant biomass [16], and measuring soil moisture [17], [18].

In this study, we apply GNSS-R techniques for detecting,
monitoring, and characterizing in-land water bodies in regions
at risk of flooding, using airborne GNSS-R observations [14].
This approach aligns with the growing interest in utilizing
GNSS-R for local and regional scale studies, such as UAV-
based GNSS-R sensors for water body surface measurement
in flood monitoring operations [19], [20].

In GNSS-R remote sensing applications, accurate detection
and localization of changes between different reflecting
surfaces are critical. To address this, we employ change point
detection algorithms on airborne GNSS-R data. However,
challenges arise due to the presence of multiplicative noise,
speckle noise, which deviates from the usual assumption of
additive noise [14], [21].

In this work, we delve into the statistical modeling of
speckle noise, specifically the Log-Gamma distribution, to
enhance change point detection in GNSS-R reflectivity. Our
method involves a homomorphic log-transformation of the
reflectivity, resulting in a Log-Gamma distribution with
constant variance. Using the Cumulative Sum (CUSUM)
method and a Weighted Moving Average filter, our sequential
change point detector effectively identifies changes in
log-transformed reflectivity. The threshold for the CUSUM
method is established by considering the Average Run Length
ARL(0) for effective control of the false alarm rate. After979-8-3503-8078-1/24/$31.00 ©2024 IEEE



detecting the change, we employ the maximum likelihood
estimate, using the Log-Gamma distribution for analysis,
to determine the time of occurrence. The methodology is
validated using real flight data recorded in Northern France in
2020 and 2021, demonstrating the radar system’s capacity to
consistently differentiate reflecting surfaces using the classical
K-means approach.

This article is structured as follows: In Section 2, we present
our proposed statistical model, focusing on the homomorphic
transformation of the signal and assuming a Gamma distribu-
tion. Section 3 outlines the proposed estimation method for
the change point. The application of these techniques to real
flight experimentation is detailed in Section 4, and Section 5
concludes the article, while discussing potential future research
directions in this field.

II. GNSS-R REFLECTIVITY STATISTICAL MODEL

In a dual antenna configuration, a GNSS-R receiver utilizes
a Right-Hand Circular Polarized (RHCP) antenna directed
towards the zenith to receive direct signals from satellites,
while a Left-Hand Circular Polarized (LHCP) antenna points
towards the nadir for receiving reflected signals, as depicted in
Fig. 1. In the GNSS-R radar observation system, reflectivity
is determined by the ratio of the reflected signal intensity
over the direct signal intensity. When dealing with a perfectly
flat, dielectric surface, the reflected power is highly coherent
as the GNSS signal reflects from the specular point, resulting
in maximum reflected signal intensity.

Conversely, rough surfaces cause signals to scatter across
a specific area before reaching the receiving antenna. An
increase in surface roughness primarily results in a larger
glistening zone, which divides the scattered power into two
components: a specular coherent component and an incoherent
component due to surface roughness. Within glistening zones,
points with similar Doppler and range parameters to the
specular point generate multiple reflections, introducing phase
delays that must be considered in GNSS signal processing
models.

Fig. 1. GNSS-R radar observation system.

A. Direct and Reflected Signal Tracking

The study employs two tracking loops for satellite sig-
nals, using traditional Phase-Locked Loop (PLL) and Delay-
Locked Loop (DLL) approaches for direct signal tracking
and an extra Frequency-Locked Loop (FLL) for dynamic
Doppler frequency changes. Two quadrature components are
demodulated and correlated with local replicas to obtain two
quadrature components of correlation, Id(0) and Qd(0) which
are assumed to be random variables distributed according to
Gaussian distributions:

Id(0) ∼ N (a cos(ϕe), σ
2) (1)

Qd(0) ∼ N (a sin(ϕe), σ
2) (2)

Using these two correlation components, we calculate the
direct signal intensity as:

Td = I2d(0) +Q2
d(0) (3)

The standard deviation, σ, of the Gaussian distribution is a
function of the noise power in the direct signal. We can define
the mean value of the direct signal intensity as:

Td

σ2
(4)

which follows a non-central chi-squared distribution of
parameter a2. Then we have:

E(Td) = a2 + 2σ2 (5)

In our implementation, we assume that the direct signal
remains stationary for a significant duration, where we
estimate its mean value.

The reflected signal tracking uses an assisted loop with
pseudo-range and geometric model, considering Doppler fre-
quency estimates from the direct signal [14]. It processes two
quadrature components, where Ir(0) and Qr(0) are assumed
to follow a centered normal distribution with σr. We calculate
the reflected signal intensity as:

T = I2r (0) +Q2
r(0) (6)

The mean value of the reflected signal intensity is 2σ2
r .

In our implementation, we process the mean intensity of the
received signal within a working window of size N .

Tr =
1

N

N∑
i=1

(
I2r (0) +Q2

r(0)
)

(7)

In this setup, increasing the size of the working window, N ,
boosts the Signal-to-Noise Ratio (SNR) of the intensity. For
processing correlation components of the GPS L1 signal, Tc =
1ms data, with N typically set to 20. As a result, the reflected
signal intensity distribution follows a Gamma distribution:

Tr ∼ Gamma
(
N,

2σ2
r

N

)
(8)

where 2σ2
r is the mean value of the intensity and 4σ4

r/N
represents its variance.



B. Reflectivity and Homomorphic Transformation of the
GNSS-R Signal

In a GNSS-R radar system, the power of the reflected signal
is a function of the power of the direct signal. To normalize
the observation of the reflected signal, we use the expression
of reflectivity, which is given by the following formula:

R =
Tr

E(Td)
=

1
N

∑N
i=1

(
I2r (0) +Q2

r(0)
)

a2 + 2σ2
(9)

where E(Td) represents the average intensity of the direct
signal, assumed to remain constant throughout the duration of
the experiment. In practice, the intensity of the direct signal
changes slowly over time and its mean value can be easily
estimated.

This paper suggests that the reflectivity R follows a Gamma
distribution, based on the Goodman model [21], [22]. In
this case, the noise affecting the observations is described as
multiplicative speckle noise. Let:

R(N,λ) ∼ Gamma (N,λ/N) (10)

with:

E(R(N,λ)) = λ =
2σ2

r

(a2 + 2σ2)
(11)

The noise power in a multiplicative model is affected by
the signal amplitude, which is transformed into additive noise
using homomorphic log-operation, with constant power. The
log-transform is defined by:

W (N,λ) = log (R(N,λ)) (12)

with:

W (N,λ) ∼ Log −Gamma (N,λ/N) (13)

We have the following expressions:

E(W (N,λ)) = Ψ(N) + log(λ/N) (14)
V (W (N,λ)) = Ψ(1)(N) (15)

where V (W (N,λ)), the variance of W (N,λ), is constant,
and Ψ(. . . ) and Ψ(1)(. . . ) are respectively the digamma
function and the trigamma function [23], [24].

III. CHANGE POINT DETECTION

In a radar application, we process a large amount of data
sequentially as a chronological series. We consider this series
to be in control when the statistical parameters of the process
are stationary. In contrast, it is considered out of control in
the non-stationary case when there is a change in the process.
The hypothesis test for the change point detection is used to
detect such changes in the process. It is defined as follows:

H0 : Rt ∼ Log-Gamma(N,
λ0

N
) ∀t ∈ {1, . . . , n} (16)

Hτ : Rt ∼ Log-Gamma(N,
λ0

N
) ∀t ∈ {1, . . . , τ} (17)

Rt ∼ Log-Gamma(N,
λ1

N
) ∀t ∈ {τ + 1, . . . , n}(18)

with λ0 ̸= λ1 and τ ∈ {1, . . . , n− 1}, the instant of the
change. Fig. 2 provides an overview of the signal model within
the working window N under Hτ . It illustrates the transition
between mean values λ0 and λ1 between different segments
associated to different areas of reflection.

A. Change Point Detection Approach

The proposed change point detector aims to identify
changes in the observed process. Fig. 3 depicts the flowchart
of the on-line/off-line change point detector.

The proposed filter involves a recursive mean estimate
derived from the log-transformation of the reflectivity obser-
vations; this estimate can be expressed as a function of the
innovation it as:

w̄t = w̄t−1 + α2,t it (19)
it = log(rt)− w̄t−1 (20)

The optimal expression of α2,t is given in a recursive form,
evolving toward a constant value, and the smoothing of the
mean estimate, w̄t, increases until a constant smoothing level.
The CUSUM detector, in its simple form, is expressed as:

Pt =
(Pt−1 +Q)Ψ(1)(N)

Pt−1 +Q+Ψ(1)(N)
(21)

α2,t =
Pt

Ψ(1)(N)
(22)

where Q is a parameter defined by the user, and Pt the variance
of the estimate w̄t. The normalized innovation is defined as:

ĩt =
it

Pt−1 +Ψ(1)(N)
. (23)

𝜏 𝑛

𝜆1

𝜆0

working window

Fig. 2. Transition model in a working window.
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Fig. 3. Change point detection system.

The localization of the change is then processed within a
working window centered on τ ′, the detected instant of change.
We have:

g+t =
(
g+t− + ĩt

)+
(24)

g−t =
(
g−t− − ĩt

)+
(25)

τ ′ = min
{
k : (g+t ≥ Cs)U(g−t ≥ Cs)

}
(26)

Before the change, the integration of the innovation process
behaves as a random walk, denoted by g+k and g−k . After
the change occurs at time τ + t, both g+k and g−k transition
into monotonic increasing functions. Cs is the user-defined
threshold, determining the probability of false alarm under
H0. The proposed change point estimate corrects the delay
between the change instant and the alarm instant under Hτ .

B. Change Point Estimation Approach
The observations of reflectivity, denoted as rt, are trans-

formed into samples wt = log(rt). These samples follow a
Log-Gamma distribution, expressed by:

f(Wt;N,λ/N) =
(eWt)Ne−

NeWt
λ(

λ
N

)N
Γ(N)

(27)

Consider a set of n i.i.d. samples W1:n = (W1, . . . ,Wn)
distributed according to the Log-Gamma(N,λ/N ) distribu-
tion, defining the working window depicted in Fig. 2. The as-
sociated log-likelihood function, denoted as l(W1:n;N,λ/N),
is given by:

l(W1:n;N,λ/N) = N

n∑
i=1

Wi −
N

λ

n∑
i=1

eWi

−nN log

(
λ

N

)
− n log(Γ(N)) (28)

The estimate of λ, denoted as λ̂, is determined by:

λ̂ = Ne(W−Ψ(N)) (29)

where:

W =
1

n

n∑
i=1

Wi (30)

Define the generalized log-likelihood function as
l(W1:n;N, λ̂/N). The change point localization, denoted as
τ̂ , is estimated by maximizing the sum of log-likelihood:

τ̂ = argmax
0<τ<n

[
l(W1:τ ;N, λ̂0/N)

+l(Wτ+1:n;N, λ̂1/N)
]

where λ̂0 and λ̂1 are estimates based on the samples W1:τ and
Wτ+1:n, respectively.

C. Parameter definitions

To ensure the reproducibility of the signals segmentation,
the parameters of both the change point detector and change
point estimate must be independent of the parameters and of
the direct signal intensity (a and σ) and the reflected signal
intensity (σr).

For the change point detector, we suggest fixing the
threshold Cs as a function of the probability of false alarm
rate. In change point detection, the false alarm rate is
characterized by the ARL under H0, denoted as ARL(0).
ARL(0) is the expected number of observations between false
alarms in a sequence of observations that represents noise
without a change point. The value of ARL(0) is determined
by simulation with a noise power

√
Ψ(1)(N) under H0. The

noise power defined by N is independent of the direct and
reflected signal intensity.

The accuracy of the change point estimate relies only on
the precision of estimating W . This precision is determined
by the noise power

√
Ψ(1)(N) and remains independent of

the direct and reflected signal intensity.

IV. EXPERIMENTATION: APPLICATION TO AIRBORNE
GNSS-R DATA

A. Flight Information

Airborne GNSS-R data was recorded during a flight
experimentation on October 19, 2020 in the Northern Region
of France, starting at 14:45 Coordinated Universal Time
(UTC). The experimental setup employed a gyrocopter
equipped with RHCP antenna for direct signal reception and
LHCP antenna for receiving reflected signals. The gyrocopter
took off from Calais–Dunkerque Airport with a variety
of embedded sensors, including a drone board sensor for
recording essential parameters.

The flight covered a wide region of around 230 km2 in
about 45 minutes. With an average speed of 95 km/h and a
cruise height of 315 m, the gyrocopter flew over 50 various
inland water body surfaces as well as sandy beach and the
sea. The research focused on reflections from satellites with
high elevation angles; the satellite footprints during this flight
are shown in Fig. 4.

B. Analyzing the Log Transform Noise Model

One of the main contributions of this article is the
derivation of a detection threshold that can be applied to
different datasets. Our approach relies on the assumption
that the log-transform of reflectivity follows a Log-Gamma
distribution, enabling the definition of a detection threshold
independent of the SNR. To validate this assumption, we
estimate the noise power using real airborne GNSS-R
reflectivity data, as illustrated in Fig. 5.



Fig. 4. The traces of the satellites with high elevation angles along the
trajectory.

𝛹(1)(𝑁)

Specular reflection

Diffuse reflection

Fig. 5. Estimation of the Homomorphic log-transform variance.

This figure shows the variance of reflectivity log-transform
estimates from 10 samples processed for the satellite PRN
5 trace. There are two distinct reflecting areas: one with
specular reflections related to sand and sea, and another with
diffuse reflections associated with plain land. The red line
corresponds to the theoretical variance of the log-transform
and closely matches the average variance in the second
region. However, it’s essential to note that in real-world
scenarios, the distribution of specular reflections may not
follow a specific theoretical model due to the complex and
changing environmental conditions.

The threshold is fixed for the diffuse reflections area, i.e.
land region. However, the probability of false alarm detection
may increase in areas characterized by coherent reflections
from water surfaces, due to the increase in the standard
deviation of that particular area.

C. Change Point Estimation

In Fig. 6, we display reflectivity measurements from air-
borne GNSS signals during the flight over three water bodies.
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Fig. 6. Change point process: Detection, Localization and Segmentation.

The variations in GNSS signal reflectivity are processed using
change detection algorithms. The CUSUM algorithm is ini-
tially employed to detect reflectivity changes, with parameters
set to ARL(0) = 3000 for N=20 and smoothing parameter
Q = 0.001. Changes with dynamic values below 0.01 are
filtered out to reduce false alarms in specular reflection areas.
After CUSUM detection, our proposed Log-Gamma Maxi-
mum Likelihood (LGML) localization is applied to precisely
locate these changes. Finally, the signal is segmented into
sections, each corresponding to changes in mean reflectivity
levels based on localized change points as shown in Fig. 6.

D. Segmentation

We apply our radar signal segmentation technique for
detecting in-land water bodies, as depicted in Fig. 7,
representing the radar signal segmentation for airborne
GNSS measurements along the trajectory of the flight. The
Google Earth image illustrate satellite footprints, color-coded
with yellow denoting land and blue indicating water bodies
based on mean reflectivity measurements. These colors are
associated with different mean reflectivity values. The GNSS
reflectivity measurements for three satellites (PRN 5, 7, and
30), each characterized by a different elevation angle, are
analyzed.

Surface reflectivity shows a direct correlation with water
content in land, with reflectivity increasing when signals are
reflected from water bodies. Additionally, the noise variance
increases with the mean reflectivity. The radar technique
detects in-land water bodies of various sizes and shapes
under different environments, showcasing its capability to
differentiate surfaces.

E. K-Means Automatic Classification

We apply K-means clustering technique, an unsupervised
machine learning method, to classify reflectivity signal
segments based on their statistical properties, the mean
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Fig. 7. Segmentation of the GNSS measurements
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Fig. 8. Reflectivity Classification for the different satellites.

and standard deviation. Each segment represents a distinct
portion of the GNSS reflectivity signal. The K-means method
initializes cluster centers randomly, assigns segments to the
nearest cluster based on feature similarity, and updates cluster
centers by calculating mean values. The iterative process
continues until convergence.

Fig. 8 illustrates the classification results for our flight,
where the reflectivity signal is categorized into three main
classes in coherence with the locations of the sandy beach,
sea and land of Figure 4. These areas were determined using
ground truth observations, Google Earth imagery, and accurate
IGN (Institut Geographique National) maps. The results of
the three reflectivity signals are in alignment highlighting the
consistency of the automatic classification technique.

F. Percentage of Overlapping of GNSS-R Reflectivity Signals

The overlapping percentage is defined as a quantitative
measure used to evaluate the consistency of the GNSS-R

TABLE I
PERCENTAGE OF OVERLAPS OF GNSS-R REFLECTIVITY SIGNALS

Land Sea Sand

FLIGHT 1

PRN 5 100 100 100

PRN 7 99.67 99.82 98.49

PRN 30 99.67 97.26 94.75

classification methodology across the different studied
satellite signals. It is computed as the percentage of samples,
for a given PRN, that result in the same classification as
those of the reference signal of PRN 5. This percentage is
computed, for each class, in the sections defined in the signal
classification for PRN 5 in Fig. 8.

Based on the results shown in the table, it is clear that during
Flight 1, all three satellites show significant overlap percent-
ages for both land and sea classes. The values range from
97.26% to 99.67%. The high percentages suggest a strong
agreement between the reflectivity signals acquired from these
satellites with respect to the reference signal, PRN 5, for land
and sea surfaces. However, there is a slight decrease in the
overlap percentages observed in the sand class, specifically
for PRN 30, where the percentage decreases to 94.75%. It is
important to note that the traces followed by the three satellites
are not the same, and thus the reflectivity measurements vary
depending on the reflecting surface characteristics and the
detection length by the satellites. The differences in azimuth
angles can also contribute to this difference.

V. CONCLUSION

This paper presents algorithms designed to detect and
accurately localize change points in GNSS-R reflectivity data.
These algorithms are specifically developed for dealing with
the challenges associated with multiplicative speckle noise fol-
lowing the Gamma model distribution. Our approach demon-
strates strong segmentation capabilities while combining a
CUSUM change point detector with a Maximum Likeli-
hood localization algorithm that relies on log-transformed
reflectivity data. Our algorithms successfully identify different
land features through real flight experiment conducted in the
Northern Region of France. Applying K-means clustering
for classification, we accurately differentiate between sand,
water bodies, and plain land. Our study contributes to the
development of GNSS-R technology and opens a path for
future research in enhancing surface classification methods for
wider remote sensing applications.
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