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ABSTRACT

Unsupervised object discovery in images involves uncovering
recurring patterns that define objects and discriminates them
against the background. This is more challenging than im-
age clustering as the size and the location of the objects are
not known: this adds additional degrees of freedom and in-
creases the problem complexity. In this work, we propose
StampNet, a novel autoencoding neural network that localizes
shapes (objects) over a simple background in images and cate-
gorizes them simultaneously. StampNet consists of a discrete
latent space that is used to categorize objects and to determine
the location of the objects. The object categories are formed
during the training, resulting in the discovery of a fixed set of
objects. We present a set of experiments that demonstrate that
StampNet is able to localize and cluster multiple overlapping
shapes with varying complexity including the digits from the
MNIST dataset. We also present an application of StampNet
in the localization of pedestrians in overhead depth-maps.

Index Terms— object discovery, unsupervised learning,
image localization, image clustering

1. INTRODUCTION

Discovery and localization of objects is an important task
in computer vision and image analysis. There is a signif-
icant amount of existing methods that successfully address
the challenge of object localization when objects are ex-
plicitly annotated with labels and bounding boxes. Deep
convolutional neural networks such as YOLO [1] and Faster
R-CNN [2] demonstrated significant success. Annotations,
however, often require major human effort and thus come
with significant costs.

In contrast, object discovery deals with localization in
absence of annotations. This means finding and clustering
recurring patterns that define the objects. Previous work
on unsupervised localization typically addresses one object
class in multiple images, which is referred to as object co-
localization [3, 4]. However, unsupervised localization of
multiple classes of objects remains a significant challenge.
This problem is further adds complexity as we cannot as-
sume that only a single object is present in the image. In
other words, the model needs to simultaneously discover the
objects (or form categories) and learn to perform localization.

As the object size and alignment is not predetermined the
complexity of the clustering of the objects grows significantly
with the degrees of freedom added by the localization. Analo-
gously, the localization is difficult because during training ob-
jects categories are not predetermined. An additional compli-
cation is that the objects can overlap, which further increases
the difficulty of clustering the objects.

To address these challenges we propose a novel autoen-
coding neural network architecture, StampNet, that discovers
objects and localizes them simultaneously. StampNet has two
characterizing features: first, it has a latent space consisting of
discrete random variables that encode the cluster assignment
and its location. Second, it has a final layer consisting of a
fixed number of convolutional filters (stamps) that encode the
discovered objects. The size and number of these filters deter-
mine the maximum size and maximum number of objects to
be discovered respectively. We refer to this layer as a stamp
layer and hence the name of the network StampNet.

This paper is structured as follows: in Section 2, we re-
port on the state-of-the-art on unsupervised object discovery.
In Section 3, we introduce the StampNet architecture. In Sec-
tion 4, we show the results of StampNet on four datasets. The
discussion Section 5 closes the paper.

2. RELATED WORKS

Various studies have been performed on topics closely related
to unsupervised object discovery. In co-localization and co-
segmentation, the goal is to extract the position of common
objects between images, using bounding boxes and segmen-
tation respectively. Many of these studies obtain good results,
but simplify the problem by assuming a single object class
[3–5].

Recent studies have worked on the more difficult problem
of multi-class co-localization [6] and co-segmentation [7].
Cho et al. [7] use an off-the-shelf region proposal system
to form a set of candidate bounding boxes and match these
across images. Wang et al. [6] use functional maps to model
partial similarity across images, but they assume that the im-
age set contains two classes of objects or very similar objects.

To the best of our knowledge, only one study has focussed
on our task of multi-class object discovery: tackling simul-
taneous localization and classification without supervision.
Murasaki et al. [8] extract deep features using a pre-trained
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neural network and clusters these features. However, their
model is limited to a single single object in each image.

3. STAMPNET ARCHITECTURE

3.1. Architecture overview

In this section, we describe the architecture of StampNet (see
sketch in Figure 1). StampNet is an autoencoder, i.e. a neu-
ral network which outputs a reconstruction of an input image
based on an internal representation of the input. This rep-
resentation is formed by the encoder under the training con-
straint of minimising Euclidean distance between the input
and the output.

The encoder follows a VGG-like [9] structure with stacks
of convolutional layers (with Leaky ReLU activations [10])
followed by a max pooling layer (Batch Normalization [11]
and Dropout [12] are used during training).

The decoder, the peculiarity of StampNet, works in two
stages: first, it predicts the coordinates and stamp type for
each shape in the input image (Selection-and-localization
layer); second, through the stamp layer, the selected stamps
are placed according to the predicted positions to generate
the output image. In the following subsection, we intro-
duce the notation employed and we detail the selection-and-
localization and the stamp layers.

Encoder

    

Selection and Localisation (SL)

X coord

Tensor product
  

 

Dense
Gumbel Softmax 

⊗ 
Y coord

Stamp

Σ
Sum

 

Stamp
LayerM

Stamps
N

M

MConvolutional 
layers 

Dense 
layer 

Input Reconstruction

Fig. 1: The StampNet architecture consists of an encoder
(convolutional neural network), selection-and-localization
layer and the stamp layer. The encoder produces a map
from image space to the latent space. The selection-and-
localization layer maps the latent representation to an activa-
tion map for the stamp layer (Section 3.3). Finally, the stamp
layer produces the reconstruction of the image based on the
activation map (Section 3.4).

3.2. Notation

We consider an input image of pixel size φx × φy containing
m ≤ M shapes indexed by the variable η (i.e. 1 ≤ η ≤ M ,
where the upper-bound M to the number of shapes is pre-
defined). We assume each shape to fit within one ofN stamps
of pixel size ψx × ψy . The set of stamps is stored in a collec-
tion of N convolutional kernels of size ψx × ψy , that form,
as whole, a tensor Ω of size N × ψx × ψy . We finally name
X and Y the random variables respectively associated to the
x and y coordinate of a shape and S the categorical random

variable defining the stamp type s. Thus, it holds 0 ≤ x, y ≤
φx − ψx + 1, φy − ψy + 1 and 0 ≤ s ≤ N − 1.

3.3. Selection-and-localization layer

The selection-and-localization layer (SL-layer) predicts the
coordinates (localization) and selects the clustered object to
use (selection). As objects are clustered in the kernel of the
stamp layer, these need to be convolved over the predicted lo-
cation and only the selected object should be convolved. This
happens when the output of the SL-layer is a one-hot tensor,
(see Equation 2).

Therefore, we want to output a one-hot tensor at the pre-
dicted coordinates and predicted stamp. One way to output
such tensor is to use a max function. This function, how-
ever, results in a gradient of 0 for all non-max values, making
it unfitting for backpropagation. We provide a different solu-
tion: we model the coordinates and object-selector as categor-
ical distributions. When we sample from these distributions,
we get a one-hot tensor with the predicted stamp and coordi-
nates. The gumbel softmax [13] (also known as the concrete
distribution [14]) is a differentiable sampling of a smoothly
deformed categorical distribution.

In the SL-layer, we first predict the probability distribu-
tion of the x coordinate, y coordinate and the stamp type
s. Then, we calculate a sampling using the gumbel softmax
function. This function uses temperature τ that allows gradi-
ents to flow through during training and gradually anneals the
temperature to become a sampling from a categorical distri-
bution [13].

The network combines the three gumbel softmax output
by performing, for each of the M shapes, the tensor prod-
uct of the coordinates and of the stamp selector probability
vectors. We obtain M individual selection-and-localization
tensors (SL tensors), as they contain information on the posi-
tion and type of each shape. In formulae, the individual SL
tensor reads for all 1 ≤ η ≤M :

SL
(η)
ijk = P (X(η) = i)P (Y (η) = j)P (S(η) = k) (1)

Once every shape has been selected and localized, we
combine them into the global selection-and-localization ten-
sor summing on η:

SLijk =

M∑
η=1

SL
(η)
ijk.

3.4. The stamp layer

The output O of the network, i.e. the reconstruction of the in-
put, is provided by the stamp layer, which performs a convo-
lution operation between the global SL tensor and the stamp
tensor Ω. We write O = SL ∗Ω, which in components satis-



fies:

Oi∗j∗ =

N∑
k=1

∑
ij

SLijk Ω(i∗−i)(j∗−j)k

 (2)

We constrain the kernel values in Ω to be non-negative
and smaller than the maximum image value with training-
time clipping. Moreover, should two stamps be partially over-
lapped, and thus sum their values, the output is further clipped
to avoid exceeding the maximum image value.

4. RESULTS

We evaluate the performance of StampNet on several datasets.
The first dataset contains five clearly distinguishable shapes,
followed by more complex shapes of MNIST. The final
dataset contains noisy overhead images of pedestrians. The
performance of the network is evaluated on two tasks: (1)
discovery and localization of each shape and (2) clustering
performance of the extracted stamps. We evaluate the first
task with CorLoc [7] and Intersection over Union (IoU) [15].
For the second task, we use clustering purity [16] to measure
how well the model can differentiate between classes.

The network has been trained on a train set and evaluated
on a separate test set. We use an annealing schedule of τ =
max(0.2, 7.0 · exp (−0.01 · t)), updated every epoch for the
gumbel softmax. For the results, we use a temperature of
τ = 0.01 to enforce a one-hot choice.

4.1. Simple Shapes dataset

The Simple Shapes dataset uses five different simple shapes: a
‘plus’, an ‘equal’, a rotated ‘equal’, a ‘slash’, and a ‘triangle’.
We randomly placeM = 2 shapes of size 28×28 on an empty
canvas of size 84×84. We consider 50000 generated training
samples and 10000 generated test samples. The stamp layer
contains N = 10 stamps.

In Figure 2a, we report the N = 10 stamps learned by the
network. We observe that these stamps are nearly identical to
the shapes used to generate the dataset. We detail sample pre-
dictions outputs in Figure 2b. In these samples, the network
localizes overlapping shapes and assigns the correct stamp to
each shape.

In Table 1, we quantify the IoU and purity of evaluated
over the test set. We achieve high scores in IoU and purity
on this dataset. The remaining errors are the result of the
network assigning an inaccurate stamp to a shape, which pri-
marily happens when shapes overlap.

4.2. Translated and Cluttered Translated MNIST

We evaluate the performance of our model on two MNIST
datasets: (1) Translated MNIST (T-MNIST) and (2) Cluttered
Translated MNIST (CT-MNIST) [17]. In T-MNIST, MNIST

Table 1: Experiment results

Dataset CorLoc IoU Purity
Simple Shapes (M = 1) 0.9999 0.9718 0.9928
Simple Shapes (M = 2) 0.9828 0.9500 0.9564

T-MNIST (M = 1) 0.9983 0.8925 0.7891
T-MNIST (M = 2) 0.9729 0.8537 0.5277

CT-MNIST (M = 1) 0.9972 0.8912 0.8113
CT-MNIST (M = 2) 0.9545 0.8394 0.6149

Pedestrian Tracking (M = 3) 0.7816a 0.6308a 0.9597
aCalculated for localizing the pedestrian, not the walls.

Table 2: Supervised classification CT-MNIST (M = 1)

Network Accuracy
RAM [17] 0.927

DRAW [18] 0.966
RNN-SPN [19] 0.985

DCN [20] 0.986

digits are uniformly placed on an empty canvas. CT-MNIST
adds clutter to these images by uniformly placing 8 smaller
clutter digits of size 8 × 8 to add noise to the dataset. We
choose in T-MNIST a canvas size of 84 × 84 and in CT-
MNIST a canvas size of 100×100 to best compare our results
with existing literature. In both cases, we generate 60000
training samples and 10000 test samples. We test for M = 1
and M = 2 digits on the canvas with N = 40 stamps.

We observe that the network discovers different MNIST
digits in Figure 2d and 2f. The stamps learned by the network
(Figure 2c and 2e) resemble different digits of MNIST.

The network discovers most MNIST digits, as the CorLoc
measures (Table 1) indicate. Even when there are M = 2
digits on a cluttered canvas, the network discovers over 95%
of the digits. The added clutter results in a slight drop of
localization (Table 1) and an increase in purity.

We note the results of others in the case of CT-MNIST
(M = 1) in Table 2. We observe that without supervision,
StampNet performance comes near these supervised alterna-
tives (using purity as the measure for comparison, i.e when all
stamps are labelled correctly). Note that these networks only
classify a single digit, while our model can discover multiple
digits in each image.

4.3. Pedestrian localization in overhead images

Overhead depth maps are an increasingly popular tool to per-
form high accuracy pedestrian tracking for studying the dy-
namics of human crowds in real-life venues (e.g. [21]). Over-
head depth maps come in form of grey scale images where
the value of each pixel encodes its distance from the cam-
era plane. In overhead depth view pedestrians have similar
“ovoid” shape, which is different from that of walls, objects



(a)

Input
Bounding

box Prediction Input
Bounding

box Prediction

(b)

(c)

Input
Bounding

box Prediction Input
Bounding

box Prediction

(d)

(e)

Input
Bounding

box Prediction Input
Bounding

box Prediction

(f)

(g)

Input
Bounding

box Prediction Input
Bounding

box Prediction

(h)

Fig. 2: The results of StampNet on four different datasets: Simple Shapes dataset (a,b), Translated MNIST (c,d), Cluttered
Translated MNIST (e,f) and Pedestrian Tracking dataset (g,h). Left: (a,c,e,g) stamps learned by our model in the Stamp Layer
(see Figure 1) Right: (b,d,f,h) samples of each dataset . The network predicts bounding boxes (orange) and places a stamp at
these locations to reconstruct the input image as close as possible.

and so on. The characteristics of this dataset make it a very
suitable for the StampNet’s object discovery capability.

We consider here a reduced depth dataset from the real-
life crowd tracking experiment [22], annotated with bounding
boxes (image size: 80 × 80, bounding boxes size 40 × 40.
See sample on the left side of Figure 2h, which displays a
pedestrian on the left side and a wall on the right side).

We test StampNet considering N = 40 stamps of size
40×40 and evaluate both the accuracy of the localization and
the capability of the network to differentiate between pedes-
trians and the wall on the side.

We illustrate samples of the results in Figure 2h and the
measures in Table 1. In both cases, we observe that the net-
work places one stamp on the pedestrian and two stamps on
the walls. The stamps extracted by the network (Figure 2g)
show that different objects are successfully captured by the
network, and, as evidenced by the high clustering purity, the
network is capable to differentiate between pedestrians and
walls. Furthermore, we obtain a CurLoc value of 0.78 show-
ing that we can localize with reasonable accuracy.

5. CONCLUSION

In this paper, we have introduced StampNet to localize multi-
ple objects from multiple classes in an unsupervised manner.
We accomplish this by incorporating the predictions of the
bounding boxes into an autoencoder, removing the need of
labels. We achieve this by placing the kernel of a convolu-
tional layer on predicted location coordinates (Figure 1).

The results in Figure 2d and 2f show that StampNet is
able to detect and localize overlapping MNIST digits without
the need for any labels. Furthermore, the network clusters the
shapes in the dataset as stamps (Figure 2e). We demonstrate
an example of the value of this in an application of pedestrian
tracking in overhead images.

Nevertheless, there are limitations to our model. The net-
work is only able to place stamps of a fixed size. Furthermore,
as we make use of the kernel of a convolutional layer, the net-
work can only capture simple prototypical shapes.

Future work can look into generating more complex ker-
nels for the stamp layer by making use of information from
the input.
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