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Abstract—Side effects of prescribed medications are a com-
mon occurrence. Electronic healthcare databases present the
opportunity to identify new side effects efficiently but currently
the methods are limited due to confounding (i.e. when an
association between two variables is identified due to them both
being associated to a third variable).

In this paper we propose a proof of concept method that
learns common associations and uses this knowledge to automat-
ically refine side effect signals (i.e. exposure-outcome associations)
by removing instances of the exposure-outcome associations that
are caused by confounding. This leaves the signal instances that
are most likely to correspond to true side effect occurrences. We
then calculate a novel measure termed the confounding-adjusted
risk value, a more accurate absolute risk value of a patient
experiencing the outcome within 60 days of the exposure.

Tentative results suggest that the method works. For the four
signals (i.e. exposure-outcome associations) investigated we are
able to correctly filter the majority of exposure-outcome instances
that were unlikely to correspond to true side effects. The method
is likely to improve when tuning the association rule mining
parameters for specific health outcomes.

This paper shows that it may be possible to filter signals at a
patient level based on association rules learned from considering
patients’ medical histories. However, additional work is required
to develop a way to automate the tuning of the method’s
parameters.

I. INTRODUCTION

Medications are prescribed to patients suffering from mor-
bidities with the aim of improving the health of patients health.
Unfortunately, the majority of medications will also induce
some negative side effects referred to as adverse drug reactions
(ADRs). Clinical trials and other research present a clear view
of the positive effects of medication but are often insufficient
for obtaining information about ADRs [1]. This has prompted
researchers to develop methods that can identify unknown
ADRs efficiently via a process known as pharmacovigilance.

The first stage of identifying an ADR is to generate a
signal, a previously unknown association between an exposure
(e.g. a drug) and health outcome. If an exposure causes an
outcome, then the exposure and outcome will be associated.
However, only because an exposure and an outcome are
associated, they may not have a causal relationship, e.g. there
could be a third confounding factor. As a consequence, it
is important to filter ADR signals (associations) and remove
those that are unlikely to correspond to causal relationships
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(true ADR will be a causal relationship). Therefore, the
generated signals need to be actively monitored during the
process of signal refinement. The signals that are most likely
to correspond to ADRs or where the corresponding health
outcomes are very severe (e.g., death) are then evaluated via
formal epidemiological investigations.

Signal generation using electronic healthcare databases has
been a recent focus of attention and various methods have been
presented [2], [3], [4]. Due to the high false positive rates of
these signal generation methods (i.e. they often signal drug and
health outcome associations that are non-causal) [5], [6], it is
imperative that new methods are developed that can further
filter the signals and reduce the false positive rate. This would
enable the signal evaluation to occur at an earlier point in time
and decrease the overall time it takes to come to a conclusion
about the signal.

Recently, a refinement method using a logistic regression
has been proposed [7]. This method fits a logistic regression
to predict the occurrence of the health outcome using a binary
independent variable indicating whether the drug that is po-
tentially responsible for causing the health outcome is present
and then fits another similar logistic regression but incorporates
additional independent variables that may be confounding the
relationship between the drug and health outcome. If the
weight given to the drug indication variable in the trained
logistic regression decreases when potential confounders are
considered, then the authors argue this suggests that the drug
is unlikely to cause the health outcome. Justification is that
if the drug causes the health outcome then the parameter
representing the increase in odds ratio caused by taking the
drug should be consistent and not be affected by including
additional covariates into the model. Although this method
has merit, the downsides are that it is difficult to automate. It
requires identifying possible confounders and training multiple
logistic regressions for each signal. This is time consuming.

Other researchers have argued that the majority of health
outcomes suspected of being ADRs are due to pre-existing
illnesses. To remove these suspected ADRs that are caused by
pre-existing illnesses, natural language processing techniques
have been applied to written reports often found within elec-
tronic healthcare databases [8]. It was shown that these reports
can be used to reduce the false positive rates, but the written
reports may not always be available. Alternative methods need
to be developed for when written reports are absent.



Our starting point is to consider more closely how a
medical expert works and if we can automate this. Experts
are able to apply their knowledge and experience to identify
when a patient is the likely recipient of an ADR. They can
look at a patient’s medical history and current state to identify
possible alternative causes of the health outcome. This prompts
the idea of using association rule mining to identify common
patterns involving drugs and health outcomes and then filter
instances when a signal’s corresponding health outcome has
a potential alternative explanation. This novel association rule
refinement method does not require written reports, although
it would probably only be suitable for electronic healthcare
databases with a few years of patient history.

The objective of this paper is to present a proof of concept
detailing how association rules [9] could be used to automati-
cally refine ADR signals. In addition to the proof of concept,
tentative results are presented for the automatic refinement
when considering four signals that have occurred within The
Health Improvement Network database for the quinolone drug
family.

II. MATERIALS AND METHODS
A. The Health Improvement Network

The health improvement network (THIN) database is a UK
general practice database containing medical and prescription
records for millions of patients. The validity of the database
has been evaluated [10] and it seems a suitable source for
pharmacovigilance. The records have a date stamp, but the
time that each record was entered is not recorded. The THIN
database also contains information about the patients including
their year or births, their genders and summary details of the
demographics within their practices. We decided to partition
the THIN database into two sets. One set contains complete
medical records for a subset of randomly selected patients
that will be used to develop novel methods and the other set
contains complete medical records for the remaining patients
that will be used to evaluate and validate the new methods that
are developed. Therefore, in this paper we use the first subset
of patients within the THIN database and this corresponds
to a total of approximately 4 millions patients. The THIN
database contains two hierarchical structures. Health outcomes
are recorded via a tree structure known as Read codes and
prescriptions have an associated British National Formula
(BNF) code [11] that also has a tree structure.

The Read codes are used to recorded health outcomes
and have five levels of detail. Each Read code corresponds
to a health outcome description such as an observation, a
procedure or an administrative event. The Read code consists
of five values, x1 o231 425, where each value is either from the
upper-case Latin alphabet, from the lower-case Latin alphabet
oradot, x; € {A— Z,a— z,e}. The level of a Read code X
is defined as,

I(X)= argmlax{i € [1,5)|z; # o} (1)

The higher the Read code level, the more specific the corre-
sponding medical event description is. The Read codes have a
tree structure. For Read code X, its direct parent’s Read code
Y is,
] oz if i <l(X)
Yi=19 o otherwise

(@)

Level Level Level Level Level
1 2 3 4 5
Fig. 1. An overview of the read code hierarchy.
and its level k € [1, 5] Read code, denoted X |, is,
. T ifi <k
Li = { o otherwise @)

For example, considering the Read code Allzz, its direct
parent is Allze, its level 3 parent is A1l e e, its level 2 parent
is Al e ee and its level 1 parent is A @ @ @ . A child Read
code corresponds to a more detailed health outcome than its
parent’s Read code. The Read code A e e o @ corresponds to
‘infectious and parasitic infections’, whereas the child Read
code Al e ee corresponds to ‘ Tuberculosis’. An examples is
presented in Figure 1.

The BNF codes also have a hierarchical tree structure. Each
BNF code consists of four levels in the form, bi.b5.b3.b4,
where each b; € Z. The BNF codes show a relationship
between drugs based on their indications (causes of taking the
drug). The level k € [1,4] BNF code of B, denoted B|y, is

calculated by,
R b;

Validation steps are implemented when the THIN data
are being collected but issues are still known to arise. The
main problem is due to patients changing general practice,
e.g. by moving home. Patients are not tracked within the
THIN database, so if a patient moves practice, he will be
assigned a new unique ID. It is common for newly registered
patients’ pre-existing illnesses to be re-entered into THIN
with ’incorrect’ (i.e. new) dates. For example, after a patient
registers at a new practice, his doctor is likely to enter his
pre-existing illnesses when the doctor finds out about them
during his initial visits, but the dates of these records will
be different to the actual dates when the illnesses started. To
prevent this biasing the analysis, the first 12 months of a newly
registered patient’s drug records are excluded from the analysis
of identifying drug side effects. Previous studies showed that
the bias is sufficiently reduced when the first 12 months of
medical records are removed [12]. Drug prescriptions recorded
within the last month of the THIN database being generated are
also excluded from the analysis of identifying drug side effects
to prevent under-reporting. Thi sis because if a patient had a
drug recorded on the last day that the records were collected
for the version of the THIN database used in the study, then
it will not be possible to have a full record of any side effect
that may have occurred.

if i <k
otherwise

“



B. Association Rule Mining

Association rules mining is frequently applied to transac-
tion data, such as items purchased at a supermarket, to find
rules of the form {antecedent} => {consequence} (read as a
set of antecedent events that frequently precede the occurrence
of a set of consequent events) that occur in shopping baskets.
An example of an association rule is, {pasta, tomato sauce}
=> {cheese}, where this rule can be considered to mean
shoppers that buy pasta and tomato sauce are also likely to
buy cheese. In a similar manner, patients medical baskets can
be constructed based on the records they have in the THIN
database and association rule mining can be applied to find
medical association rules. Due to the number of possible rules
being very large, association rule are often restricted so that
only interesting rules are discovered.

The formal problem of association rule mining is: Let
I = {iy,k € [1,n]} be a set of n items and let D = {t; C
I,k € [1,m]} be a set of m baskets called the database. An
association rule is an implication, X => Y, where XY C I
are itemsets and X NY = . X is referred to as the antecedent
and Y is the consequence.

In shopping data, interesting rules are generally those that
will be found in lots of shopping baskets and the probability of
a basket containing the consequent event given the antecedent
is high. To mine these sorts of rules two common measures
are used, the support and the confidence.

Support: The support of an itemset X is the proportion of
baskets within the database that contain X,

supp(X) = [{t; € D|X C t;}|/m, )

where the cardinality of X is denoted | X | (the number of items
in the itemset). The support of an association rule X => Y
is,

supp(X =>Y) = |{t; e DIXUY C ¢;}|/m (6)

this is approximately the probability of finding both the itemset
X and itemset Y within a randomly chosen basket.

Confidence: The confidence of a rule X => Y is the pro-
portion of baskets that contain the antecedent and consequence,
X UY, divided by the proportion of basket that contain the
antecedent X,

conf(X =>Y) = supp(X UY)/supp(X) )

The confidence of an association rule X => Y is approxi-
mately the conditional probability of a randomly chosen basket
containing the itemset Y given it contains the itemset X.

The support and confidence are used as follows. The
user inputs a minimum support constraint and a minimum
confidence constraint that restricts the output rules to those
that have a support greater than the minimum support and a
confidence greater than the minimum confidence. This is not
suitable for mining medical baskets as we are still interested in
rules that occur relatively less often, so the minimum support
constraint may prevent many rules of interest being found.
For example, if a health outcome is relatively rare, then the
support of medical itemsets that contain the health outcome
are unlikely to be greater than a minimum support unless is
it set very low (which then causes computational efficiency
issues).

TABLE L THE OBSERVED CONTINGENCY TABLE FOR THE

ASSOCIATION RULES X => Y.

‘ Y not Y
X 01 02
(supp(X UY)) (supp(X) — supp(X UY))

not X O

3 O4
(supp(Y) — supp(X UY))

1 — supp(Y) — supp(X) +
supp(X UY))

TABLE II. THE EXPECTED CONTINGENCY TABLE FOR THE
ASSOCIATION RULES X => Y.
| Y not Y
X E; E-
(supp(X)supp(Y) ) (supp(X)(1 — supp(Y)))
not X E3 E4

(supp(Y)(1 — supp(X))) (1 — supp(Y) — supp(X) +

supp(X)supp(Y))

Left Support: When a consequence item occurs rarely in
the database, rather than using the support constraint the left
support constraint is often more suitable. The left support is
the number of shopping baskets that contain the antecedent
divided by the number of shopping baskets,

leftSupp(X =>7Y) = supp(X) ()

The left support of the association rule X => Y is the same
as the support of the itemset X. By using the left support
constraint, it is possible to mine association rules X => Y
where the itemset Y is rarely contained in a basket. For
example, if the itemset X has a support of 0.01, the itemset Y
has a support of 0.001 and X is always found in a basket
that contains Y. The rule Y => X is interesting and it
could be used to help predict X, but it only has a support
of 0.001. If a minimum support of 0.005 was used to find the
association rules then this rule would not be found. However,
if the minimum left support constraint of 0.005 was used,
then the rule would be identified (as the left support is 0.01).
This shows the advantage of using the left support when a
consequence is rare (i.e. has a low support).

Lift & Chi-squared: Two more measures of interesting-
ness that may be useful for detecting medical association rules
are the lift (a measure of association) and the chi-squared value
(the significance of the association),

lift(X =>Y) = supp(X UY)/(supp(X) x supp(Y)) (9)
X* =) _(0i - E)*/E; (10)

The lift calculates the number of baskets that the association
rule was found in divided by the number of baskets you would
expect the rule to be found in if the itemsets X and Y were
independent. A large lift indicates that there is a dependency
between itemsets X and Y. The chi-squared value of an
association rule, X => Y, uses the observed O, and expected
E; values as described in contingency tables I-11,

To generate association rules for the THIN database we
consider the following items: gender, Read codes up to level 3
(i.e. a level 4 or level 5 Read code of the form zix2x3240 and
T1T2T3T4T5, respectively, is mapped to its parent level 3 Read
code r1x2x3ee) and BNF codes up to level 2 (i.e. any level 3
or 4 BNF code of the form y;.y2.y3.0 or ¥1.y2.y3.y4 is mapped
to its parent level 2 BNF y;.y2.0.0 ). This mapping was done
to reduce the number of items and speed up the association
rule discovery. A medical basket is created for each patient in



the THIN database who was active for a total of 24 months
or more containing their gender, all their level 3 mapped Read
codes and level 2 mapped BNF codes recorded in the database.
The association rule mining is then applied to the database
containing these medical baskets with a minimum left support
constraint of 0.001 and a minimum confidence support of
0.01. The set of all association rules mined from the database
satisfying the constraints is denoted by T'H I Narules. These
parameter values are based on discussions with clinical experts.

The minimum confidence of 0.01 means only rules where
a minimum of 1% of the baskets containing the antecedent
also contain the consequence are returned. The value was
chosen to be small, as we want to investigate the confidence
values for the rules found in this paper. A consequence that
occurs in less than 1% of people with the antecedent is not
useful as it is rather unlikely that a patient will experience the
consequence given they have the antecedent, so the rule is not
useful for prediction the consequence. Using a minimum left
support of 0.001 means we only get rules where the antecedent
occurs for 1 in 1000 patients, this was chosen due to the
minimum confidence. As there are 4 million baskets, the rules
of interest require that 4000 baskets contain the antecedent
when the minimum left support is 0.001. A minimum of 40
of these baskets must also contain the consequence when the
minimum confidence is 0.01. Therefore using these constraints
ensure that the rule occurs in a minimum of 40 baskets. If the
minimum left support was reduced to 1 in 10000, then we
could get rules that were only found in 4 baskets. These rules
are likely to occur by chance and the majority of the rules
mined will be useless. Therefore we decided the minimum
support of 0.001 was suitable and this also ensured the useful
association rules were mined efficiently.

C. Novel Refinement Method

The proposed refinement method is an unsupervised tech-
nique that takes as input an ADR signal consisting of a drug
of interest (DOI) and health outcome of interest (HOI) pair
(DOI-HOI). The method then returns a refinement score for
the DOI-HOI pair corresponding to a confounded-adjusted risk
value. This score can be used to identify which ADR signals
should be formally evaluated by epidemiological hypothesis
testing methods. The refinement method finds all the instances
in the database where a patient is prescribed the DOI and
then experiences the HOI within two months. In summary, the
method works by filtering any instance of the DOI-HOI where
the HOI is expected based on other medical events that the
patient experienced prior to the HOI. The absolute risk of the
HOI occurring within two months of the DOI exposure is then
calculated, but the occurrences of any HOI that is expected are
ignored. This then leaves us with the confounding-adjusted risk
value. Removing ’expected” HOIs was previously considered
in the MUTARA method [3], but they only consider a HOI to
be expected when a patient had the same HOI during some
time period shortly before the drug. They do not consider
determining expectation based on using associations with other
drugs, health outcomes or based on gender. An overview of
the novel association rule based methodology is presented in
Figure 2.

The step-by-step process for the refinement is:

Fig. 2. An overview of the refinement framework that generates the
confounding-adjusted risk for any DOI-HOI selected.

DOI-HOI
Signal

Signal Instances
All instances of HOI occuring
between 1 and 60 days after the
DOI. Triplets in the form (Patient,
Date of DOI, date of HOI)

\ Identify rule occurrence /

For each instance identify any HOI
assocation rules antecedent
occuring prior to the date of HOI

M

Generate Features
For each instance calculate the number
of HOI assocation rule antecedents
found in the patient's basket, the
maximum confidence, lift and chi-
squared of any rule, etc.

\

Refine Instances
Filter signal instances that are
expected: those with a HOI association
rule antecedent occruing before the
HOI with a lift greater than 1.

Learn HOI
—J» Association Rules

TH I N All rules of the form

{atecedent} => HOI

Calculate Confounding-

ad;usted Risk
Total unekpected DOI-HOI instances

divided by total DOI exposures

1) Identify signal instances: The instances of a DOI-HOI
signal are the cases when a patient is prescribed the DOI for the
first time and experiences the HOI between 1 and 60 days after.
These are the patients that appear to experience the potential
ADR. The set of signal instances consists of triplets containing
the patient experiencing the DOI-HOI signal, the date that the
DOI was recorded for the patient and the date that the HOI
was record for the patient such that the date of the HOI lies
between 1 and 60 days after the date of the DOI.

In this paper the DOI is the quinolone drug family. We se-
lected four different HOIs that were associated with quinolones
when considering the after/before (AB) ratio. The AB ratio
is a basic measure of association that calculates the number
of distinct prescriptions of the quinolones that have the HOI
recorded during 1 and 60 days after the prescription divided by
the number of distinct prescriptions of the quinolones that have
the HOI recorded during 60 and 1 days before the prescription.
This measure of association is quick to calculate but generates
numerous signals that require refining. Table III presents the
number of instances for each DOI-HOI signal investigated in
this paper.

2) Identify HOI association rule occurrence: We extract
the HOI association rules from the association rules mined
from the THIN database. As the association rules contained in
THINarules only contain level 3 versions of a Read code,
when refining a level 4 or 5 version we use their level 3 HOI's
association rules. The HOI association rules are all the rules
{antecedent} => {HOI} € THINarules. These are the
rules with the HOI as the consequence.

For each DOI-HOI instance, we then investigate the items
(level 3 Read code, level 2 BNF and gender) recorded for
the patient up to the date that the HOI occurred and identify if



TABLE IIIL

THE QUINOLONE-HOI SIGNALS INVESTIGATE IN THIS PAPER.

HOI Read code
Candidiasis AB2
Sudden death, cause unknown R21
Multiple organ failure C19
Secondary malignant neoplasm B572

the patient had the items corresponding to any HOI association
rules antecedent recorded. This tells us whether their recording
of the HOI has a plausible non-DOI explanation. The measures
such as confidence, chi-squared and lift of each identified HOI
rule give insight into how likely the alternative causes are to
blame for the patient’s HOI occurrence rather than the DOIL.

In detail, for each instance we determine whether the
patient’s medical basket composed of the items recorded before
the HOI contains any HOI association rule’s antecedent, we
calculate the maximum lift, the maximum confidence and the
maximum chi-squared values when considering all the HOI
association rules where all the antecedent items are recorded
for the patient before the HOI was recorded. So for each
instance of the DOI-HOI, we have a binary value indicating
whether there was any alternative cause of the HOI, and three
real values that given insight into the association between any
alternative cause and the HOL

3) Refine instances: Using the features we consider the
HOI as ‘expected’ for any instance where an alternative
potential cause of the HOI was identified and the alternative
cause corresponded to an antecedent of a HOI association rule
with a lift greater than 1. This lift was chosen as this indicates
whether the antecedent is associated to the HOI. Therefore,
any antecedent corresponding to a HOI association rule with
a lift greater than 1 is likely to be a confounder for the HOI.

Overall summary values for the DOI-HOI are then cal-
culated based on aggregating the DOI-HOI instance values.
These include the number of instances that have an alternative
cause, the number of instances that have a maximum lift
greater than 1 and the average of the instances maximum
confidence and chi-squared values. This is the first study
aiming to use association rules to refine DOI-HOI instance, so
we do not know which association rule measures will be most
informative. By calculating different measures in this study we
can gain insight into the measures that are useful.

4) Calculate confounding-adjusted risk: The confounding-
adjusted risk is calculated as the number of unexpected in-
stances of the DOI-HOI divided by the number of instances
of the DOIL

D. Example

The refinement methodology is now detailed using a made
up example of a medical database. Assume we are investigating
the signal DOI1-HOIS. We find that 25 patients are prescribed
DOIl within the database and we extract a subset of the
database containing all the patient records for patients who
have HOIS recorded within 1 and 60 days from DOII, this is
presented in Table IV.

The DOI1-HOIS instances are: (1,05/06/2003,01/08/2005),
(2,28/06/2001,14/08/2001), (3, 21/3/2010,22/3/2010) and (4,
1/1/2011, 5/1/2011) as we only consider the first time a patient

AB ratio Instances HOI rules
1.27 3388 6251720
73 73 11219
9 9 1
5 5 216262
TABLE IV. THIS IS A TABLE OF THE RECORDS FOR THE INSTANCES
EXPERIENCING THE SIGNAL DOI1-HOI5 WITHIN THE MADE UP EXAMPLE
DATABASE.
RecordID Patient Item Date
1 1 DOII 05/06/2003
2 1 DOI2 06/07/2003
3 1 HOI1 07/07/2003
4 1 DOI2 01/08/2005
5 1 HOI5 01/08/2005
6 1 HOIS 08/09/2005
7 2 HOI3 15/01/1999
8 2 DOI2 17/01/1999
9 2 DOIl  28/06/2001
10 2 HOI5 14/08/2001
11 2 HOI3 27/01/2005
12 3 DOI2 23/11/2009
13 3 DOI2 23/1/2010
14 3 HOI3 19/3/2010
15 3 DOI2 21/3/2010
16 3 DOIl 21/3/2010
17 3 HOI5 22/3/2010
18 3 HOI2 22/3/2010
19 4 DOI1 1/1/2011
20 4 HOI5 5/1/2011
TABLE V. EXAMPLE HOIS5 RULES EXTRACTED.
ruleID Antecedent Consequence leftSupp conf X2 lift
1 DOI2 HOI5 0.0012 0.03 200 14
2 HOI127,DOI12 HOI5 0.001 0.02 150 1.1
3 HOI3 HOI5 0.0015 0.013 160 1.5
4 HOI3, DOI2 HOI5 0.001 0.02 134 1.3

is prescribed DOI1. Using the whole THIN database we find
association rules of the form {antecedent}=> {HOI5}. The
HOIS rules extracted are presented in Table V.

For each instance, we now search their items up to the
point the record of HOIS suspected to being caused by
DOII is recorded and identify whether any of the HOIS
rule antecedents are present. For the instance (1, 05/06/2003,
01/08/2005), the HOIS antecedents of ruleID 1 are present, so
for this instance there is 1 HOIS association rule, the maximum
confidence, chi-squared and lift is therefore 0.03, 200 and
1.4 respectively. The records for instance (2, 28/06/2001,
14/08/2001 ) up to the HOIS recorded on 14/08/2001 contain
the antecedents of ruleIDs 1,3 and 4. Therefore the total
number of HOIS association rules is 3, the maximum con-
fidence is 0.03 (the max out of 0.03 ,0.013 and 0.02), the
maximum chi-squared is 200 (max out of 200, 160, 134) and
the maximum lift is 1.5 (max out of 1.4, 1.5, 1.3). The instance
(3, 21/3/2010, 22/3/2010) also has the antecedents of ruleIDs
1, 3 and 4 occurring before the HOIS recorded on 22/3/2010,
so its total number of HOIS5 association rules is 3 and its
maximum confidence, chi-squared and lift are 0.03, 200 and
1.5 respectively. The final instance 4 does not experience any
HOIS association rule antecedent prior to the HOIS recorded
on 5/1/2011, this instance has 0 HOI5 association rules and its
maximum confidence, chi-squared and lift are all 0.

As three of the four DOI1-HOIS5 instances had a HOIS
association rule with a lift greater than 1, they are considered



expected. The absolute risk is 4/25 whereas the confounding-
adjusted risk is (4-3)/25=1/25. Considering all the instances,
the average instances’ maximum confidence and maximum
chi-squared are 0.0225 and 150, respectively. Using the real
data, these averages will be calculated to give insight into
whether the confidence or chi-squared values may be useful
to consider for filtering the association rules to use during
the refinement. If in this work we find that the chi-squared
value seems to be consistently high for signal instances that are
unlikely to correspond to ADRs and low otherwise, then this
would suggest it is a good measure to use in further research.

In the example we have used a low number of DOI
exposures for simplicity, in reality the number of patients
prescribed a DOI is likely to be in the thousands.

E. Software

This research was completed using SQL to access and
process the data and the open source analytical software R
to do the analysis. The R package ‘arules’ [13] was used to
do the association rule mining.

III. RESULTS USING THIN

The drug family of quinolones is used to test the method-
ology. There are a total of 258397 first time prescriptions
of a quinolone in the database. Following discussions with
clinical experts we selected four different health outcomes
that had an association with quinolones within the THIN
database and applied the refinement methodology to refine
each instance. The health outcomes chosen are described
in Table III and were chosen to provide a fair range of
events. During implementation we discovered that it was not
currently computationally efficient to mine association rules
with antecedents containing more than three items.

A. Candidiasis (AB2)

The HOI ‘Candidiasis’ was selected, as it is a known
side effect of any antibiotic medication. Out of all the HOIs
investigated in this paper the measure of association was lowest
for AB2. The Read code AB2 was recorded within 1 and 60
days following the first prescription of a quinolone for 3388
prescriptions. Therefore there were a total of 3388 quinolone-
AB2 instances.

Over 6 million association rules were generated of the
form {antecedent} => {AB2} with a minimum confidence
constraint of 0.01 and a minimum left support constraint
of 0.001. For 1293 of the quinlone-AB2 instances, the pa-
tients basket containing all the medical records prior to the
AB2 record contained one or more AB2-association rule’s
antecedents. 1293 of the quinlone-AB2 instances’ baskets also
contained the antecedent of an AB2-association rule with a
lift greater than 1. This suggests up to 38% of the instances
may have a non-quinolone cause. The average of the instances’
maximum confidences and average of the instances’ maximum
chi-squared values were 0.31 and 16383 respectively (or 0.82
and 42927 respectively when ignoring the instances whose
basket containing all the medical records prior to the AB2
record did not contained any AB2-association rule antecedent).

The absolute risk value for AB2 during two months after
a prescription of a quinolone is 3388/258397 = 1.2 x

102 , whereas the confounding-adjusted risk is (3388 —
1293)/258397 = 8.1 x 1073 .

Examples of the rules with the greatest lift are vaginal
discharge, urine pregnancy test, antifungal-drugs,

B. Sudden death, cause unknown (R21)

The HOI ‘Sudden death, cause unknown’ was chosen as
it has a temporal bias. Death cannot occur before a patient
takes a drug, so using the AB ratio will often result in an
association between a drug and Read code corresponding to
death. By investigating this Read code, we can see whether
it is possible to remove this form of temporal bias via the
refinement method.

The Read code R21 was recorded during 1 and 60 days
after a first prescription of a quinolone for 73 prescriptions.
This corresponds to a total of 73 quinlone-R21 instances.
There were 11,219 association rules generated in the form
{antecedent}=> {R21} with a minimum confidence of 0.01
and a minimum left support of 0.001. For 58 of the quinlone-
R21 instances, the patients basket containing all the medi-
cal records prior to the R21 record contained one or more
R21-association rule’s antecedents. 58 of the quinlone-R21
instances’ baskets also contained the antecedent of an R21-
association rule with a lift greater than 1. This suggests up to
79% of the instances may have a non-quinolone cause. The av-
erage instances’ maximum confidence and average instances’
maximum chi-squared was 0.012 and 564 respectively (or
0.015 and 710 respectively when ignoring the instances whose
basket containing all the medical records prior to the R21
record did not contained any R21-association rule antecedent).

The absolute risk value for R21 during two months after
a prescription of a quinolone is 73/258397 = 2.8 x 1074
, whereas the confounding-adjusted risk value is only (73 —
58)/258397 = 5.8 x 1075.

Examples of the rules with a lift greater than 16 are: (Death,
Depression, male) => Sudden onset of death; (Depression,
heart failure, symptoms affect the skin) => Sudden onset of
death and (Vaccination, heart failure, symptoms affect the skin)
=> Sudden onset of death.

The majority of the rules contained death, depression and
heart failure. The association with death is expected, but the
death recording is likely to occur after the recording of sudden
death or on the same day. Therefore, these rules are unlikely to
be used during the refinement, as we only look at the medical
records that occur before the recording of the sudden death.

C. Multiple organ failure (C19)

The HOI ‘multiple organ failure’ was chosen, as it is a
severe outcome that occurred 9 times during the month after
the first prescription of a quinolone and never in the month
before. This HOI is rarely recorded; C19 was recorded into
the database for only 262 patients.

Apply association rule mining with a left minimum support
of 0.001 and a minimum confidence of 0.01 retuned only
one rule of the form {antecedent}=>{C19}. The rule was
{Screening general, septicaemia and tropical corticosteroids}
=>{C19}. The antecedent corresponding to this association



rule was not present in the baskets corresponding to any of
the 9 instances of C19 after a quinolone. Therefore, none of
the instances was refined, as shown in Table VI.

The absolute risk value for C19 during two months after a
prescription of a quinolone is 9/258397 = 3.5 x 10~° , and
this is the same as the confounding-adjusted risk.

D. Secondary malignant neoplasm (B572)

The HOI ‘Secondary malignant neoplasm’ was selected,
as it is extremely unlikely to correspond to an acute adverse
reaction to any drug. B572 was recorded five times during the
month after a first prescription of a quinolone and never in
the month before. Therefore is appears to be associated to the
quinolones.

There were over 2 million association rules generated of
the form {antecedent}=> {B57} (we only generate rules for
the first three elements of the Read code, but if a patient
is susceptible to B57 then they will also be susceptible to
B572) with a minimum confidence constraint of 0.01 and
a minimum left support constraint of 0.001. For 5 of the
quinlone-B572 instances, the patients basket containing all the
medical records prior to the B572 record contained one or
more B57-association rule’s antecedents. 5 of the quinlone-
B572 instances’ baskets also contained the antecedent of a
BS57-association rule with a lift greater than 1. This suggests up
to 100% of the instances may have a non-quinolone cause. The
average of the instances’ maximum confidences and average
of the instances’ maximum chi-squared values were 0.045 and
2710 respectively.

The absolute risk value for B572 during two months after
a prescription of a quinolone is 5/258397 = 1.9 x 1075 ,
whereas the confounding-adjusted risk is O.

Table VI presents a summary of the results for the four
Read codes investigated.

IV. DISCUSSION

The results show that using association rules to refine
instances of a signalled DOI-HOI pair may help reduce the
number of DOI-HOI pairs that require formal evaluation and
may highlight DOI-HOI that are very likely to correspond
to ADRs. Interestingly the results show that the refinement
method was able to show that the Read code B572 correspond-
ing to secondary malignant neoplasm is an unlikely ADR to
the quinolones as the association rules were able to show an
alternative cause of the Read code B572 for all the instances.
However, the refinement method struggled with the Read code
C19, corresponding to multiple organ failure due to the rarity
of the Read code resulting in only one association rule with
C19 as the consequence. The fact that it may be difficult to
generate association rules for rarely recorded Read codes is a
limitation of the methodology, however, when a rarely recorded
Read code such as C19 occurs fairly often after a DOI, then
this is suspicious and probably sufficient reason to formally
evaluate it.

The Read code AB2 corresponding to candidiasis is a
known ADR to the quinolones. The Read code was recorded
frequently during the two months after a quinolone was
prescribed for the first time and is also commonly recorded in

the database in general. The high number of medical baskets
containing AB2 is probably the reason why there were so
many association rules containing AB2 as the consequence.
Interestingly, even though there were a large number of as-
sociation rules, only 1293 instances were identified to have a
potential alternative cause. It was suspected that when there
were a large number of association rules, then this might lead
to the refinement method being overly sensitive and filtering
the majority of the instances. This was not the case and further
supports the idea that association rules can be used to refine
DOI-HOI signals.

The refinement method will not work for patients with
a short medical history prior to the DOI prescription, as it
requires using items the patient had before the HOI and if
they are newly registered, then they are unlikely to have many
items recorded. There is little that can be done to solve this
issue, as even medical experts would be extremely unlikely to
be able to classify the HOI as suspect with no or little medical
history for the patient.

In this paper we did not consider the likelihood of the
Read code being prescribed based on the age of the patient
corresponding to each instance. This may be a useful factor to
consider in the future, as some Read codes may be recorded
frequently when patients are a certain age and a patient’s year
of birth is always recorded into the database.

The HOI association rules were generated using a set
minimum left support and minimum confidence. It is probably
better to tune these parameters based on how common the HOI
and DOI are. For rare DOI and HOIs, the minimum values may
need to be reduced, whereas they may need to be increased
when the HOI and DOI are common. The confidence values
of the rules tend to be very small, with the majority of the
rules having a confidence less than 5%. This suggests that
confidence is a poor measure of interestingness to apply for
this application of association rules. Possible reasons for the
confidence being low in this study is that the majority of the
HOIs investigated are fairly rare and have multiple causes,
so the number of baskets containing an antecedent and HOI
will be very small compared to the number containing the
antecedent. The lift seems to be more appropriate, as this
accounts for the rarity of the HOI.

This study is also limited by restricting the size of the
antecedent due to computational issues. Only association rules
with antecedents containing three of fewer items were gener-
ated. These rules were generated in minutes, resulting in the
proposed refinement method being highly efficient when the
number of antecedents is limited to 3 or less. By implementing
association rule mining using high performance or parallel
computing, it may be possible to remove this restriction and
still efficiently learn rules with antecedents containing a larger
number of items. This may help refine more instances and
improve the confounding-adjusted risk value.

Overall, this paper has shown a proof of concept that it may
be possible to use association rules to filter DOI-HOI signals
that occur due to confounding, but there is still a large amount
of research required before the methodology is practical.



TABLE VI

THE RESULTS OF THE NOVEL METHOD FOR THE FOUR QUINOLONE-HOI SIGNALS INVESTIGATE IN THIS PAPER.

HOI Read code ~ AB ratio  Instances Risk Confounding-adjusted risk
Candidiasis AB2 1.27 3388 1.2 x 1072 8.1x107 3
Sudden death, cause unknown R21 73 73 2.8 x 1074 5.8 x 107°
Multiple organ failure C19 9 9 3.5 x 107° 3.5 x 107°
Secondary malignant neoplasm B572 5 5 1.9 x 107° 0

V. CONCLUSIONS

In this paper we presented a proof of concept for a novel
efficient ADR signal refinement method that filters instances of
a DOI-HOI signal and does not require knowledge of possible
confounders. The recorded history of a patient experiencing
the signal is used to filter instances where the medical event
can be explained by alternative causes (other than the drug).

The tentative results suggest that the method has the
capability to efficiently refine ADR signals but each signal
may require specific tuning to determine the optimal support
and confidence values to be implemented. Suggestions for
future work involve developing methods to efficiently tune
the support and confidence parameters and implementing the
methodology using distributed computing technology to enable
association rules containing large sets of antecedents to be
mined.

Future areas of work could investigate incorporating age
to remove DOI-HOI signals caused by age confounding,
investigate using different measures of association rule inter-
estingness and develop ways of tuning the method based on
how common the HOI/DOI are.
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