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ABSTRACT the path of the X-ray. In 2D, the relationship between the

In this paper we formulate the Radon transform as a con-
volution integral over the Euclidean motion group (SE(2))
and provide a minimum mean square error (MMSE) stochas-
tic deconvolution method for the Radon transform inver-
sion. Proposed approach provides a fundamentally new for-
mulation that can model nonstationary signal and noise fields.
Key components of our development are the Fourier trans-
form over SE(2), stochastic processes indexed by groups
and fast implementation of the SE(2) Fourier transform.
Numerical studies presented here demonstrate that the method
yields image quality that is comparable or better than the
filtered backprojection algorithm. Apart from X-ray tomo-
graphic image reconstruction, the proposed deconvolution
method is directly applicable to inverse radiotherapy, and
broad range of science and engineering problems in com-
puter vision, pattern recognition, robotics as well as protein
science.

1. INTRODUCTION

The Radon transform and its generalizations arise in diverse
engineering applications, including medical imaging, syn-
thetic aperture radar (SAR), radio astronomy and pattern
recognition [1]. The Radon transform plays an important
role in image reconstruction problems because it constitutes
a good model of tomographic acquisition process for X-
ray CT, SPECT, PET and SAR. The problem of image re-
construction is equivalent to computing the inverse Radon
transform.

In X-ray computed tomography, an X-ray beam with
known energy is sent trough the object and the attenuated
X-ray is collected by an array of collimated detectors. The
aftenuation in the final X-ray beam provides a means of de-
termining the integral of the mass density of the object along
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mass density along the path and the attenuation at angle 8,
and radius r, is given by the Radon transform:

Rf(r,0) = f Sflxr,22)6(r — cos Bz — sin fxg)dx; dzo,
R?

(1)
where § is the Dirac delta function. Similarly, in PET and
SPECT, the line projections and the attenuation coefficients
are related by the Radon transform. The objective in X-ray
tomography is to recover the function f from the measure-
ments R f(r, 8).

Here, we propose a new forward model for Radon trans-
form inversion by modeling projections as a convoiution in-
tegral over the Euclidean motion group and provide a mini-
mum mean square error selution within a generalized Wiener
filtering framework [2]. The proposed group theoretical ap-
proach offers the following advantages:

o Fundamentally a new statistical formulation for the
inversion of the Radon transform that can operate in
nonstationary noise and signal fields.

e Can be utilized for radiation treatment planning and
for inverse source problems.

o Potential applications in non-rigid body, such as car-
diac imaging and local tomography.

e Ability to model finite beam width as opposed to infi-
nite width X-ray beam assumption used for filter back
projection algorithms.

o Directly applicable to a broad range of problems in
computer vision pattern recognition, robotics, as well
as protein science where Euclidean group convolution
is extensively utilized [3]-[5].

o Furthermore, group theoretic formulation of the prob-
lem offers the possibility to develop optimal sampling
and fast algorithm development for Radon transform
inversion. Currently, most data acquisition systems
sample data at uniformly spaced intervals. It is im-
portant to analyze and understand the ramifications of
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this sampling scheme in the reconstructed data for X-
ray tomographic image reconstruction. Such a study
may lead to an understanding of the reconstruction
artifacts in standard image reconstruction aigorithms
and may provide methods to lessen them.

The paper is organized as follows: In Section 2, group
representations of SE(2) followed by convolution integral
representations of the Radon transform are provided. Fourier
transform over S F(2) and its operational properties are given
in Section 3. Wiener filtering over $ F(2) is given in Section
4, Algorithmic and numerical details are discussed in Sec-
tion 5. Numerical results are presented in Section 6. Lastly,
Section 7 is the conclusion part.

2. RADON TRANSFORM AS A CONVOLUTION
OVER SE(2)

The Euclidean motion group in two dimension is the semidi-
rect product of the rotation group SO(2) and the additive
group R2, Tt is a locally compact topological group with el-
ements g = g(r, #) consisting of a translation vector r € R?
and a counter clockwise rotation angle ¢ € [0, 2m). Intu-
itively speaking, the group operation is a rotation followed
by a translation operation. To be precise, SE(2) is a sub-
group of 3 x 3 real matrices, G L4 (IR}, where each element g
is represented with a translation vector » € R? and a counter
clockwise rotation angle § € [0, 27), i.e.,

cosf —sinf r
g(r,8)= ( Rg}) Il' ) =1 sinf cosf 1y
¢ 0 1

2)

The group operation is the usual matrix multiplication.

Let f; and fy be two real valued integrable functions de-
fined over SE(2). The convolution integral is given by

Ji*sE0) f2(9) = /

SE(2)

Fi(h) f2(h ™ g)dg (3)
2n
- fzjr? fjl;z A f1(R) f2(h™ g)dr1drodd @)

2
- (2;)2‘ f [R . ) Fi(RYfa(h ™ g)rdrdpd (5)

Radon transform can be formulated as a convolution in-
tegral over the Euclidean motion group,

fa=firse f2 (6)

WhEI‘Efl (r7 B) = 6(T1)sf2(r: 9) = f(—l‘) and fg(l‘,o) -
Rf(—8, —r1) withr € B2, 6 € [0,27) and f*{g) = f(g~2).
Observe that the above convolution formulation of Radon
transform is equivalent to

I3 =Ffarspe 1. M

With in the context of this formulation f; is called as the
blurring filter. In the following Sections, we shall introduce
a Fourier domain solution for the group deconvolution prob-
lem.

3. FOURIER TRANSFORM OVER SE(2)

In this section we shall provide the definition and the prop-
erties of the Fourier transform over S E(2). Detailed discus-
sion of the topic can be found in [6]. The unitary irreducible
representations of 5 E(2) on the square integrable function
of the unit circle are given by

(UZH)(x) = e P F(R(6) *)x) ®)

with a nonnegativep € R and g € SE(2). The matrix ele-
ments of the unitary irreducible representations can be ex-
pressed as follows:

1 2m i ) i
Umon (g’ p) — 5‘; f e—zqueAzp(rl o8 Y+7y sin ) »
]

x eM¥=Ody, mneZ (9)

Properties of unitary representations can be summarized by
the following equation

Unn(97Y P} = tumn(9:p) = (=)™ " tem,—n(g, D).
(10)
Using the unitary representations, Fourier transform of any
complex valued function over SE(2) is given by

SORHORY o OFds (D

where is a nonnegative real number. The corresponding in-
verse Fourier transform is given by

sty = [ T race(f@Unpdp  (12)

Alternatively, the Fourier transform and its inversion can be
expressed in terms of the matrix elements of the unitary ir-
reducible representations as follows:

Frum(®) = j f(@umn(a™p)dg  (13)
SE(2)

RO fu F@Vmm(g.pipdp. (14

m,neL

Fourier transform over SE(2) has properties similar to the
ordinary Fourier transform, Letf, f; and f2 be square inte-
grable functions over SE(2). Then,

L fSE(z) |f{g)*dg = Jr(;’c “fm,n(p)“fzzp dp,
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2. F{fi *sme2y f2} = F{2}F{ A1),
3. f) = (Fo,

where T denotes the adjoint operator. Note that using the
matrix representation of the Fourier transform and the sec-
ond property above, the Radon transform can be expressed
in terms of matrix products for each p.

4, WIENER FILTER OVER SE(2) AND
INVERSION OF RADON TRANSFORM

A second order stationary process over SE(2) is defined
as a random process with a covariance function, (s, t) =
Elxz(s), ()], s,t € SE(2), independent of transitive ac-
tion of SE(2)

=(s,t), g € SE(2). as)
Thus v is defined on SE(2) instead of SE(2) x SE(2),ie.,

v(s,t) =t 7"s,) =v(g,e) =T(g),  (16)

where e is the identity element of SE(2). In other words, a
second order stationary process on SE(2) can be viewed as
rotation and translation invariant process. In [2], a spectral
density function for group stationary processes is defined
via group Fourier transform. Namely,

S(p) = F{T}. (17)

For detailed information on stochastic processes over groups
the reader is referred to [7]-[8]. Let x and n be two zero

v(gs, gt)

mean, statistically independent stationary processes over SE(2),

referred to as signal and noise, respectively. Let the mea-
surements y(g) be the blurred and noisy signal given as,

y=x*gg) f+n, (18)

then the minimum mean square error filter in Fourier trans-
form domain is given by (2]

. . . . ~1
Wan(p) = 5:(0) /1 (0) [f2)S.0) F10) + 5u)]
(19)
where S; and S, are signal and noise power spectral density
functions. Note that MMSE es~tunate of the signal in Fourier
domain is given by Wopgy =i
Observe that if there is no noise then the optimal filter
is nothing but the inverse of the Fourier transform of f. If
there is no a priori information available on the unknown
signal & and that the noise is “white” in the SE/(2) sense ,
then the aptimal Wiener filter for the Radon transform in-
version can be written by

Wolo) = o) [ @ i) 021, 20)

where o is the noise variance. This filter is aiso the linear
least square filter with zeroth order Tikhonov regularization.
Therefore MMSE estimate of f2(r, 6) = f(—r) is given by

fo= F U Wopefy' ). @1

In the following Section we shall address the numerical is-
sues involved in the implementation of the Fourier trans-
form of SE(2) and the Wiener filter.

5. IMPLEMENTATION

Fourier Transform over SE(2): A fast algorithm for the
Fourier Transform over SF(2) based on fast Fourier trans-
forms (FFT) was given in [4]. This algerithm is based on
step wise computation of the integral of F,,,, using the inner
product expression for matrix elements of unitary represen-
tations, given in Equation 9,

Frn(p) = / / Flr,@)e™¥ x  (22)
€R? =0

Xe:(pcoswpsmw {r1,72)) « e—mhb [))] di‘,’, dg dv.

The integral is computed in 4 steps:
L. Fi(p,8) = fga Flr,0)e'®PDd?r,

2. Interpolate Fi(p,#,0) = Fi(p,0) from Cartesian
coordinates to polar coordinates for each 8.

3 B 0,9) =[50 Fi(p, v, 0)e™0ds,

4. Fpnlp) = [77 [FSP 0,006 emvay,

The 1°¢, 37 and 4*" steps can be computed using the or-
dinary Fast Fourier Transforms (FFT). If the sampling rates
are given as in Table 1 then Fourier transform over SE(2)
requires O( 5% log(5%)) totat number of computations.

Ng | Number of samples on S0O(2) 0(5)
N; | Number of samples on R? 0(57)
N Total number of samples on SE(2) | O(S%)
N, Number of samples on p interval o(s)
Ny | Number of samples on [0, 27) 0(S)
Norn | Total number of harmonics O(5?%)

Table 1. Sampling in SE(2) as an order of S, O(8). (N =
NRNr, Nmn = NpNu’))

Bandlimitedness over SE(2): Note that the Fourier
transform of any function on SE(2) does not necessarily
have a finite rank. Therefore, for numerical implementa-
tion, any function must be approximated by a finite num-
ber of harmonics based on the Fourier algorithm discussed
above.
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FFTsgz of functions over R?: Let f(ri,r2) be a
function defined over R?. f can be treated as a § invari-
ant function over SE(2), f(g) = f{r1,r2). The matrix
elements of the Fourier transform of a # invariant function,
fm » is independent of m, i.e. fm n = fq »- Therefore it is
enough to compute one row of the matrix.

Blurring filter: Note that the blurring filter is given
by, fi(r,8) = §(r1) . Assuming that the unknown object
lies within the unit ball centered at origin, i.e. fo{r,8) =
Fa(r, 0)w(r) Yw(re) = fa(r, B)w(rs), where w(r) = 1 only
if |r] < 1then fi(r,#) can be constructed as a periodic ex-
tension of fi(r,0) = fi(r,8)w(ry) with period 2. As a
result, the Fourier coeﬁ‘iments of fi, f1, becomes diagonal
and non-negative, i.e. f;,,m > 0 when m = n and 0 other-
wise.

6. RESULTS AND DISCUSSION

All numertcal experiments were performed using the Shepp-

Logan phantom of size 129 x 129. All functions were zero

padded in r; and r2 directions to prevent aliasing. During

the 2 step of the Fourier transform, linear interpolation

was used. Regularized linear least squares version of the

Wiener filter for different o2 values was implemented. For

02 = 1074, 1076, the reconstructed images are shown in

Figure 1. Visual comparison indicates that the proposed al-

gorithm produce images that are comparable or better than

that of standard filtered backprojection (FBP) algorithm. The
reconstructed images have sharper and more consistent edges
than the images reconstructed by the FBP algorithm.

7. CONCLUSION

In this paper, we present a new formulation of the Radon
transform as a convelution integral over the Euclidean mo-
tion group and a deconvolution method based on the reg-
ularized linear least squares version of the Wiener filtering
method, developed in abstract harmonic anaiysis. The for-
mulation and the proposed solution are applicable to a wide
range of problems involving Radon transform and convo-
lution integrals over the Euclidean motion group. Further-
more, the deconvolution method allows nonstationary sig-
nal and noise modeling. Numerical studies involving non-
stationary noise and a priori knowledge are on going and
will be reported in our future work.
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