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Abstract—Name disambiguation aims to identify unique
authors with the same name. Existing name disambigua-
tion methods always exploit author attributes to enhance
disambiguation results. However, some discriminative author
attributes (e.g., email and affiliation) may change because of
graduation or job-hopping, which will result in the separation
of the same author’s papers in digital libraries. Although these
attributes may change, an author’s co-authors and research
topics do not change frequently with time, which means
that papers within a period have similar text and relation
information in the academic network. Inspired by this idea,
we introduce Multi-view Attention-based Pairwise Recurrent
Neural Network (MA-PairRNN) to solve the name disambigua-
tion problem. We divided papers into small blocks based on
discriminative author attributes and blocks of the same author
will be merged according to pairwise classification results of
MA-PairRNN. MA-PairRNN combines heterogeneous graph
embedding learning and pairwise similarity learning into a
framework. In addition to attribute and structure information,
MA-PairRNN also exploits semantic information by meta-path
and generates node representation in an inductive way, which
is scalable to large graphs. Furthermore, a semantic-level
attention mechanism is adopted to fuse multiple meta-path
based representations. A Pseudo-Siamese network consisting
of two RNNs takes two paper sequences in publication time
order as input and outputs their similarity. Results on two
real-world datasets demonstrate that our framework has a
significant and consistent improvement of performance on the
name disambiguation task. It was also demonstrated that MA-
PairRNN can perform well with a small amount of training
data and have better generalization ability across different
research areas.

Keywords-Name disambiguation, graph embedding, pairwise
learning, heterogeneous information network

I. INTRODUCTION

Namesake problem [1] poses a huge challenge on many

applications, e.g., information retrieval, bibliographic data

analysis. When searching for academic publications by

author name, the results may contain a long list of pub-

lications of multiple authors with the same name. Some

Qingyun Sun and Hao Peng contributed equally to this work.
Jianxin Li is corresponding author.

digital libraries (e.g., DBLP1 and Google Scholar2) list

candidates after name disambiguation with corresponding

homepage, email and affiliation to make it easier to obtain

all publications of one particular author. The academic

impacts of researchers are always measured by impacts of

their publications in the research community. Therefore, it

is important to keep publication data in digital libraries

accurate, consistent, and up to date.

Name disambiguation [2], [3], which aims to identify

unique persons with the same name, has been studied for

decades but remains largely unsolved. Most of the existing

solutions utilize author attributes, including name, affiliation,

email, homepage, etc., to generate paper representations

or further validate disambiguation results. However, these

discriminative attributes, especially email and affiliation,

may change because of graduation or job-hopping. We

take Jian Pei, the well known leading researcher in data

science, as an example to show the change of discriminative

attributes in Fig. 1. Jian Pei’s papers from 2003 to 2005 are

associated with jianpei@cse.buffalo.edu and State University

of New York at Buffalo. His papers from 2005 to 2020 are

associated with jpei@cs.sfu.ca and Simon Fraser University.

The change of discriminative attributes may lead to the paper

separation problem [4], i.e., papers of an author are regarded

as belonging to different authors, which commonly occurs in

digital libraries. To address this issue, name disambiguation

methods should perform well even when discriminative

attributes change.

Even though discriminative attributes may have changed,

researchers often have a fixed co-author set and a few

specific research areas that do not change frequently over

time, which can also be exploited to solve the name dis-

ambiguation problem. As shown in Fig. 1, even Jian Pei

has different affiliations and emails in two time periods, his

close co-authors (e.g., Jiawei Han, Ke Wang) are fixed and

1https://dblp.uni-trier.de/
2https://scholar.google.com/

http://arxiv.org/abs/2008.13099v4


Figure 1. An example of the change of Jian Pei’s discriminative attributes.

Figure 2. Academic network.

his research areas (e.g., Data mining, Time series) are also

consistent over time.

There are several challenges that should be overcome:

(1) Heterogeneity of academic network. The academic

network is a heterogeneous network that contains mul-

tiple entities (e.g., author, paper, venue) and multiple

relationships (e.g., writing, publishing) as shown in

Fig. 2. It is challenging to preserve diverse structural

and semantic information simultaneously.

(2) Inductive capability. Many real-world applications en-

counter a large number of new papers every day. It is

challenging for name disambiguation methods to have

the inductive capability that can generate representa-

tions of new papers efficiently.

(3) Uncertain number of authors. It is challenging to

determine the number of authors with the same name.

In existing clustering based name disambiguation meth-

ods [2], [3], [5], the number of authors (i.e., cluster size)

is usually a pre-specified parameter.

Current works [6], [7] did not efficiently handle the

change of discriminative attributes and inductive paper em-

bedding problem in the heterogeneous academic network

simultaneously. In this work, we propose a novel Multi-view

Attention-based Pair Recurrent Neural Network framework,

namely MA-PairRNN, to solve name disambiguation prob-

lem. The intuitive idea is that an author’s papers during

a period of time should have more similar representa-

tions since the co-authors and research interests of most

authors are consistent despite attributes change. Inspired

by this idea, we take name disambiguation as a pairwise

paper set classification problem that does not require to

estimate the number of authors with the same name. We

divide papers into small blocks according to discriminative

author attributes to reduce the search space of the name

disambiguation algorithm. Then small blocks are merged

based on pairwise classification result and each block after

merging is the paper set of an author. We represent each

paper block as a sequence in publication time order and

solve the pairwise classification problem by comparing se-

quence similarity. MA-PairRNN combines multiple multi-

view graph embedding layers, a semantic-level attention

layer, and a Pseudo-Siamese recurrent neural network layer,

to learn node embedding and node sequence pair similarity

simultaneously. Specifically, multi-view graph embedding

layer generates meta-path based embeddings of papers in

the heterogeneous academic network. Then, semantic-level

attention layer fuses these meta-path based embeddings into

a vector. Finally, Pseudo-Siamese recurrent neural network

layer learns the similarity of a node sequence pair. We

elaborate on the three components as follows:

Multi-view graph embedding layer. Multi-view graph

embedding layer incorporates meta-paths to capture rich

semantic information in the heterogeneous network. The

heterogeneous network is converted into multiple relation

view according to meta-paths. For each view, we learn K

aggregator functions to incorporate the K-hop neighborhood

of each node. In this way, node embeddings are generated

by enhancing node feature with semantics.

Semantic attention layer. Semantic attention layer cap-

tures the importance of meta-paths by an attention mecha-

nism and fuse semantic information for specific tasks.

Pseudo-Siamese recurrent neural network layer.

Pseudo-Siamese recurrent neural network composes of two

recurrent neural networks, which are used to learn inherent

relations of paper sequences. It takes two sequences of paper

embedding as input and outputs their similarity.

The main contributions are summarized as follows:

• We propose a novel pairwise classification framework

called MA-PairRNN for name disambiguation task, which

learns heterogeneous graph representation and paper set

pairwise similarity simultaneously.

• Under MA-PairRNN, we propose an inductive graph em-

bedding method that takes both heterogeneity and large

scale of the academic network into account. A semantic-

level attention mechanism is leveraged to put different

emphases on each of the meta-paths. A Pseudo-Siamese

recurrent neural network is adopted to learn inherent

relations and measure the similarity of two paper sets.

• We conduct extensive experiments on AMiner-AND and



a large-scale real-world dataset collected from Semantic

Scholar3. The results illustrate the best performance as

well as good generalization ability of the proposed MA-

PairRNN compared to other methods.

The code of MA-PairRNN is available at

https://github.com/RingBDStack/MA-PairRNN.

II. RELATED WORK

In this section, we will briefly review name disambigua-

tion methods and graph embedding methods.

A. Name Disambiguation

Name disambiguation methods can be divided into su-

pervised [1], [8], unsupervised [6], [9] and graph-based

ones [2], [5]. Graph-based works exploit graph topological

features in the academic network to enhance the repre-

sentation of papers. For instance, GHOST [2] constructs

document graph based on co-authorship. [5] leverages only

relational data in the form of anonymized graphs to preserve

author privacy. Pairwise classification methods are applied

to estimate the probability of a pair of author mentions

belonging to the same author and are essential in the

name disambiguation task. [6] first learns representation for

every name mention in a pairwise or tripletwise way and

refines the representation by a graph auto-encoder, but this

method neglects linkage between paper and author and co-

authorship. [7] addresses the pairwise classification problem

by extracting both structure-aware features and global fea-

tures without considering semantic features. In this paper, we

focus on the paper set level pairwise classification problem

and exploit attribute, structure, and semantic features to form

better representation.

B. Graph Embedding

Graph embedding aims to represent a graph as a low

dimensional vector while preserving graph structure and

properties. Recently, Graph Neural Network (GNN) [10]

has attracted rising attention due to effective representation

ability. While most GNN works [10]–[12] focus on trans-

ductive setting, there have been some recent works adopting

an inductive learning setting. DeepGL [13] aggregates a

set of base graph features by relational functions that can

generalize across networks. GraphSage [14] samples a fixed

number of neighbors and generate node embeddings by

aggregating their features. Both DeepGL and GraphSage

are designed for homogeneous graphs. LAN [15] aggregates

neighbors with both rule-based and network-based attention

weights for knowledge graphs.

Heterogeneous information networks [16]–[19] have been

studied in recent years. Meta-path is designed to preserve di-

verse semantic information of node type and edge type [20]–

[22]. GTN [23] converts heterogeneous graph to new graph

3https://www.semanticscholar.org/

structures which involve identifying task-specific meta-paths

and multi-hop connections. HAN [24] includes both node-

level and semantic-level attention to take the importance of

nodes and meta-paths into consideration simultaneously.

In this paper, we propose an inductive graph embedding

method utilizing rich heterogeneous information.

III. PROPOSED METHOD

A. Problem Definition

In this section, we formally define Heterogeneous Aca-

demic Network and the problem of Name Disambiguation.

Definition 1 (Heterogeneous Academic Network):

Heterogeneous Academic Network is defined as G = {V , E},

where V and E denote the set of nodes and edges,

respectively. A Heterogeneous Academic Network is

associated a node type mapping function fv : V → O and an

edge type mapping function fe : E → R. O = {P,A, T, V }
denotes node types set and R = {A writes P, P cites P,

P is related to T, P is published in V} denotes edge types

set, where P,A, T, V denote the type of Paper, Author,

Topic and Venue, respectively.

Definition 2 (Name Disambiguation): Given a name a,

Da = {da1 , d
a
2 , . . . , d

a
N} is a set of papers with name mention

a. Every paper dak consists of some metadata including

paper attributes (e.g. title, year, venue, keywords) and author

attributes (e.g. name, email, affiliation). The objective of

name disambiguation is to partition all name mentions into

a set of unique authors Ca = {ca1 , c
a
2 , . . . , c

a
n}.

B. Model Architecture

In this section, we propose a novel framework named

MA-PairRNN for name disambiguation. As described

above, the main intuition is that papers of the same author

within a period should have similar representations in the

academic network since the author’s research and scholar

relation is consistent. We divide the set of papers Da into

small blocks by discriminative author attributes in metadata.

These small blocks will be merged based on pairwise

classification results of MA-PairRNN. First, the multi-view

inductive graph embedding layer is designed to generate the

paper representation of each meta-path. Then a semantic

attention layer is designed to learn importance of meta-

paths and fuse meta-path based representations. Finally,

papers in every block are arranged as a sequence denoted as

s ∈ S according to their publication time. Two sequences

of paper embedding are fed into a Pseudo-Siamese network

with two RNNs for pairwise similarity learning. The overall

architecture of MA-PairRNN is shown in Fig. 3

C. Multi-View Graph Embedding Layer

Multi-view graph embedding layer generates node repre-

sentations inductively by learning a function to aggregate

https://github.com/RingBDStack/MA-PairRNN
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Figure 3. An overview of our overall network architecture.

attribute and topology information from local neighbor-

hoods. To exploit rich semantic information in the heteroge-

neous academic network, we proposed the concept of meta-

path based view. Given a heterogeneous academic network

G = {V , E} and a meta-path p, a meta-path based view Gp

is derived from a type of proximity or relationship between

nodes characterized by a meta-path. It can capture different

aspects of structure information through meta-paths and is

potential to add new nodes dynamically.

For each meta-path based view, similar to GraphSage [14],

node representations are generated by aggregating features

of meta-path based neighbors and propagating information

across K layers. Node v’s representation based on meta-path

p is generated as below. First, in the k-th layer, each node

aggregates its own representation and representations of its

1-hop neighborhood Ni generated by (k-1)-th layer into a

single vector z
(k)
p (Ni) as (1):

z(k)p (Ni) = mean({z(k−1)
p (vj), ∀vj ∈ vi ∪Ni}), (1)

where z
(k−1)
p (vj) denotes representation of vj in (k-1)-th

layer. When k = 0, z
(0)
p (vj) is defined as original feature

x(vj) of vj . Then a weight matrix W
(k)
p and a bias vector

b
(k)
p are used to transfer information between layers as (2):

z(k)p (vi) = σ(W(k)
p · z(k−1)

p (Ni) + b(k)
p ). (2)

To extend the algorithm to a mini-batch setting, we first

sample the l-egonet of papers in the batch. The l-egonet

of node v is defined as the set of its l-hop neighbors and

all edges between nodes in the set. For each batch, multi-

view subgraphs are constructed based on the union of l-

egonets of all paper nodes in this batch. Then we generate

meta-path based representation of every node in these multi-

view subgraphs. For more convenient notation, we denote

vi’s final representation based meta-path p after K layers as

zp(vi) ≡ z
(K)
p (vi), where zp(vi) ∈ R

d.

D. Semantic Attention Layer

For each paper, multiple meta-path based representations

are obtained and they can collaborate with each other. Since

we assume that the importance of meta-paths varies, an

attention mechanism is adopted to capture their contribution

and fuse meta-path based node representations.

We first introduce a meta-path preference vector ap ∈
R

|P|∗d′

for each meta-path p to guide the semantic attention

mechanism. For meta-path based representation z
(k)
p and

meta-path preference vector ap, the more similar they are,

the greater weight will be assigned to z
(k)
p . We use a

non-linear function to transform the d-dimension meta-path

based embedding into d′-dimension as (3):

z′p(vi) = σ(Wp · zp(vi) + bp). (3)

where Wp ∈ R
|P|∗d′

is the weight parameter and bp ∈ R
d′

is the bias parameter of transformation. z′p(vi) ∈ R
d′

is the node representation of vi based meta-path p after

transformation. The similarity of transformed representation

vector and preference vector ωp(vi) is calculated as (4):

ωp(vi) =
aTp · z′p(vi)

‖ap‖ · ‖z′p(vi)‖
, (4)

where ‖ · ‖ is the L2 normalization of vectors. The weight

of meta-path p for node vi is defined using a softmax unit

as follows:

ω′
p(vi) =

exp(ωp(vi))
∑

p′∈P exp(ωp′(vi))
. (5)

Final representation of node vi is generated by fusing all

meta-path based representations in the weighted sum form:

z(vi) =
∑

p′∈P

ω′
p′(vi) ∗ zp′(vi)). (6)



E. Pseudo-Siamese Recurrent Neural Network Layer

We designed a Pseudo-Siamese recurrent neural network

layer to capture inherent relations of papers and measure

similarity of two paper sets. Pseudo-Siamese recurrent neu-

ral network layer is a Pseudo-Siamese network consisting

of two RNNs with different parameters to generate repre-

sentations of two node sequences. Specifically, we feed two

sequence of paper embeddings into two RNNs respectively.

The learned paper embedding of the paper is taken as the

input of RNN units. The output of each RNN unit can be

formalized as:

ht = RNN(zt, θt), (7)

where θt means parameters of RNN unit. Here we apply

the popular LSTM to capture inherent relations of paper

sequences and learn their similarity. Note that the paper

sequence published earlier is in published time order and

the other sequence is in reverse. This setting is based on the

assumption that an author’s research topics and co-authors

are stable during the period of attribute changing. All outputs

of RNN units are aggregated by a GlobalPool function to

generate the representation of paper sequence as follows:

h = GlobalPool({ht, t = 1, 2, · · · , |s|}), (8)

where | · | denotes the length of sequence. We apply a simple

averaging strategy as the GlobalPool function here. The

final representations of two paper sequences h(1) and h(1)

are concatenated and then fed into a multiple fully connected

neural network:

ŷs = σ(MLP([h(1),h(2)])), (9)

where σ(·)denotes the softmax function and [·, ·] represents

the concatenation operation.

Since our task is classification, the loss function Lclassify

can be defined as the Cross-Entropy over all labeled node

sequence pairs between the ground-truth and the predict

results. The proposed framework can be trained on a set of

example pairs. For each pair of paper sequences, a cosine

score function is applied to measure the similarity of the

two paper sequence representations as (10).

Lsim = sim(h(1),h(2)) =
h(1) · h(2)

∥

∥h(1)
∥

∥ ·
∥

∥h(2)
∥

∥

. (10)

The pairwise similarity loss function encourages node se-

quences of the same author to have similar representations,

and enforces that of different authors to be highly distinct.

The model is then trained to minimize the sum of classi-

fication loss as follows:

L = Lclassify + η ∗ Lsim, (11)

where η denotes the coefficient of pair similarity loss. The

overall process of MA-PairRNN is shown in Algorithm 1.

Algorithm 1: The overall process of MA-PairRNN

Input: Paper set D, heterogeneous graph

G = {V , E}, node features {x(v), ∀v ∈ V},

meta-path set P = {p1, p2, · · · , pM}, number

of multi-view graph embedding layer K

Output: meta-path based node representation

{zp1
, zp1

, · · · , zp1
}

1 Separate paper set D into small blocks according

discriminative author attributes;

2 Arrange papers in every block as sequence s ∈ S;

3 Construct meta-path based view

{Gp1
,Gp2

, · · · ,GpM
};

4 z
(0)
p (vi) = x(vi), ∀vi ∈ V ;

5 while not converge do

6 for vi ∈ V do

7 for p ∈ P do

8 for k = 1, 2, · · · ,K do

9 Aggregate meta-path based neighbor

information in previous layer by (1);

10 Calculate the representation of current

layer by (2);
11 end

12 end

13 Calculate the attention weight of each

meta-path by (3), (4), (5);

14 Fuse the semantic representation of each

meta-path based view by (6);
15 end

16 for s ∈ S do

17 Calculate the representation of sequence pair

by (7) and (8);

18 Classify the sequence pair by (9);

19 end

20 Calculate Loss by (10) and (11).

21 end

IV. EXPERIMENTS

A. Dataset

For our experiments we used two datasets: Aminer-AND

and Semantic Scholar.

• Aminer-AND [6]: This dataset contains 70,285 records

of 12,798 unique authors with 100 ambiguous name

references.

• Semantic Scholar: We construct a new real-world aca-

demic dataset from a digital library called Semantic

Scholar. There are 154,822 records of 857 unique authors

with 226 highly ambiguous name in medicine area and

reference papers of these records. Detailed description is

shown in Table I. The statistics of these authors’ papers

are shown in Fig. 4.



Figure 4. Length Statistics of Paper sets.

Table I
STATISTICS OF SEMANTIC SCHOLAR

Dataset Node Types #Nodes Relation Types #Edges

Semantic
Scholar

author 1,891,542 author-paper 4,607,109
paper 698,219 paper-term 7,713,923
topic 135,596 paper-venue 5,21,601
venue 26,160 paper-paper 929,429

B. Evaluation Metrics and Baselines

We apply pairwise Precision, Recall and F1 score in

Aminer-AND and apply averaged Accuracy, F1 score and

AUC in Semantic Scholar to measure the performance of

all methods. We compare with attribute based methods as

well as attribute and structure based methods to demonstrate

the effectiveness of our model. To verify the effectiveness of

each component including meta-path based views, semantic-

level attention and Pseudo-Siamese structure, we also test

three variants of MA-PairRNN.

• MLP [25]: It’s s multilayer perceptron that directly pro-

jecting input features into a low dimensional vector.

• Deepwalk [26]: Deepwalk captures contextual informa-

tion of neighborhood via uniform random walks for node

embedding in homogeneous network.

• GraphSage [14]: GraphSage samples node neighborhoods

to generate node embeddings for unseen data in an induc-

tive way and is designed for homogeneous network.

• Zhang et al. [5]: This method learns paper embedding

by sampling triplets from three graphs constructed by

relations of authors and papers and cluster them by

hierarchical agglomerative algorithm.

• GHOST [2]: GHOST use affinity propagation algorithm

for clustering on a co-authors graph where the node

distance is measured based on the number of valid paths.

• Louppe et al. [3]: This method trains a pairwise distance

function based on similarity features and use a semi-

supervised HAC algorithm for clustering.

• Aminer [6]: This method first learns supervised global

embeddings and then refines the global embeddings for

each candidate set based on the local contexts.

• Kim et al. [7]: It is a hybrid pairwise classification method

which generates paper representation by extracting both

structure-aware features and global features.

• PairRNNLSTM: A variation of MA-PairRNNLSTM, which

directly feed node feature into a Pseudo-Siamese recurrent

neural network layer with two LSTMs.

• G-PairRNNLSTM: A variation of MA-PairRNNLSTM,

which neglects the heterogeneity of academic network and

generates representation on the original graph.

• M-PairRNNLSTM: A variation of MA-PairRNNLSTM,

which removes semantic-level attention layer and assigns

the same importance to each meta-path.

• MA-PairRNNLSTM: The proposed model that fuses at-

tribute, structure and semantic feature for node embedding

generation with an semantic attention mechanism.

C. Implementation Details

In Aminer-AND, the selected meta-paths of our method

consist of Paper-Author-Paper, Paper-Topic-Paper and

Paper-Venue-Paper. We use the author’s affiliation as the

discriminative attribute to separate papers into small blocks

and we use the same trainset and testset as in [6].

In Semantic Scholar, the selected meta-paths of our

method consist of Paper-Paper, Paper-Author-Paper, Paper-

Topic-Paper, and Paper-Venue-Paper. We use the author’s

email as the discriminative attribute to separate papers into

small blocks. To evaluate the learning ability of models, we

test them on Semantic Scholar with different training ratios

{20%, 40%, 60%, 80%}.

The common training parameters are set as learning rate

= 5e−4 and dropout = 0.2. The node embedding dimension

is set to 64 and the classifiers of all methods is a three-layer

fully-connected neural network with a ReLU function. In

our proposed model MA-PairRNNLSTM, K is set to 2 and

the dimension of meta-path preference vector a is set to 32.

D. Results and Discussions

The performance of different methods on some sampled

names of Aminer-AND is reported in Table II. The results

on Semantic Scholar is reported in Table III. Major findings

from experimental results can be summarized as follows:

Performance Comparison. As shown in Table II and

Table III, by incorporating attribute, structure and semantic

information, MA-PairRNNLSTM outperforms all baselines in

both datasets. Generally, GNN based methods that combine

the attribute and structure information usually perform better

than those methods which only exploit attribute informa-

tion. Compared to simply concatenate representations of

nodes, the Pseudo-Siamese RNN network can better extract

inherent relations of paper sequence. Compared to tak-

ing the graph as homogeneous, M-PairRNNLSTM and MA-

PairRNNLSTM can exploit semantic information successfully

and show their superiority. It demonstrates that combined use



Table II
THE DETAILED RESULTS (%) ON AMINER-AND

Attr. Struc. Attr. + Struc. Attr. + Struc. + Sem.

Louppe et al. Zhang et al. GHOST Aminer MA-PairRNNLSTMName

Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1

Hongbin Li 19.48 85.96 31.77 54.66 53.05 53.84 56.29 29.12 38.39 77.20 69.21 72.99 88.89 65.98 75.74

Hua Bai 36.39 41.33 38.70 58.58 35.90 44.52 83.06 29.54 43.58 71.49 39.73 51.08 89.22 70.54 78.79

Kexin Xu 91.26 98.35 94.67 90.02 82.47 86.08 92.90 28.52 43.64 91.37 98.64 94.87 85.19 71.88 77.97

Lu Han 30.25 46.65 36.70 47.88 20.62 28.82 69.72 17.39 27.84 51.78 28.05 36.39 92.43 69.62 79.42

Lin Huang 24.86 71.32 36.87 71.84 34.17 46.31 86.15 17.25 28.74 77.10 32.87 46.09 88.26 73.44 80.17

Meiling Chen 58.32 47.14 52.14 59.36 28.80 38.79 86.11 23.85 37.35 74.93 44.70 55.99 - - -

Min Zheng 25.86 32.67 28.87 54.76 19.70 28.98 80.50 15.21 25.58 57.65 22.35 32.21 86.07 82.03 84.00

Qiang Shi 35.31 47.18 40.39 43.84 36.94 40.10 53.72 26.80 35.76 52.20 36.15 42.72 80.25 69.15 74.29

Rong Yu 38.85 91.43 54.53 65.48 40.85 50.32 92.00 36.41 52.17 89.13 46.51 61.12 90.67 68.69 78.16

Tao Deng 40.46 51.38 45.27 53.04 29.89 38.23 73.33 24.50 36.73 81.63 43.62 56.86 88.42 65.12 75.00

Wei Quan 37.86 63.41 47.41 64.45 47.66 54.77 86.42 27.80 42.07 53.88 39.02 45.26 75.76 78.13 76.92

Xudong Zhang 72.38 79.83 75.92 70.20 23.35 35.04 85.75 7.23 13.34 62.40 22.54 33.12 - - -

Xu Xu 22.55 64.40 33.40 48.16 41.87 44.80 61.34 21.79 32.15 74.18 45.86 56.68 78.68 79.08 78.88

Yanqing Wang 29.64 79.08 43.11 60.40 51.97 55.87 80.79 40.39 53.86 71.52 75.33 73.37 77.42 64.86 70.59

Yong Tian 32.08 63.71 42.67 70.74 56.85 63.04 86.94 54.58 67.06 76.32 51.95 61.82 87.80 70.59 78.26

Average 57.09 77.22 63.10 70.63 59.53 62.81 81.62 40.43 50.23 77.96 63.03 67.79 87.93 77.74 82.53

Table III
QUANTITATIVE RESULTS AND STANDARD DEVIATION (%) ON SEMANTICSCHOLAR

Attr. Attr. + Struc. Attr. + Struc. + Sem.

Metrics Training
MLP PairRNNLSTM Deepwalk GraphSage Aminer Kim et al.

G-

PairRNNLSTM

M-

PairRNNLSTM

MA-

PairRNNLSTM

20% 92.24±1.36 94.78±0.74 92.26±0.62 95.56±0.35 96.73±0.35 96.88±0.46 95.93±0.57 96.40±0.54 96.95±1.36

40% 93.88±1.01 96.46±1.12 93.85±0.65 96.27±0.18 96.59±0.33 96.80±0.16 96.34±0.61 96.73±0.69 97.01±0.45

60% 94.43±0.69 97.34±1.08 94.47±0.46 97.49±0.32 97.48±0.24 97.54±0.35 97.19±0.71 97.56±0.26 97.91±0.18
Accuracy

80% 94.24±1.42 97.56±0.26 94.50±0.74 97.85±0.29 97.75±0.23 97.38±0.23 97.88±0.84 97.81±0.38 98.50±0.41

20% 92.14±1.49 95.05±0.66 92.37±0.54 95.62±0.35 96.84±0.32 96.94±0.54 96.10±0.53 96.54±0.50 97.04±1.30

40% 93.91±1.00 96.58±1.06 93.92±0.59 96.33±0.17 96.66±0.33 96.84±0.16 96.48±0.57 96.84±0.64 97.12±0.43

60% 94.43±0.74 97.40±1.05 94.18±0.77 97.54±0.31 97.53±0.23 97.59±0.34 97.28±0.63 97.63±0.23 97.96±0.17
F1 Score

80% 94.24±1.42 97.66±0.27 94.57±0.75 97.90±0.30 97.83±0.20 97.42±0.24 97.94±0.81 97.81±0.23 98.54±0.37

20% 92.24±1.36 97.61±0.38 92.26±0.62 96.10±1.93 98.02±0.59 97.48±1.94 92.85±9.56 97.96±1.13 98.12±1.08

40% 93.88±1.01 95.38±5.23 93.85±0.65 96.63±1.49 97.29±0.38 95.39±5.72 97.65±0.86 95.57±6.60 98.55±1.05

60% 94.43±0.69 98.54±0.39 94.27±0.85 97.91±0.86 98.32±0.56 97.73±1.13 98.86±0.43 99.07±0.30 99.31±0.45
AUC

80% 94.24±1.42 98.43±0.57 94.50±0.74 98.12±0.20 98.73±0.36 97.70±0.59 98.76±0.74 98.27±0.22 99.18±0.79

of attribute, structure, and semantic features better capture

the similarities between papers. In addition, the semantic-

level attention mechanism in MA-PairRNNLSTM can exploit

semantic information more properly.

Fig. 5 shows F1 scores of MA-PairRNNLSTM on different

partition versions of Semantic Scholar with training ratio

of 80%. After adequate rounds of training, the performance

of MA-PairRNNLSTM on each dataset partition version has

gained stability and certainty and is difficult to be further

improved though fluctuations exist.

Impact of training ratio. F1 scores of all methods on

Semantic Scholar with different training ratio are shown in

Fig. 6 (a) and their distributions are shown in Fig. 6 (b).

The performances of all methods get worse as the training

ratio decrease. Our method MA-PairRNNLSTM and its vari-

ants suffer less performance degradation than others, which

shows better learning ability.

Siamese Network v.s Pseudo-Siamese Network. As

mentioned above, Pseudo-Siamese neural network compo-

nent consists of two RNNs with different parameters. We

also test three variations including a Pseudo-Siamese net-

work with two BiLSTM (MA-PairRNNBiLSTM), a Siamese

network with two parameter-shared LSTM (MA-RNNLSTM),

and a Siamese network with two parameter-shared BiL-

Figure 5. Performance of MA-PairRNNLSTM on different Semantic
Scholar partition version with training ratio of 80%.

STM (MA-RNNBiLSTM). Results on Semantic Scholar are

shown in Table. IV. We can see that Pseudo-Siamese

Network models have a better performance than the other

two Siamese Network models. Based on our assumption

that papers during the period of discriminative attributes

changing have similar text and structure features, the paper

sequence published earlier is fed into RNN in publication



(a) F1 scores with different training ratio

(b) Distributions of F1 scores with different training ratio

Figure 6. Performance with different training ratio on Semantic Scholar.

Table IV
PERFORMANCE COMPARISON (%) OF DIFFERENT SEQUENCE

REPRESENTATION MODEL ON SEMANTIC SCHOLAR

Models Accuracy F1 score AUC

MA-PairRNNLSTM 98.50 98.54 99.18

MA-PairRNNBiLSTM 98.47 98.52 99.17

MA-RNNLSTM 97.88 97.96 99.00

MA-RNNBiLSTM 98.25 98.28 99.17

time order and the other is in reverse order. Pseudo-Siamese

network may better capture the changing trend of research

topic and scholar relationship.

Impact of Different Meta-paths. To verify the ability

of semantic-level attention, we report F1 scores of MA-

PairRNNLSTM using single meta-path and corresponding

attention values on Semantic Scholar in Fig. 7. Obviously,

there is a positive correlation between the performance of

each meta-path and its attention value. Among four meta-

paths, MA-PairRNNLSTM gives PVP the highest weight,

which means that PVP is considered as the most critical

meta-path in paper representation. It makes sense because

author’s research areas are highly correlated with venues

where their papers are published. Meanwhile, PP is also

given a high weight. It also makes sense because author’s

papers are often closely related and have similar references.

Figure 7. Performance of single meta-path and corresponding attention
value.

Figure 8. Performance (F1 score %) in different research areas.

Generalization ability across research areas. On Se-

mantic Scholar, our models are trained on papers of medical

area. To verify the generalization ability of models across

different research areas, we collected data of 100 authors

from biology, chemistry, computer science, and mathematics

area, respectively. The performance of all models on these

data is shown in Fig. 8. When trained on data of the medical

area and test on the other four areas, the performance

degradations of our proposed model (MA-PairRNNLSTM)

and its variations (G-PairRNNLSTM and M-PairRNNLSTM)

are less than 3%, which are better than other models. It

indicates that the structure information can enhance model’s

generalization ability. Most models perform better when

transferred to biology and chemistry area than other two

areas. It makes sense because these two areas share more

area knowledge with the medical one.

E. Parameters Analysis

In this section, we will investigate how dimension of node

embedding and attention preference vector and coefficient

of similarity loss can affect classification performance. The

results on Semantic Scholar are reported in Fig. 9.



(a) Dimension of the final node embedding z (b) Dimension of semantic attention vector a (c) Coefficient η of cosine similarity loss

Figure 9. Parameter sensitivity: Dimension of node embedding z, Dimension of semantic attention vector a and Coefficient η of cosine similarity loss.

Dimension of the final node embedding z. The repre-

sentation ability of graph embedding methods is affected by

the dimension of node embedding z. We explore its impact

with various dimension {16, 32, 64, 128, 256}. As shown in

Fig. 9 (a), the performance firstly improves with the increase

of node embedding dimension, then degenerates slowly, and

achieves the best performance at the dimension of 64. The

reason may be that larger dimension could introduce some

additional redundancies.

Dimension of semantic attention vector a. We evaluate

the effect of semantic attention vector a’s dimension in

the set of {16, 32, 64, 128, 256}. As shown in Fig. 9 (b),

the F1 score has minor changes, which shows that MA-

PairRNNLSTM is not very sensitive to the dimension of

attention preference vector.

Coefficient η of cosine similarity loss. The impact

of similarity loss item is controlled by η. We vary η ∈
{0, 0.25, 0.5, 1, 1.5, 2, 4}. As shown in Fig. 9 (c), optimal

performance is obtained near η = 1, indicating that η cannot

be set too small or too large in order to prevent overfitting

and underfitting.

F. Case Study

We specifically choose three author variants named Jian

Pei in Semantic Scholar as a study case and we denote them

as Jian Pei 1, Jian Pei 2, Jian Pei 3. Statistics of selected

three author variants are shown in Table. V. Our model

classifies Jian Pei 1 and Jian Pei 2 as the same person while

Jian Pei 3 is another person, which is consistent with the

ground truth. We visualize the subgraph of the academic

network that three author variants are in. The visualized

subgraph includes papers and co-authors of the three author

variants, and topics their papers related to. Papers of three

author variants are colored blue, green, and red respectively

and other nodes are colored by their type. Paper nodes of

Jian Pei 1 colored blue and paper nodes of Jian Pei 2 colored

green tend to be closely connected physically and many of

them are connected by same topics (e.g., Data mining, Social

Network) and same venues (e.g., KDD, TKDE). Jian Pei 3’s

Table V
STATICS OF SELECTED AUTHOR VARIANTS

author #papers #citations Most common topics

Data mining
Jian Pei 1 441 23,729 Social networks

Frequent pattern mining

Data mining

Jian Pei 2 78 4,512 Sequential pattern mining

Frequent pattern mining

Molecular synthesis
Jian Pei 3 36 690 Functional materials

Convenient Syntheses

Figure 10. Subgraph visualization of selected author variants. Paper node
color represents author variant (Blue: Jian Pei 1, Green: Jian Pei 2, Red:
Jian Pei 3)

paper nodes are connected to paper nodes of the other two by

topic nodes such as Algorithm and Simulation experiment,

which are used in many research areas.



V. CONCLUSION AND FUTURE WORK

In this paper, we propose MA-PairRNN, a novel pairwise

node sequence classification framework for name disam-

biguation, in which multi-view graph embedding layer is

designed to generate node representation inductively, and

Pseudo-Siamese recurrent neural network is designed to

learn sequence pair similarity. Our proposed method can

learn node representation and sequence pair similarity si-

multaneously, and can scale to large graphs for its inductive

capability. Experimental results on two real-world datasets

demonstrate the effectiveness of our method. By analyzing

the learned attention weights of meta-paths, MA-PairRNN

has proven its potentially good interpretability. By testing

on data of unseen areas, MA-PairRNN has also proven its

good generalization ability. In the future, we plan to leverage

hierarchical clustering to address the problem that an author

has diverse research areas and works with non-overlapping

sets of co-authors corresponding to each research area.
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