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ABSTRACT 
In this paper we formulate the Radon transform as a wn- 

volution integral over the Euclidean motion group (SE(2)) 
and provideaminimummean square error(MMSE) stochas- 
tic deconvolution method for the Radon transform inver- 
sion. Proposed approach provides a fundamentally new for- 
mulation that can model nonstationary signal and noise fields. 
Key components of our development are the Fourier trans- 
form over SE(2), stochastic processes indexed by groups 
and fast implementation of the SE(2) Fourier transform. 
Numerical studies presented here demonstrate that the method 
yields image quality that is comparable or better than the 
filtered backprojection algorithm. Apart from X-ray tomo- 
graphic image reconstruction, the proposed deconvolution 
method is directly applicable to inverse radiotherapy, and 
broad range of science and engineering problems in com- 
puter vision, pattern recognition, robotics as well as protein 
science. 

1. INTRODUCTION 

The Radon transform and its generalizations arise in diverse 
engineering applications, including medical imaging, syn- 
thetic aperture radar (SAR), radio astronomy and pattern 
recognition [I] .  The Radon transform plays an important 
role in image reconstruction problems because it wnstihltes 
a good model of tomographic acquisition process for X- 
ray CT, SPECT, PET and SAR. The problem of image re- 
construction is equivalent to computing the inverse Radon 
transform. 

In X-ray computed tomography, an X-ray beam with 
known energy is sent trough the object and the attenuated 
X-ray is collected by an array of collimated detectors. The 
attenuation in the final X-ray beam provides a means ofde- 
termining the integral ofthe mass density ofthe object along 
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the path of the X-ray. In 2D, the relationship between the 
mass density along the path and the attenuation at angle 8, 
and radius r, is given by the Radon transform: 

af(r,e) = L2f ( i l rz2 )6 (r  -cosei1 -s in~z*)dz ldz2 ,  

(1) 
where 6 is the Dirac delta function. Similarly, in PET and 
SPECT, the line projections and the attenuation coefficients 
are related by the Radon transform. The objective in X-ray 
tomography is to recover the function f from the measnre- 
ments Xf(r ,  @). 

Here, we propose a new forward model for Radon trans- 
form inversion by modeling projections as a convolution in- 
tegral over the Euclidean motion group and provide a mini- 
mum mean square error solution within a generalized Wiener 
filtering framework [2]. The proposed group theoretical ap- 
proach offers the following advantages: 

Fundamentally a new statistical formulation for the 
inversion of the Radon transform that can operate in 
nonstationary noise and signal fields. 
Can be utilized for radiation treatment planning and 
for inverse source problems. 
Potential applications in non-rigid body, such as car- 
diac imaging and local tomography. 
Ability to model finite beam width as opposed to infi- 
nite width X-ray beam assumption used for filter back 
projection algorithms. 
Directly applicable to a broad range of problems in 
computer vision pattern recognition, robotics, as well 
as protein science where Euclidean group convolution 
is extensively utilized [3]-[5]. 
Furthermore, group theoretic formulation of the prob- 
lem offers the possibility to develop optimal sampling 
and fast algorithm development for Radon transform 
inversion. Currently, most data acquisition systems 
sample data at uniformly spaced intervals. It is im- 
portant to analyze and understand the ramifications of 
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this sampling scheme in the reconstructed data for X- 
ray tomographic image reconstruction. Such a study 
may lead to an understanding of the reconstruction 
artifacts in standard image reconstruction algorithms 
and may provide methods to lessen them. 

The paper is organized as follows: In Section 2, group 
representations of SE(2)  followed by convolution integral 
representations ofthe Radon transform are provided. Fourier 
transform over SE(2) and its operational properties are given 
in Section 3. Wiener filteringover S E ( 2 )  is given in Section 
4. Algorithmic and numerical details are discussed in Sec- 
tion 5.  Numerical results are presented in Section 6. Lastly, 
Section I is the conclusion part. 

2. RADON TRANSFORM AS A CONVOLUTION 
OVER SE(2) 

The Euclidean motion group in two dimension is the semidi- 
rect product of the rotation group SO(2) and the additive 
group Rz. It is a locally compact topological group with el- 
ements g = g(r, @) consisting of a translationvector T E R2 
and a counter clockwise rotation angle 0 E (0, ZT).  Intu- 
itively speaking, the group operation is a rotation followed 
by a translation operation. To be precise, SE(2)  is a sub- 
group of 3 x 3 real matrices, GL2 (a), where each element g 
is represented with a translation vector 7' E RZ and a counter 
clockwise rotation angle e E [O, Z T ) ,  i.e., 

( 2 )  
The group operation is the usual matrix multiplication. 

Let fl and f2 be two real valued integrable functions de- 
fined over SE(2).  The convolution integral is given by 

Radon transform can be formulated as a convolution in- 
tegral over the Euclidean motion group, 

f3 fl *SE(Z)  f; (6) 

wherefi(r,@) = J ( T l ) h ( r , @ )  = f(-r) and f3(r& 
Xf(-@, - T I )  withy E RZ,O E [0,27r)andf'(g) = f(g-'). 
Observe that the above convolution formulation of Radon 
transform is equivalent to 

f: = f'2 *SE(Z)  f;. (7) 

With in the context of this formulation f1 is called as the 
blurring filter. In the following Sections, we shall introduce 
a Fourier domain solution for the group deconvolution prob- 
lem. 

3. FOURIER TRANSFORM OVER SE(2) 

In this section we shall provide the definition and the prop- 
erties of the Fourier transform over SE(2).  Detailed discus- 
sion ofthe topic can be found in [6] .  The unitary irreducible 
representations of SE(2) on the square integrable function 
of the unit circle are given by 

(u;~)(x) = e-'P('.")f(R(@)-l)x) (8) 

with a nonnegativep E R and g E SE(2).  The matrix ele- 
ments of the unitary irreducible representations can be ex- 
pressed as follows: 

1 2rr -<pi., cos*+r, Si.*) Um.n(grp) = Gi e 

x ein($-')d$, m, TI E z (9) 

Properties of unitary representations can be summarized by 
the following equation 

2L,,n(g-l,p) = Um,n(grP) = (-l)m-nu-m,-n(g,p). 
(10) 

Using the unitary representations, Fourier transform of any 
complex valued function over SE(2) is given by 

where is a nonnegative real number. The corresponding in- 
verse Fourier transform is given by 

y { j }  = Jm tTace(f(g)u;)p d p  (12) 
0 

Alternatively, the Fourier transform and its inversion can be 
expressed in terms of the matrix elements of the unitary ir- 
reducible representations as follows: 

Fourier transform over SE(2)  has properties similar to the 
ordinary Fourier transform. Letf, f1 and f2 be square inte- 
grable functions over SE(2). Then, 

1. If(g)l2dg = p IIfm,n(P)llfPdP, 
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2. 3{f1 *SE(2) f2) = 3{f2)3{fiI, 

3. P ( P )  = (f(P))t, 

where t denotes the adjoint operator. Note that using the 
matrix representation of the Fourier transform and the sec- 
ond property above, the Radon transform can be expressed 
in terms of matrix products for each p. 

4. WIENER FILTER OVER SE(2) AND 
INVERSION OF RADON TRANSFORM 

A second order stationary process over SE(2)  is defined 
as a random process with a covariance function, 7(s, t )  = 
E[z(s), 491, s, t E SE(2),  independent of transitive ac- 
tion of SE(2) 

(15) y(gs,gt)  = r(s,t), 9 E SW). 

ThusyisdefinedonSE(2) insteadofSE(2) x SE(Z),i.e., 

r(8,t) = y(t-'s, e )  = y(g ,  e )  = W ,  (16) 

where e is the identity element of S E ( 2 ) .  In other words, a 
second order stationary process on SE(2)  can be viewed as 
rotation and translation invariant process. In [2], a spectral 
density function for group stationary processes is defined 
via group Fourier transform. Namely, 

S(P) = 3m. (17) 

where m2 is the noise variance. This filter is also the linear 
least square filter with zeroth order Tikhonov regularization. 
ThereforeMMSE estimate of fz(r, e) = f(-r) is given by 

(21) 

In the following Section we shall address the numerical is- 
sues involved in the implementation of the Fourier trans- 
form of SE(2) and the Wiener filter. 

t A = 3-'{I,Voptf3 ). 

5. IMPLEMENTATION 

Fourier Transform over SE(2): A fast algorithm for the 
Fourier Transform over SE(2) based on fast Fourier trans- 
forms (FFT) was given in [4]. This algorithm is based on 
step wise computationof the integral of fim, usingthe inner 
product expression for matrix elements of unitary represen- 
tations, given in Equation 9, 

pm,b) = J J2- JZn F(T ,  @)e"* x (22) 
r€RZ 6=0 +=O 

xe"(PCos*.Psin*'(rr,~Z)) x e-m(*-@) d2T de d$, 

The integral is computed in 4 steps: 

1. ~ ~ ( p , e )  = J,, F(r, e)e i (pr)d2r ,  

2. Interpolate PI (p, +, e) = Fl (p, 0) from Cartesian 
coordinates to polar coordinates for each 8. 

For detailed information on stochastic processes over groups 
the reader is referred to [7]-[ti]. Let z and n be two zero 
mean, statistically independent stationary processes over SE(2) ,  

4. pmn@) = So2" [F,(")@,+)e-"@] e"*d$, 

referred to as signal and noise, respectively. Let the mea- 
surements y(g)  be the blurred and noisy signal given as, 

= 2 * S E ( 2 )  f + % (18) 

then the minimum mean square error filter in Fourier trans- 
form domain is given by 121 

c i b P t ( P )  = SZb)ftb) [i(P)SZ@)f+@) + Sn@)]-' I 

(19) 
where S, and S, are signal and noise power spectral density 
functions. Note that MMSE estimate ofthe signal inFourier 
domain is given by Wopt?j = 2. 

Ohserve that if there is no noise then the optimal filter 
is nothing but the inverse of the Fourier transform of f .  If 
there is no a priori information available on the unknown 
signal 2 and that the noise is "white" in the SE(2) sense, 
then the optimal Wiener filter for the Radon transform in- 
version can be written by 

The lSt, 3'd and 41k steps can be computed using the or- 
dinary Fast Fourier Transforms (FFT). If the sampling rates 
are given as in Table 1 then Fourier transform over SE(2) 
requires O(S3 log(S3)) total number of computations. 

r NE 1 Number of samples on SO(2) I O ( S )  I 
I N.. I Number of samnles on RZ I O f P )  I 

A$ 1 Number of samples on[O,27r) 

Table 1. Sampling in SE(2)  as an order of S ,  O(S) .  (N = 
NRN,, Nmn = N$") 

Bandlimitedness over SE(2): Note that the Fourier 
transform of any function on SE(2) does not necessarily 
have a finite rank. Therefore, for numerical implementa- 
tion, any function must he approximated by a finite num- 
her of harmonics based on the Fourier algorithm discussed 
above. 
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FFTsE(2) of functions over R’: Let f(ri! r z )  be a 
function defined over Rz. f can be treated as a 6’ invari- 
ant function over SE(2), f (g)  = f ( r - 1 , ~ ~ ) .  The matrix 
elements of the Fourier transfoqn of a Binvariant function, 
fm,” is independent of m, i.e. fm,” = fq,“. Therefore it is 
enough to compute one row of the matrix. 

Blurring filter: Note that the blumng filter is given 
by, h(r ,  0) = b(r1) . Assuming that the unknown object 
lies within the unit ball centered at origin, i.e. fz(r, 6’) = 
fz(r,B)w(r~)w(rz) = f2(r,B)w(rz),wberew(r) = lonly 
if lrl 5 1,tben f ~ ( r >  6‘) can be constructed as a periodic ex- 
tension of f ~ ( r ,  6’) = fl(r,B)w(r2) with period 2. As a 
result, the Fourier coefficients of fl, jl, becomes diagonal 
and non-negative, i.e. fl,, 2 0 when m = n and 0 other- 
wise. 

6. RESULTS AND DISCUSSION 

All numerical experimentswere performedusingthe Shepp- 
Logan phantom of size 129 x 129. All functions were zero 
padded in r1 and r~ directions to prevent aliasing. During 
the 2”d step of the Fourier transform, linear interpolation 
was used. Regularized linear least squares version of the 
Wiener filter for different u2 values was implemented. For 
U’ = 10-4,10-6, the reconstructed images are shown in 
Figure I. Visual comparison indicates that the proposed al- 
gorithm produce images that are comparable or better than 
that of standard filtered hackprojection(FBP) algorithm. The 
reconstructed images have sharper and more consistent edges 
than the images reconstructed by the FBP algorithm. 

7. CONCLUSION 

In this paper, we present a new formulation of the Radon 
transform as a convolution integral over the Euclidean mo- 
tion group and a deconvolutiou method based on the reg- 
ularized linear least squares version of the Wiener filtering 
method, developed in abstract harmonic analysis. The for- 
mulation and the proposed solution are applicable to a wide 
range of problems involving Radon transform and convo- 
lution integrals over the Euclidean motion group. Further- 
more, the deconvolution method allows nonstationary sig- 
nal and noise modeling. Numerical studies involving non- 
stationary noise and a priori knowledge are on going and 
will be reported in our future work. 
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