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Abstract—A common approach to protect users privacy in
data collection is to perform random perturbations on user’s
sensitive data before collection in a way that aggregated statistics
can still be inferred without endangering individual secrets. In
this paper, we take a closer look at the validity of Differential
Privacy guarantees, when sensitive attributes are subject to
social contagion. We first show that in the absence of any
knowledge about the contagion network, an adversary that tries
to predict the real values from perturbed ones, cannot train a
classifier that achieves an area under the ROC curve (AUC)
above 1 − (1 − δ)/(1 + eε), if the dataset is perturbed using
an (ε, δ)-differentially private mechanism. Then, we show that
with the knowledge of the contagion network and model, one
can do substantially better. We demonstrate that our method
passes the performance limit imposed by differential privacy.
Our experiments also reveal that nodes with high influence on
others are at more risk of revealing their secrets than others.
Our method’s superior performance is demonstrated through
extensive experiments on synthetic and real-world networks.

I. INTRODUCTION

The last decade has witnessed the exponential growth of
data collection practices. While access to large-scale data has
fueled the unprecedented power to solve problems previously
thought impossible, it also imposes a great risk on the privacy
of individuals in this new environment. A common policy is to
consider individual data items to be sensitive, while knowledge
of aggregated statistics on a population is not. For example, the
fact that a person has a certain disease is considered sensitive,
while it is safe to release the percentage of people with that
disease within a population. This model has been the founda-
tion of the popular differential privacy (DP) framework [1], in
which individual entries are sensitive but queries on aggregated
knowledge are answered with the guarantee that an adversary
cannot use the answers to accurately infer individual data
items.

In this paper we examine the interplay of personally
sensitive data in a social environment. It has been widely
recognized that social interactions shape the landscape of
individual attributes – infectious diseases spread through social
interactions and contacts; behavior changes such as obesity [2],
exercising [3], or decision making processes such as voting [4]
or charity donation [5] are contagious.

Due to the ubiquity of online social platforms in recent
years, information about social ties and social interaction has
become available. Such data can be available to the public
with little effort (e.g.: professional affiliation on public web
pages or friendship networks in public social networks such
as Twitter), or can be mined through other means such as
human mobility traces [6]. So the question we ask is: how

safe are people’s sensitive attributes in a socially connected
world?
Our Contribution. In this paper we answer this question by
proposing a novel attack to users’ sensitive attributes using
information on social network connectivity, despite the fact
that attributes are protected by DP mechanisms.

Suppose that the individuals participate in a survey in which
they are asked about the sensitive attribute X with value 0 or
1. The goal of the survey is to learn the aggregated percentage
of population who report “1”. Since the participants may not
trust the data collector, they use a randomized perturbation
mechanism M to report data zi =M(xi). A simple scheme
for M is to flip a coin. If head, report 1 or 0 at random,
otherwise report the true value. After aggregating the perturbed
reports, one can approximate the true statistics by removing
certain biases introduced by M. For example, if there are p
fraction in the population whose attributes are 1, the perturba-
tion mechanism leads to a total fraction of 1/4+p/2 reporting
1. From this, one can solve for p. Meanwhile, knowing zi is
not enough to accurately determine xi – such protection can
be formulated by differential privacy guarantee.

Now assume that the attacker knows the social connections
between individuals in the survey as well as the contagion
model (how this attribute spreads through the social ties). We
propose an attack that exploits this information to infer the
initial state {xi}, with a performance bound exceeding that
which is guaranteed by DP. More accurately, we show
• For any perturbation mechanism M that guarantees

(ε, δ)-differential privacy, i.e., ∀z, x 6= x′,

Pr[M(x) = z] ≤ eε Pr[M(x′) = z] + δ, (1)

the best classifier from an attacker, without information
of the social ties and the contagion models, has the Area
Under the ROC Curve (AUC) at most 1−(1−δ)/(eε+1).

• Next, we propose a method to infer the original sensitive
values {xi}, using the contagion model, the network
structure, the perturbation mechanism M and the noisy
reported values {zi}. This requires understanding how
the real values correlate by accurately modeling the
way they are produced by a contagion process. In prior
work, contagions are ignored in modeling correlation
between individual values, which results in models that
are too simplistic to reflect real-world phenomena. In
contrast, our model incorporates the network structure
and contagion model directly into our calculations.
We proceed in two phases. First, we find the probabilistic
effectors – a probability αv that each node v is an initiator
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of a contagion that results in observed {zi}. Next we run
the contagion model forward from the probabilistic seeds
to estimate {xi}.

• Our experiments on both synthetic and real-world net-
works show that our method can achieve an AUC value
higher than the limit imposed by DP, weakening its
guarantee as a result. This also means that the social
network information, while not sensitive itself, can in-
deed be exploited to infer sensitive knowledge. We also
observe that nodes with high influence over others are
more vulnerable to such attacks.

In what follows, we first present the background and related
work on DP and its many variants along with prior work on
social influence and contagions. We then report the theoretical
upper bound on the performance of a binary classification with
differential privacy protection, when there is no knowledge
of the contagion network. This is followed by our attack
leveraging social network structure and contagion model. We
report the results of our experiments at the end.

II. BACKGROUND AND RELATED WORK

Contagion Models: Many attributes are socially contagious.
The way that these attributes spread in a social network is
described via contagion models. A few models have received
great attention in the literature. In the Linear Threshold model
each edge has a weight that represents the influence between
nodes, and nodes are activated when the sum of influence
receiving from their neighbors exceeds a threshold randomly
selected from [0, 1]. Independent Cascade model assumes that
each node u, upon acivation, has one chance to activate each
of its neighbors, with different probabilities. This differs from
prior work on virus contagion such as SI (susceptible-Infected)
where activated node continuously try to activate their inactive
neighbors in time-synchronous rounds. Recently there has
been growing attention in General Threshold model [7] (first
proposed by Granovetter [8]) and Complex Contagions, where
infection requires a specific number of infected neighbors [9],
[10]. In this work we mainly use the Linear Threshold model
and discuss possible extensions in the last section.

Data Privacy: The most widely adopted privacy model is the
model of differential privacy (DP) [1], which imposes con-
straints on publishing aggregate information about a database
such that the privacy impact on individual entries is limited.
Specifically, a randomized algorithm A that takes a dataset
as input is said to have (ε, δ)-differential privacy, if for all
datasets D1 and D2 that differ on a single entry, and all subsets
S of the image ofA: Pr[A(D1) ∈ S] ≤ eε Pr[A(D2) ∈ S]+δ.
The probability is taken over the randomness of the algorithm.

The original DP model does not explicitly specify the
ramifications of the presence of correlation between data
points, which could be accessible from outside. In fact, it is
proved that when the data is assumed to be correlated, the
privacy guarantees provided by DP becomes weaker [11]. This
issue is acknowledged in a number of later definitions that try
to address it. For example, inferential privacy [12] captures the

largest possible ratio between the posterior and prior beliefs
about an individual’s data, after observing the results of a
computation on a database. Here the data items may not be
independent and the correlation is captured by a prior belief
on the data items. In adversarial privacy [13], domain experts
could plug in various data generating distributions and the goal
is to protect the presence/absence of a tuple in the data set.
The most general definition is PufferFish privacy [11], where
one explicitly specifies the set of secrets to protect, how they
shall be protected (by specifying indistinguishable pairs), how
data evolve or are generated (e.g., are data items correlated),
and what extra knowledge the potential attackers have. These
definitions add to the complexity of DP and, as a result, we
have yet to see any of them being as widely adopted as DP.

Our work could be considered as a motivation to devise
mechanisms that explicitly incorporate contagion models into
their privacy protection guarantees. In an age when activities
are shared online and individuals interact with each other
more as each day passes, it is not unimaginable that an
adversary might have access to social information that can
jeopardize individuals’ secrets. We propose a concrete attack
that beats DP guarantees. Since many attributes shared by
humans are socially correlated, this work reopens many of the
problems studied under traditional DP setting (with no explicit
assumption on data correlation and generation processes) and
forces us to inspect new methods that can endure higher levels
of scrutiny.

Analyzing Social Contagions and Finding Effectors: Our
attack is closely related to analyzing social contagions, in
particular the two problems of influence maximization and
finding roots of contagion.

Influence maximization is initially studied in [14]: how to
pick k initial seeds such that the number of nodes eventually
infected is maximized. It is an NP-hard problem but could be
approximated up to 1 − 1/e, if one can have an oracle for
computing the influence of a set of seeds S – the (expected)
number of nodes infected with seed set S. Obviously one
can run simulations to estimate the influence of a seed set.
Computing the exact influence of a node can be done in linear
time on a DAG but is #P-hard on a general graph [15]. A
heuristic to speed-up the algorithm is to utilize local simple
structures, such as local DAGs, to estimate the influence of a
node [15]. Alternatively, Borgs et al. [16] proposed to use the
reverse cascades to estimate influence, picking nodes that more
frequently appear in cascades simulated in reverse direction.

Given the current activation state of a contagion in a social
network, the k-effector problem is to find the most likely k
effectors (initiators of contagions) You can see that influence
maximization is a special case of this problem where all
nodes are activated in the end. The k-effector problem is NP-
hard for general graphs or even a DAG, but is solvable in
polynomial time by dynamic programming on trees [17]. For
general graphs, a heuristic algorithm [18] is to extract the most
probable tree (which is NP-hard) and run the optimal algorithm
on that tree. Finding effectors is also extensively studied for



the Susceptible-Infected (SI) propagation model [19], [20].
Privacy of Social Networks and Attributes: Our work is
different from previous work on protecting social network
privacy, which assumes that the social network graph itself
is private data and network-wide statistics (e.g., degree dis-
tribution) is released [21]. We assume that the social network
structure is publicly available and only the socially contagious
attributes are sensitive.

Links between individuals in a social network can be
telling. For instance, Kifer and Machanavajjhala [22] show that
future social links can be predicted from the number of inter-
community edges by assuming that network evolution follows
some particular model. Somewhat similar to our work, Song
et al. [23] considered flu infection – estimating how many
people get flu while preventing the status of any particular in-
dividual being revealed. To avoid the intricate details of social
contagion, they assume an overly simplistic model where all
nodes in the same connected component are correlated and in
each component, all pairs of nodes are equally correlated. In
our work, we assume a contagion model that is aligned with
established literature on contagion and social influence.

III. PROBLEM DEFINITION

For a population of n individuals, let xi be a sensitive
binary attribute for individual i, xi ∈ {0, 1}, and denote by
X the set of all values 〈x1, · · · , xn〉. We assume that this
attribute is contagious and propagates over a directed network
G(V,E) following the Linear Threshold cascade model. In
this model, each edge has a weight w(u, v) ∈ (0, 1] which
represents the influence that node u exerts on node v. Each
node also has a threshold λv which is selected uniformly at
random from (0, 1]. If the sum of influence from infected in-
going neighbors goes beyond λv , v becomes activated in the
next round. Assuming that the set of activated nodes, A, is not
empty at time 0, we can build it iteratively at every step via
the following rule:

A← A ∪
{
v ∈ V \A :

∑
u∈Nin(v)∩A

w(u, v) ≥ λv
}
. (2)

Here Nin(v) is the set of neighbors with edges pointing to v
(i.e., imposing influence on v). The process proceeds until A
stops growing.

Imagine that these individuals participate in a survey in
which they are each asked about their sensitive attribute
xi. The goal of this survey is to calculate some aggregate
statistic, e.g., the percentage of individuals having attribute 1.
To avoid revealing their secrets, they could use a randomized
perturbation mechanism, M : {0, 1} → {0, 1}, and use the
resulting values to answer the survey. The observed answer of
participants is the sequence 〈z1, · · · , zn〉, denoted by Z, where
zi =M(xi). Assume that M guarantees (ε, δ)-DP, i.e.,

∀z, x 6= x′ : Pr[M(x) = z] ≤ eε Pr[M(x′) = z] + δ. (3)

In this paper we want to examine two problems:
• What is the performance of the best classifier, using only

information in Z and M, to infer the true values X?

• If we also know the contagion network G and the conta-
gion model, can we perform better? In other words, how
much more information is revealed by knowing the social
structure and the way this sensitive attribute propagates
in the network? The difference from the answer to the
earlier question is the loss of privacy.

IV. LIMITATIONS OF BINARY CLASSIFICATION WITH
DIFFERENTIAL PRIVACY

To show that the presence of the underlying contagion
network provides essential information that can pose a real
threat to privacy, we study the limits of binary classification
given only the reported values (Z) and the randomization
parameters of M. This is a fair assumption since the real
values, X , are never disclosed but Z is, and M is known to
all participants.

A classifier scores and subsequently ranks the participants
based on their likelihood of having x = 1. We measure the
success of such ranking by the probability that a randomly
selected sample with x = 1 (a positive sample) is ranked
higher than a randomly selected sample with x = 0 (a negative
sample). This is known to be the area under the receiver
operating characteristic curve (ROC curve) in an unsupervised
classification problem, namely the AUC value [24].

Theorem 1. Any classification attempt by an adversary,
having access to only Z and M, will have an Area Under
the ROC Curve (AUC) at most 1− (1− δ)/(eε + 1).

Recall that the ROC curve of a classifier is plotting the
true positive rate (TPR) against the false positive rate (FPR)
at various threshold settings. AUC can be understood as the
probability that the classifier ranks R1 higher than R0, denoted
by P (R1 > R0), where R1 (R0) is a randomly chosen positive
(negative) sample, with x = 1 (x = 0).

Suppose we take a positive (negative) sample x (x′) and
the perturbation mechanism M produces a perturbed value z
(z′). Let’s denote Pr(M(x) = z) by P (x )z) for brevity. Let
S1 and S0 be two distributions over (−∞,+∞) from which
a score is drawn, if z = 1 or z = 0 respectively. For the
perturbed value z, z′, the classifier chooses a score s, s′ from
Sz, Sz′ respectively and the ranking is produced based on the
scores. Denote by γ(z, z′) the probability that s is higher than
s′, i.e., Pr[s > s′|s ∼ Sz, s′ ∼ Sz′ ]. Obviously,

Pr[s = s′|s ∼ Sz, s′ ∼ Sz′ ] = 1− γ(z, z′)− γ(z′, z).

Then we can write P (R1 > R0) as (Section 2 of [25]):

∑
z,z′∈{0,1}

P (1 )z)P (0 )z′)
(
P (s > s′) +

1

2
P (s = s′)

)
.



Continuing the above, we have:

P (R1 > R0)

=
∑
z,z′

P (1 )z)P (0 )z′)

(
1 + γ(z, z′)− γ(z′, z)

2

)
=

1

2

∑
z,z′

P (1 )z)P (0 )z′)
(
γ(z, z′)− γ(z′, z)

)
+

1

2

=
(
P (1 )1)P (0 )0)− P (0 )1)P (1 )0)

)
·

γ(1, 0)− γ(0, 1)
2

+
1

2
(4)

Observation 1. Let γ∗ be the one maximizing AUC, i.e.,
argmaxγ P (R1 > R0). Then, γ∗(1, 0) = 1, if

P (1 )1)P (0 )0) > P (1 )0)P (0 )1) (5)

and 0 otherwise.

The above is clear from the right hand side of (4). This
shows that an optimal AUC is achieved by a deterministic
classification rule based solely on the condition in Observa-
tion 1.

Corollary 1. Bayesian inference achieves optimal AUC.

Proof. By Bayes’ rule we have:

P (0 )z) =
P (z)− P (1 )z)P (x = 1)

P (x = 0)
.

Using the above, we can substitute P (0 )1) and P (0 )0) in
(5). After canceling out phrases from both sides, we have:

P (1 )1)P (z = 0)

P (x = 0)
>
P (1 )0)P (z = 1)

P (x = 0)

P (x = 1, z = 1)

P (x = 1)P (z = 1)
>

P (x = 1, z = 0)

P (x = 1)P (z = 0)

P (x = 1 | z = 1) > P (x = 1|z = 0).

The proof is symmetrical for the reverse inequality.

We can now prove Theorem 1. Without loss of generality,
we assume that the condition in Lemma 1 holds, we can then
further simplify (4) as below:

Pr(R1 > R0) =
1

2
+

1

2

(
P (1 )1) + P (0 )0)− 1

)
=
P (1 )1) + P (0 )0)

2
(6)

By the ε-DP guarantees we have:

P (1 )1) + eεP (0 )0) ≤ eε + δ

P (0 )0) + eεP (1 )1) ≤ eε + δ, (7)

As a result, we have:

Pr(R1 > R0) ≤ 1− 1− δ
1 + eε

. (8)

Thus, Theorem 1 is proved. Note that the bound is realized
if the inequalities in Equation (3) become equality. This
theorem shows that if this bound is significantly surpassed,
the guarantee of ε-DP no longer holds.

V. ALGORITHM

A. Objective Function

The goal is to infer P (xv = 1) for all v. We denote this
probability by xv throughout this paper (note the difference
between x and x). To do this, we first find the initial seeds of
contagion, then calculate the corresponding xv . Our solution
is hence an arrangement of probabilities of each node v being
initially active, denoted by αv . Rather than a fixed number of
most likely seeds, we seek to find a distribution of initial seeds
that are likely to produce the observed Z. This is shown to
significantly boost our performance. We now define the main
objective for our problem.

Definition 1 (Symmetric Difference). Given two instances of
reports, Z1 and Z2, we define their Symmetric Difference by:

D(Z1, Z2) = |Z1 \ Z2|+ |Z2 \ Z1|. (9)

Let α be an assignment of the initial activation proba-
bilities. Suppose that C is the distribution of all possible
cascades, C, and R is the distribution of all possible reports,
Z̃ = (z̃1, · · · , z̃n). Then, the expected symmetric difference
between Z̃ and the originally observed values, Z, will be as
below:

E
[
D(Z̃, Z)

]
=
∑
Z̃∼R

Pr(Z̃)D(Ẑ, Z)

=
∑
C∼C

Pr(C)
∑
v∈V

Pr(z̃v 6= zv | C)

=
∑
C∼C

∑
v∈V

∑
x∈{0,1}

Pr(z̃v 6= zv | xv = x)Pr(xv = x | C)

=
∑
v∈V

∑
x∈{0,1}

Pr(z̃v 6= zv | xv = x)Pr(xv = x)

=
∑
v

(
P (1 )∼zv)− P (0 )∼zv)

)
xv + P (0 )∼zv) (10)

In the above ∼zv = 1 − zv , and the last line is due to
Pr(xv = 0) = 1 − xv . We define our objective function
as f = E

[
D(Ẑ, Z)

]
and find an α that minimizes f . Since

P (0 )∼zv) is a constant, we can further simplify f as

f =
∑
v∈V

cvxv s.t. 0 ≤ xv ≤ 1, (11)

where cv = P (1 )∼zv)− P (0 )∼zv).

B. Bounds on X

Suppose that X∗ = (x∗1, · · · , x∗n) are the real attribute
values.

Theorem 2. Let P̃ (z) be the fraction of vertices reporting 1
and c = P (1 )1)− P (0 )1),

P̃ (x) =
P̃ (z)− P (0 )1)

c
.



Then, with high probability1:∣∣∣∣P̃ (x)− 1

n

∑
x∗v

∣∣∣∣ ≤
√

log n

2nc2
. (12)

Proof. We can treat P̃ (z) as the mean of n random variables,
representing individual acts of reporting 0 or 1. The expected
value of P̃ (z) can be written as:

E
[
P̃ (z)

]
=

1

n

∑
x∗vP (1 )1) + (1− x∗v)P (0 )1) . (13)

Since 0 ≤ zv ≤ 1 and each individual report is independent
of others, we can apply Chernoff’s bound. By using (13) we
have:

Pr

[∣∣∣∣∣ 1n∑(
x∗vP (1 )1)+

(1− x∗v)P (0 )1)
)
− P̃ (z)

∣∣∣∣∣ ≥ ε
]
≤ e−2nε

2

, (14)

Using the definition of P̃ (x) in (14), we have:

Pr

[∣∣∣∣P̃ (x)− 1

n

∑
x∗v

∣∣∣∣ ≥ ε′] ≤ e−2nε′2c2 . (15)

Recall that c = P (1 )1)− P (0 )1). The probability above is
asymptotically zero when:

ε′ =

√
log n

2nc2
(16)

The value of P̃ (z) can be estimated from data by
|{v ∈ V : zv = 1}| /n. We can now update our objective func-
tion to accommodate this new constraint:

α̂ = argmin
α

∑
v∈V

cvxv

s.t., 0 ≤ xv ≤ 1,

∣∣∣∣∣ 1n ∑
v∈V

xv − P̃ (x)

∣∣∣∣∣ ≤
√

log n

2nc2
,

(17)

Although our solution finds soft probabilities (xv ∈ [0, 1])
instead of discrete values (xv ∈ {0, 1}), our experiments show
that having this constraint can increase the accuracy of inferred
values, especially when the amount of added noise is not
extremely high (DP’s ε is not extremely low).

C. Modelling Contagion

With α, we want to derive a formula for xv , the probability
that node v is active in the end. Computing the influence of
contagion given a fixed α can be done in linear time for a
DAG, using the following formula: (Lemma 3 [15]).

xv = αv + (1− αv)
∑

u∈Nin(v)

w(u, v)xu. (18)

Since the original graph G is not necessarily a DAG, we find
local DAGs containing nodes who impose high influence. In

1If limn→∞ P (a) = 1, a happens with high probability.

this way, we try to benefit from the structural simplicity of
DAGs, while losing minimal information. The approach of
using local structures to approximate the influence in a general
graph has been widely used in prior works in the context of
influence maximization [15], [26], [27].

Algorithm 1 Local DAG with target t. (Algorithm 3 [15])

Require: G(V,E), Node t, η: Threshold for Inf , Nmax: Max
allowed nodes.

Ensure: Dt(Vt, Et): The DAG around node v.
1: Initialization: Vt = ∅, Et = ∅, ∀v ∈ V : Inf(v, t) =

0, Inf(t, t) = 1.
2: while maxv∈V \Vt

Inf(v, t) ≥ η and |Vt| ≤ Nmax do
3: u← argmaxv∈V \Vt

Inf(v, t)
4: Et ← Et ∪ {(u, v) | v ∈ Nout(u) ∩ Vt}
5: Vt ← Vt ∪ u
6: for v ∈ Nin(u) do . Neighbors’ Inf is updated.
7: Inf(v, t) += w(v, u) Inf(u, t)
8: end for
9: end while

10: return Dt(Vt, Et)

Algorithm 1 starts by the DAG Dt containing only t. We
then calculate the influence of each node v on t, which is
the activation probability of t if only v was initially active
and influence would only spread through nodes already in
Dt. This is denoted by Inf(v, t). At each step, the node
outside of Dt with highest Inf(.) is added to Dt along with
its outgoing edges that connect to nodes already in Dt. This
is to ensure that the final Dt is a DAG. We then update the
influence of incoming neighbors of v that are not yet in Dt.
There can be two stopping criteria to the growing process: (1)
When the influence of the most influential node falls below a
threshold η, or (2) the number of nodes in Dt grows bigger
than a maximum allowed number, Nmax. If implemented using
an efficient priority queue for Inf(v, t) values, Algorithm 1
runs in O(|Et| log |Et|) time. Among nodes in Dt, the local
activation probability, xt(v), is as below:

xt(v) = αv + (1− αv)
∑

u∈Nin(v)∩Vt

w(u, v)xt(u). (19)

Note that xt(t) is the probability that t is activated only
through nodes that are most influential on it and, as a result,
can be considered to be a reasonable approximations of xt.
Our experiments show that this approach in selecting DAGs
is essential to achieving high-quality results, and superior to
alternative approaches.

Now we can move on to optimizing the objective function f
in Equation (11). More specifically, we need to find ∂f

∂αv
for all

v. Chen et al. have established that in a DAG, there is a linear
relationship between xt(t) and xt(v) for all v ∈ Vt [15]. The
linear factor, which is equal to ∂xt(t)

∂xt(v)
is computed as below:

∂xt(t)

∂xt(v)
=

∑
u∈Nout(v)∩Vt

w(v, u)(1− αu)
∂xt(t)

∂xt(u)
. (20)



We can compute the above for all nodes v ∈ Dt by initially
setting ∂xt(t)

∂xt(t)
as 1 and then going through nodes in reverse

topological order. Finding this ordering and computing the
partial gradients each takes O(|Et|) time. Next, we find
gradients of f based on each αv . Let Iv = {t ∈ V : v ∈ Vt}.
Then, by taking the gradient of (11) and applying the chain
rule we can write:

∂f

∂αv
=
∑
t∈Iv

ct
∂xt(t)

∂αv
=
∑
t∈Iv

ct
∂xt(t)

∂xt(v)

∂xt(v)

∂αv

=
∑
t∈Iv

ct
∂xt(t)

∂xt(v)

1−
∑

u∈Nin(v)∩Vt

xt(u)w(u, v)

 .

(21)

The last line is produced by taking a derivative of (19) by
αv . Since αv does not have any effect on the activation
probability of predecessors of v in any DAG, we can treat the
summation on the right side of (19) as a constant with respect
to αv . Calculating this summation is possible by dynamic
programming when nodes are visited in their topological
ordering. Computing values in (21) and (20) for all DAGs
has a collective runtime of O(

∑
|Et|).

VI. EXPERIMENTS

In this section, we test our method on both synthetic and
real-world networks. We demonstrate that our proposed con-
straints in Section V-B and greedily retrieved DAGs described
in Section V-C play a key role in maintaining a high quality
for our results. We also investigate attributes that can indicate
how vulnerable nodes are to such attacks, namely in-degree,
out-degree and PageRank.

A. Methods

We tested the following methods in our experiments:

1) CO-DAG: Our main method, which optimizes our ob-
jective subject to the constraints in (17) using DAGs
retrieved by Algorithm 1.

2) O-DAG: Similar to CO-DAG, but without enforcing the
constraint on

∑
xv/n.

3) CO-RND: To show that our selected DAGs are essen-
tial to the high quality of our results, we repeat the
experiments with a method similar to CO-DAG but with
DAGs that grow by adding random neighbors of nodes
already in the DAG, until the number of nodes reaches
a threshold Nmax.

4) O-RND: Similar to CO-RND, but without enforcing the
constraint on

∑
xv/n.

5) Lappas+ [17]: The algorithm to find k-effectors, when
k is known beforehand. Note that by knowing k, this
method has access to more information compared to
others.

6) Bayesian: Simple Bayesian inference as described in
Corollary 1.

B. Datasets

We now introduce the datasets used in our experiments.

Synthetic Networks: We use 4 types of randomly generated
networks:

1) Core-Periphery [28]: A random network where nodes
in a periphery are loosely connected to a dense center.
These networks are generated as Kronecker graphs [29]
with matrix parameter [0.9, 0.5; 0.5, 0.3].

2) Erdos-Renyi: A random network in which all possible
edges have equal probability p to appear. We set p such
that the expected out-degree of every node will be 5.

3) Power-law: A network with a power-law degree distri-
bution where f(x) ∝ x−γ . We set γ = 1 to produce
a degree sequence and ran configuration model [30] to
obtain a network.

4) Hierarchical [31]: Random hierarchies generated as
Kronecker graphs with matrix parameter set to
[0.9, 0.1; 0.1, 0.9].

We generate networks with 500 nodes, remove from it
self-loops and nodes having both in and out-degrees less
than 3 (except for Hierarchical networks). We assign random
influence weights in the according to Section V.A of [15]:
Random numbers between (0, 1] are assigned to edges, then
incoming links to each node is normalized to sum to 1.

TABLE I: Real-world networks.

Network #Nodes #Edges

GrQc 2,422 21,842
HepTh 4,909 38,704
Amazon Videos 1,598 8,402
Amazon DVDs 9,488 55,146

Real-world Networks: We also test our method on real-world
networks that have been extensively studied in the context
of influence maximization before (Table I): two co-authorship
networks GrQc and HepTh [32] and two co-purchase networks
in Amazon, one containing videos and the other DVDs [33],
[34].

C. Experiment Setting

We simulate 10 cascades for each generated network. For
each simulated cascade, we choose a specific number of
initially active nodes (seed nodes) at random. These numbers
are selected in a way that makes it easier to produce cascades
of reasonable size in the networks (with at least 1/4 and at
most 3/4 of all nodes). For Hierarchical networks, 50 and
for the rest of synthetic networks 5 seed nodes were chosen.
For real-world networks, we selected 5% of nodes at random
since the networks’ size greatly varied. We then simulate a
cascade using the triggering set approach in Theorem 4.6 of
[14]: Each edge (u, v) is kept with probability w(u, v) and
tossed otherwise. Then, any node reachable from any of the
seed nodes is deemed active.

To produce differentially private perturbations for the final
xv values, we choose the Randomized Response (RR) mecha-



TABLE II: AUC values of 7 methods for 3 values of β across all networks. Note that (1) our method outperforms others in
almost all cases and (2) Lappas+ fails to pass the upper bound in almost all cases, despite having access to more information.

Network β ε Upper Bound Bayesian CO-DAG O-DAG CO-RND O-RND Lappas+
Sy

nt
he

tic

Core-Periphery

0.1 0.201 0.550 0.550 0.575 0.597 0.568 0.587 0.614
0.3 0.619 0.650 0.648 0.716 0.708 0.689 0.699 0.657
0.5 1.099 0.750 0.751 0.833 0.803 0.802 0.793 0.695
0.7 1.735 0.850 0.847 0.904 0.870 0.887 0.868 0.706
0.9 2.944 0.950 0.951 0.967 0.955 0.965 0.957 0.711

Erdos Renyi

0.1 0.201 0.550 0.545 0.571 0.555 0.553 0.564 0.527
0.3 0.619 0.650 0.659 0.704 0.699 0.678 0.685 0.571
0.5 1.099 0.750 0.752 0.806 0.791 0.781 0.781 0.587
0.7 1.735 0.850 0.851 0.897 0.874 0.876 0.870 0.611
0.9 2.944 0.950 0.949 0.967 0.948 0.960 0.955 0.620

Power-law Graph

0.1 0.201 0.550 0.545 0.590 0.609 0.580 0.587 0.586
0.3 0.619 0.650 0.646 0.715 0.713 0.689 0.700 0.672
0.5 1.099 0.750 0.745 0.813 0.805 0.801 0.795 0.701
0.7 1.735 0.850 0.850 0.890 0.883 0.884 0.876 0.743
0.9 2.944 0.950 0.949 0.959 0.948 0.939 0.953 0.753

Hierarchical

0.1 0.201 0.550 0.540 0.602 0.584 0.577 0.591 0.534
0.3 0.619 0.650 0.652 0.730 0.711 0.699 0.724 0.573
0.5 1.099 0.750 0.753 0.821 0.803 0.808 0.796 0.612
0.7 1.735 0.850 0.852 0.893 0.883 0.887 0.881 0.669
0.9 2.944 0.950 0.949 0.964 0.961 0.960 0.963 0.756

R
ea

l-
w

or
ld

GrQc

0.1 0.201 0.550 0.554 0.577 0.576 0.564 0.561 N/A*

0.3 0.619 0.650 0.644 0.720 0.718 0.683 0.685 N/A
0.5 1.099 0.750 0.744 0.833 0.834 0.798 0.797 N/A
0.7 1.735 0.850 0.849 0.908 0.892 0.892 0.878 N/A
0.9 2.944 0.950 0.951 0.973 0.960 0.971 0.965 N/A

HepTh

0.1 0.201 0.550 0.553 0.584 0.579 0.568 0.566 N/A
0.3 0.619 0.650 0.658 0.733 0.716 0.698 0.703 N/A
0.5 1.099 0.750 0.751 0.831 0.825 0.793 0.793 N/A
0.7 1.735 0.850 0.849 0.917 0.893 0.884 0.876 N/A
0.9 2.944 0.950 0.950 0.972 0.958 0.962 0.962 N/A

Amazon Videos

0.1 0.201 0.550 0.554 0.598 0.604 0.584 0.585 N/A
0.3 0.619 0.650 0.649 0.748 0.748 0.706 0.714 N/A
0.5 1.099 0.750 0.747 0.854 0.836 0.828 0.812 N/A
0.7 1.735 0.850 0.849 0.919 0.899 0.906 0.894 N/A
0.9 2.944 0.950 0.950 0.975 0.962 0.974 0.967 N/A

Amazon DVDs

0.1 0.201 0.550 0.551 0.576 0.584 0.567 0.570 N/A
0.3 0.619 0.650 0.652 0.735 0.739 0.699 0.707 N/A
0.5 1.099 0.750 0.750 0.830 0.829 0.806 0.802 N/A
0.7 1.735 0.850 0.851 0.906 0.897 0.894 0.886 N/A
0.9 2.944 0.950 0.952 0.963 0.957 0.957 0.941 N/A

* Due to the large size of real-world networks, performing experiments with Lappas+ was not viable.

nism [35]. Given a value x ∈ {0, 1} an RR mechanism works
as below:

RR(x) =


x, with probability β;
1, with probability (1− β)/2;
0. with probability (1− β)/2.

(22)

where β is a parameter that determines the rate by which
respondents report the true value x. A RR mechanism with pa-
rameter β is a DP mechanism with ε = log ((1 + β)/(1− β)).

To do the inference, we need to extract DAGs for each node.
For random DAGs (used in O-RND and CO-RND), we use the
average number of nodes in their corresponding greedy DAGs
(used in O-DAG and CO-DAG) as node capacity. To optimize
(17), we use ALGLIB2 library.

2ALGLIB (www.alglib.net), Sergey Bochkanov

D. Going Above the Bound

In Section III we proved that, without extra information
about the contagion, it is impossible to achieve an AUC higher
than 1 − (1 − δ)/(1 + eε) on binary attributes perturbed by
a (ε, δ)-DP mechanism. Here, we test this guarantee after
the contagion graph is known to an adversary. For 5 values
of RR’s β we perform inference using methods described
in Section VI-A and report the resulting AUC scores, the
corresponding ε and theoretical upper bounds in Table II.

As expected, we observe that the AUC scores for
Bayesianis close to the theoretical upper bound. Further-
more, note that in almost all cases CO-DAG achieves the
highest AUC score and inall cases the value is beyond the
AUC upper bound with DP guarantees. For the medium range
of β this difference becomes significant. We also observe that
in cases where β is extremely low and the perturbed data
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Fig. 1: Impact of maximum allowed nodes (Nmax) in each DAG on increase in AUC scores relative to Nmax = 3.
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Fig. 2: Impact of threshold on Inf , η on increase in AUC scores relative to η = 0.01.

Fig. 3: The correlation between E[Acc] and from top to bottom (1) out-degree, (2) in-degree, and (3) PageRank.

is exremely noisy, O-DAG tends to outperform CO-DAG. We
believe that this is due to the deteriorating quality of the bound
on
∑
xv/n when the added noise becomes too big. It is also

worth noting that our method’s capability to go beyond the
bound does not come trivially, since Lappas+ fails to do so
in all but one cases, even as it receives more information as
input (number of seeds, k). Finally, notice that in virtually all
cases, dropping the greedy DAGs or the constraint on

∑
xv/n

hurts performance.

E. Impacts of DAG’s size on Inference Quality

We now test the impact of changing η (the threshold on
nodes’ influence) or Nmax (maximum allowed nodes) of DAGs
on the quality of inferred values.

We iterate over an increasing Nmax with a fixed RR’s β
across 4 synthetic networks. Since we are interested in the
change in resulting AUC scores and not their absolute values,
we move each resulting curve so that their starting points
would land on 0.00. Similarly for η, we start from η = 0.01
and exponentially grow the threshold to 0.64 while β is fixed.
To make it easier to observe the change in AUC scores, we
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Fig. 4: The correlation between out-degree (x-axis) and E[Acc]. Each column represents experiments with the same β.

collocate the ending point of all curves on 0.00.
The results for Nmax and η are depicted in Figures 1 and

2 respectively. Intuitively, one might expect that larger DAGs
will always lead to more accurate results, albeit with some
additional computational cost. This is almost true in both
experiments. Interestingly, in some of the networks when the
perturbation is minimal (β = 0.9, ε = 2.94), the quality
actually drops as DAGs grow larger. This means that having
a more selective DAG, with more restrictive criteria, can
sometimes yield better results.

F. Who is More Vulnerable?

The AUC value describes the effectiveness of our inference
algorithm but does not provide details on individual vertex
level. Here we look into attributes that can indicate a node’s
vulnerability to such an inference attack. Without access to
ground truth values of xv , finding the best cutoff threshold
of xv for classification is not possible. As an alternative, we
calculate the expected accuracy of a single node’s inferred
value if the threshold θ is selected at random from [0, 1]:

E[Acc] = Eθ∼[0,1] [I(xv = 1)xv + I(xv = 0)(1− xv)] ,
(23)

where I(·) is an indicator function. Note that we are not
interested in the absolute values of E[Acc], but the relative
difference between different nodes, in order to compare nodes’
vulnerability to our attack.

We tested 3 node attributes related to the centrality and
importance of a node in a complex network: (1) (Weighted)
Out-degree, (2) (Weighted) In-degree, and (3) PageRank [36].
We limit our visualizations to Core-Periphery networks due
to limited space. Results are similar for the other 3 networks.
We test 9 values of β = {0.1, 0.2, · · · , 0.9} and infer the
real values using CO-DAG. In Figure 3 the resulting E[Acc]

for each node v is plotted against the 3 metrics mentioned
above along with correlation analysis printed on each plot.
Each column contains plots with a similar β value, printed
on the top. Among the 3 metrics, two of them (in-degree
and PageRank) show a negative correlation, while a strong
correlation is observed between E[Acc] and out-degree which
grows even stronger as β is increased and the added noise
becomes minimal. A reasonable explanation is that when v
has a high impact on many nodes in the network, it essentially
sends signals of its true value to those nodes during the spread
of the contagion. These signals, each insignificant on its own,
can collectively reveal the true value of xv to a great extent.
Of course, these signals only grow stronger when the amount
of added noise to each report is reduced as β grows bigger. In
contrast, there might be many signals on the influence received
by a node with a high in-degree, but without that influence
spreading around, we only have the report by that node as
a single indicator of its true value which is masked well by
conventional privacy protection techniques.

We repeat this experiment on other synthetic networks to see
if we observe similar results. In Figure 4, E[Acc] is plotted
against out-degree of all nodes for β between 0.1 and 0.9.
A similar trend is visible across all 4 types of network, with
different intensity. In the 3 networks where the distribution
of influence is skewed, namely Core-Periphery, Power-law
and Hierarchical, the correlation is strong. Moreover, as β
increases and the added noise become smaller, the correlation
grows stronger. In Erdos-Renyi networks, where degrees are
distributed more evenly, the difference in E[Acc] among nodes
is minor and as a result, the correlation is weaker. Notice that
in Hierarchical network, this unequal distribution of influence
reaches its extreme point, where the majority of the nodes are
leaves, with no impact on others, while a handful of nodes at



the top influence many others. This radical difference leads to
a constant unbalance between E[Acc] of the two groups across
all values of β.

VII. CONCLUSION AND FUTURE WORK

In this work, we provide further evidence that a privacy-
protecting measure that is oblivious to socially contagious
properties of attributes is unlikely to provide guarantees in
practice as advertised. There are two obvious directions for
future research: 1) design a privacy protection mechanism
that is aware of the contagious property of some attributes
and employs models of contagions in its design; Our method
can be used to test if that method succeeds. 2) extend the
results to other contagion models. Notice that the extension
to any progressive contagion model (where active nodes stay
active) with a differentiable formula (e.g, Independent Cascade
model) is easily possible. However, ideas specific to those
models are required for efficient implementation and model
design.
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