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Abstract

High resolution magnetic resonance (MR) images are desired for accurate diagnostics. In practice, 

image resolution is restricted by factors like hardware, cost and processing constraints. Recently, 

deep learning methods have been shown to produce compelling state of the art results for image 

superresolution. Paying particular attention to desired hi-resolution MR image structure, we 

propose a new regularized network that exploits image priors, namely a low-rank structure and a 

sharpness prior to enhance deep MR image superresolution. Our contributions are then 

incorporating these priors in an analytically tractable fashion in the learning of a convolutional 

neural network (CNN) that accomplishes the super-resolution task. This is particularly challenging 

for the low rank prior, since the rank is not a differentiable function of the image matrix (and 

hence the network parameters), an issue we address by pursuing differentiable approximations of 

the rank. Sharpness is emphasized by the variance of the Laplacian which we show can be 

implemented by a fixed feedback layer at the output of the network. Experiments performed on 

two publicly available MR brain image databases exhibit promising results particularly when 

training imagery is limited.
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1. INTRODUCTION

High resolution MR images can provide rich structural information about bodily organs 

which is critical in analyzing a given medical condition. Often, the quality of these images is 

restricted by factors like imaging hardware, sensor noise, cost and time constraints. In such 

scenarios, the spatial resolution of these images can be enhanced by a well-designed 

mathematical algorithm. Simple and fast interpolation methods like bilinear, bicubic [1] 

have been widely used for increasing the size of low resolution (LR) medical images. In 

many cases, these methods are known to introduce blurring, blocking artifacts, ringing and 
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are thus unable to recover sharp details of an image. To alleviate this problem, an alternative 

approach known as super-resolution (SR) was introduced in [2]. Current literature on SR can 

be classified into two categories: multi-image SR and single-image SR.

In multi-image SR [2, 3], a HR image is generated by exploiting the information from 

multiple LR images which are acquired from the same scene with a slightly shifted field of 

view. However, these methods are likely to fail if an adequate amount of LR images from the 

same scene are not available. As an alternative approach, single image SR was introduced 

wherein multiple LR images from the same scene are not required to obtain a HR image. In 

this approach, a mapping between LR and HR images is learned by constructing examples 

from a given database [4–8].

Recently, deep learning methods have been shown to produce compelling state of the art 

results [9–15] for image SR. Invariably though, the training burden of deep networks, i.e. the 

number of example LR and HR images (or patches), is quite significant. In some medical 

diagnosis problems, generous LR and HR pairs is not a problem but there are compelling 

real-world problems such as enhancing 3T MR to 7T MR images [8], where the paucity of 

training has been recognized. There has been encouraging recent application of deep 

networks for MR image SR [16, 17] but the methods remain training intensive. An 

outstanding open challenge for deep MR image superresolution is the development of 

methods that exhibit a graceful degradation with respect to (w.r.t.) the number of training LR 

and HR image pairs.

Motivation and Contributions:

Our approach to improve deep MR image superresolution, even in the face of limited 

training is via the exploitation of suitable prior information pertinent to MR images. In [18], 

a model based SR approach is presented that uses low-rank (approximated by nuclear norm) 

and total variation regularizers. The authors in [18] validate that MR images from various 

parts of the body can be reconstructed with a peak signal-to-noise ratio (PSNR) of close to 

50 db by retaining only half of the singular values obtained by a singular value 

decomposition (SVD) of the image matrix. Despite this promise, using a rank or even its 

nuclear norm relaxation in a deep network for SR presents a stiff analytical challenge since 

neither is a differentiable function of the image matrix (and hence the network parameters). 

Our contribution includes incorporating a suitable approximation to the rank, which is 

smooth, differentiable and amenable for learning in a deep CNN framework. Additionally, 

recognizing the need for sharp well formed edges in diagnosis, we propose a sharpness prior 

realized via a variance of the laplacian measure which adds to the network structure at the 

output as a fixed (non-optimizable) feedback layer. We use a CNN for super-resolution 

(SRCNN) as described in [9] as our base network. Our SR method is then called deep 

network with structural priors (DNSP).
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2. DEEP LEARNING FOR MR IMAGE SUPER-RESOLUTION

2.1. Notation:

Let X ∈ ℝM×N represent the LR image where M and N are the width and height of the 

image respectively. Let Y ∈ ℝsM×sN be the output HR image and s is the desired scale to 

which X needs to be upscaled and Yg ∈ ℝsM×sN is the ground truth HR image for X. Let 

Wk
l ∈ ℝm × n × d be the kth convolutional filter in layer l where m n and d represent the width, 

height and depth of the filter respectively. Similarly, let bk
l ∈ ℝ be the kth bias coefficient of 

layer l. The objective of the network is to learn Wk
l  and bk

l  so that the output of the network Y 

is a close representation of the ground truth Yg. So, let Θ = Wk
l , bk

l ∀l, k. To make the size 

of input and output of the network the same, we first upscale X by a factor of s using bicubic 

interpolation and use this upscaled Xs ∈ ℝsM×sN as input to the network. Finally, let the 

mapping function of the network be represented by F where F (Xs, Θ) = Y.

2.2. Deep CNNs For SR

Deep learning methods are a class of machine learning methods which are inspired from 

biological neural networks. In general, a cascade of many nonlinear processing units are 

used to learn features to represent data effectively for a given task. In particular, a deep CNN 

for image SR usually consists of two or more convolutional layers (each layer essentially is a 

combination of filters followed by an activation function) which are used to learn an end-to-

end mapping between sample HR and LR images. For example, Figure 1 illustrates the 

SRCNN network [9, 16] for super-resolution. Each convolutional layer in the network 

consists of several learnable filters, which are convolved with output from the previous layer. 

For a given layer, outputs obtained by convoluting with each filter are combined to form a 

data cube which is passed through a nonlinear activation function and then forwarded as an 

input to next layer [19]. Most commonly used activation function in recent times is the 

Rectified linear unit (Relu) [20]. The input to the first layer is the image obtained after 

bicubic interpolation and the output of the last layer is the expected HR image. The filters 

are learned to minimize the loss function given by:

E Θ = 1
2 Yg − F Xs, Θ

F
2 (1)

where ǁ •ǁF represents the Frobenius norm.

3. DEEP NETWORKS WITH STRUCTURAL PRIORS

As discussed in Section 1, we integrate two priors into the learning of the CNN. Note that 

both the priors are to be applied on Y as it represents the desired output HR image. The two 

priors are as follows:
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Low Rank Prior:

It has been argued recently [18] that MR images are naturally rank deficient. However, the 

rank of a matrix is a non-differentiable function w.r.t. its input and therefore cannot be used 

as regularizer in a CNN. Most of the optimization problems with a low-rank constraint are 

solved by minimizing the nuclear norm of the matrix which is a convex relaxation for the 

low-rank constraint. However, this relaxation cannot be used in a CNN as the nuclear norm 

is also a non-differentiable function. Recently, a function which is smooth and differentiable 

was proposed in [21] that can approximate the rank of a matrix accurately. It is defined as:

Gδ Y = hδ σ Y (2)

where hδ σ Y = i = 1
R gδ σi Y , σi(Y ) represents the ith singular value of Y and

gδ x = exp − x2

2δ2 (3)

where δ is a tunable parameter that affects the measure of approximation error in finding the 

rank1. Intuitively Gδ (Y) gives the number of singular values of Y which are zero. Therefore, 

rank(Y) ≈ R−Gδ (Y). Let Rδ (Y) = R−Gδ (Y), where R = min(sM, sN). Now, the function 

Rδ (Y) is differentiable and its gradient w.r.t. Y is given by:

−Udiag −
σ1
δ2 e

−σ1
2/2δ2

, …, −
σR

δ2 e
−σR

2 /2δ2
ZT (4)

where SVD of Y =Udiag(σ1, …, σR)ZT.

Sharpness Prior:

HR images look much sharper compared to LR images. The main reason can be attributed to 

blurriness of the LR images. The pursuit of quantifying sharpness begins by computing the 

Laplacian (∇2Y) of the image [22]. The laplacian of a smooth/blurred image is more 

uniform compared to the laplacian of a sharp image. The variance of the Laplacian is hence 

an indicator of sharpness. As shown in Figure 2, an MR brain image is degraded by a 

gaussian filter with different blur parameters and plotted against the variance of laplacian. It 

can be observed that the variance of laplacian decreases as the blur parameter increases. 

Therefore, we propose to use V(Y) = var(∇2Y ) as a regularizer to encourage the CNN to 

yield sharper HR images. V(Y) is a quadratic function in Y and therefore a differentiable 

function which can be easily integrated into the CNN learning. Note that the laplacian of an 

image can be implemented by well-known linear filters [22], which are also easily integrated 

into the CNN via a filtering layer at the output as shown in Fig. 3.

1We chose δ = .01 based on guidelines mentioned in [21].
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Network Structure:

We incorporate the aforementioned two priors into the the basic SRCNN [9] framework and 

the proposed Deep Network with Structural Priors (DNSP) is shown in Fig. 3. Note that our 

priors can be integrated into any other deep SR network as well. There are 3 layers in DNSP: 

the first layer has 64 9×9×1 filters, the second layer has 32 1×1×64 filters while the final 

layer has one 5×5×32 filter. The output of each layer except that of the final layer is fed into 

ReLU to generate a nonlinear activation map [23]. We also use a 3×3 filter L = [[0 −1 0]T 

[−1 4 −1]T [0 −1 0]T ] after the final layer to compute the Laplacian and subsequently find 

the variance of Laplacian. Finally, the loss function of DNSP to be minimized is given by:

E Θ = 1
2 Yg − F Xs, Θ

F
2

MSE

+ αRδ Y
LowRank

− βV Y
SharpnessPrior

(5)

where, Y = F(Xs,Θ), α and β are positive regularization parameters2, note that negative sign 

before V(Y) is to increase the variance of Laplacian. Note that the SRCNN loss function in 

Eq (1) is a special case of Eq. (5). We learn Θ by minimizing E(Θ) using a stochastic 

gradient descent method [24, 25]. In particular, weights are updated by the following 

equation:

Θt + 1 = Θt − η ∂E
∂ Θt (6)

where, t represents the iteration number, η represents the learning rate, and Θt represents the 

values of weights at previous iteration. AsΘ = Wk
l , bk

l ∀l, k, following gradients are to be 

computed: ∂E

∂wk
l , ∂E

∂bk
l  where wk

l  denotes an arbitrary scalar entry in filter Wk
l . For simplicity, let 

output image Y be of dimension N×N. The equation for computing the gradient of weight wk
l

in layer l ∈ {1,2,3} is given by:

∂E
∂wk

l = − Yg − Y ◇ ∂Y
∂wk

l + αDRδ
◇ ∂Y

∂wk
l − βDV ◇ ∂Y

∂wk
l (7)

where ◇ between two matrices A and B is defined as ∑i,j Ai, jBi, j, 

DRδ
= − Udiag −

σ1
δ2 e

−σ1
2/2δ2

, …, −
σR

δ2 e
−σR

2 /2δ2
ZTis the gradient of Rδ (Y) and DV is the 

gradient for V(Y). The complete expression for DV is given by:

DV = vi, j , vi, j = di, j − 1
4 di − 1, j + di + 1, j + di, j − 1 + di, j + 1 ,

2We chose α = .1 and β = 5 × 10−5 by cross validation.
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di, j = 2
N2 N2 − 1

N2pi, j −

a b

pa, b −

m n

pm, n − a b pa, b

N2 ,

where P = [pi, j], and P is obtained by convolving Y with a 3×3 laplacian operator L. 

Expression for pi, j is given by:

pi, j = yi, j − 1
4 yi − 1, j + yi + 1, j + yi, j − 1 + yi, j + 1 , and Y = yi, j

Detailed derivations for the above equations are reported in a technical report at [26]. Note 

that the gradient for bias terms are also updated in a similar fashion. The partial derivative 
∂Y

∂wk
l  is obtained by a standard back propagation rule [24, 25].

4. EXPERIMENTAL EVALUATION

Databases:

We evaluate the proposed DNSP on two publicly available MR brain image databases. The 

first database is 20 simulated T1 brain image stacks from Brainweb (BW)3. Axial slices of 

these 20 stacks are distributed evenly for training and evaluation purposes. From each stack, 

we extract 40 slices making a total of 400 images for training and 400 images for evaluation. 

The second database we work with is from the Alzheimer’s Disease Neuroimaging Initiative 

(ADNI)4. The training and evaluation configuration for this database is same as that of the 

BW database.

LR image simulation:

Consistent with [18], we simulate training LR images by applying a gaussian blur and factor 

of 2 downsampling. These LR images are then upscaled by bicubic interpolation. To speed 

up the training process, we further extract patches of size 40×40 from these bicubic enlarged 

LR training images. Note that this is also a standard procedure used for training a typical 

deep SR network [9–11].

Methods and Metrics for Comparison:

Two standard metrics PSNR and structural similarity index (SSIM) [27] are used for 

evaluation. We compare against: 1.) Bicubic interpolation (Bb), 2.) a competitive model 

based approach with low-rank and total variation (LRTV) regularizers [18], 3.) example 

based super-res via sparse weighting (SRSW) [4] – a state-of-the art sparsity based method 

and 4.) SRCNN [9, 16] that is the most popular embodiment of a deep SR network.

3http://brainweb.bic.mni.mcgill.ca/brainweb/
4http://adni.loni.usc.edu/
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Table 1 shows PSNR and SSIM values for all competing methods. Two trends emerge from 

the results 1) DNSP outperforms the competition, and 2) Overall, deep SR methods, i.e. 

SRCNN and DNSP perform better. To confirm this statistically, we performed a 2-way 

Analysis of variance (ANOVA) on PSNR values for all the methods across the two datasets 

which is illustrated in Fig. 4. It may be inferred from Fig. 4 that deep learning methods are 

statistically well separated from the traditional methods and further DNSP is well separated 

from SRCNN indicating the effectiveness of using prior information. Figure 5 illustrates the 

results of top 3 methods w.r.t. PSNR on a sample image from the BW database. DNSP 

performs better in recovering finer image detail.

Figure 6 compares the performance of the learning based methods for different percentage 

of training samples considered on the ADNI dataset. Twenty five, 50 and 75 percent of the 

400 training images are employed. Two inferences can be made: 1) DNSP consistently 

outperforms SRCNN and SRSW, 2) The performance degradation of DNSP is more 

graceful. For example, PSNR values for SRCNN and SRSW dropped by almost close to 1db 

whereas for DNSP, the drop is around .5db, when the training drops to 25 percent. Note that 

LRTV is excluded for this comparison since this is model based and not an example/learning 

based technique [18].

5. CONCLUSION

We present a novel regularized deep network structure for MR image superresolution, which 

excels in varying training regimes. This is accomplished by using two structural priors on 

the expected output HR image: 1) a low-rank prior, and 2) a sharpness prior. While we 

demonstrate improvements by employing SRCNN [9] as our base network, our proposal is 

versatile and the proposed priors can be applied to extend other deep SR networks [10, 12, 

14, 15] as well.
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Fig. 1: 
SRCNN network.
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Fig. 2: 
Variance of the Laplacian vs increasing the blur parameter.
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Fig. 3: 
Deep Network with Structural Priors (DNSP) for MR image super-resolution. Note the prior 

processing (shown in orange) is used only in the learning of the network. For a given test LR 

input image X, the learned CNN is used to generate the output SR image Y.
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Fig. 4: 
2-way ANOVA comparing DNSP vs. competing methods. The intervals represent the 95 % 

confidence intervals of PSNR values for a given configuration of method-dataset. Values 

reported for ANOVA across the method factor are d f = 4, F = 1496.93, p≪.01.
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Fig. 5: 
Comparisons of top 3 methods w.r.t to PSNR for an image in BW data set. A small portion 

of the images (marked by green rectangle) in the first row is zoomed in and shown in second 

row.
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Fig. 6: 
PSNR vs percent training samples.
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Table 1:

PSNR and SSIM comparisons

Method Database PSNR SSIM

Bb
BW 29.09 .8369

ADNI 27.82 .8958

SRSW
BW 31.16 .50

ADNI 30.19 .77

LRTV
BW 30.46 .856

ADNI 30.50 .783

SRCNN
BW 32.37 .8762

ADNI 30.75 .938

DNSP
BW 32.76 .8788

ADNI 31.27 .9458
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