arXiv:1812.02395v1 [cs.LG] 6 Dec 2018

Time-Discounting Convolution for
Event Sequences with Ambiguous Timestamps

Takayuki Katsuki, Takayuki Osogami,
Akira Koseki, Masaki Ono, Michiharu Kudo
IBM Research - Tokyo
Tokyo, Japan

e-mail: {kats,osogami,akoseki,moono,kudo} @jp.ibm.com

Abstract—This paper proposes a method for modeling event
sequences with ambiguous timestamps, a time-discounting con-
volution. Unlike in ordinary time series, time intervals are not
constant, small time-shifts have no significant effect, and in-
putting timestamps or time durations into a model is not effective.
The criteria that we require for the modeling are providing
robustness against time-shifts or timestamps uncertainty as well
as maintaining the essential capabilities of time-series models,
i.e., forgetting meaningless past information and handling infinite
sequences. The proposed method handles them with a convo-
lutional mechanism across time with specific parameterizations,
which efficiently represents the event dependencies in a time-shift
invariant manner while discounting the effect of past events, and
a dynamic pooling mechanism, which provides robustness against
the uncertainty in timestamps and enhances the time-discounting
capability by dynamically changing the pooling window size.
In our learning algorithm, the decaying and dynamic pooling
mechanisms play critical roles in handling infinite and variable
length sequences. Numerical experiments on real-world event
sequences with ambiguous timestamps and ordinary time series
demonstrated the advantages of our method.

Index Terms—Electronic health records, Electronic healthcare,
Health information management, Event sequence, Convolutional
neural networks, Time series analysis

I. INTRODUCTION

Temporal event sequences record timestamped events,
which are ubiquitous in the real world and are addressed in
various data mining problems. We address the scenario where
the attached timestamps are ambiguous, as shown in Fig. [T}
Such sequences are found in events that are recorded passively,
i.e., without observers’ instantaneous control. The timestamps
do not represent when events have occurred but represent
when they were recorded. In such cases, the time intervals
are variable and the timestamps are not reliable. Thus, small
time shifts in the observed sequences have no significant effect,
and there are uncertainties in recorded timestamps. In medical
informatics, for example, attention is being paid to analyzing
such passively recorded data, as found in electronic health
records (EHRs) for predicting risks to patients [[1]-[3]. They
are recorded when a patient is treated at a hospital.

Modeling event sequences is one of the fundamental prob-
lems in data mining, such as analyses on sensor time-series,

©2018 IEEE DOI 10.1109/ICDM.2018.00139

Masaki Makino, Atsushi Suzuki
Department of Endocrinology and Metabolism,
Fujita Health University
Aichi, Japan
e-mail: {makinom,aslapin}@fujita-hu.ac.jp

Event sequence Matrix representation X (<t

A A A A
A
A A T
A I T
A A | T T 1
- A A | 17 Il
8 ATA A A | I
5 A 7S Convert
e S —""
< 7 — A
A A
A A
A
A 7y
- Iy
Time Time

Fig. 1: Example of event sequence with ambiguous timestamps and
its matrix representation. Horizontal and vertical axes respectively
correspond to timestamps and attributes. Triangles indicate attribute
values of events at corresponding times; yellow and blue mean high
and low values, respectively.

economic data, and EHRs. While we can assume independent
observations for non-sequential data, we must take into ac-
count the dependencies between successive events. In standard
modeling approaches, one of two major assumptions is made:
the observations occur at regular intervals (so the timestamps
can be ignored) or at irregular intervals (so the timestamps
must be considered). The first approach is typically used for
time-series and language modeling. Once the order of the
sequence is incorporated into the model, exact timestamps and
durations are unimportant. There are many established models,
including vector autoregressive (VAR) models [4], hidden
Markov models [5]], recurrent neural networks (RNN) [6],
long short-term memory (LSTM) models [[7], and Boltzmann
machines for time series [[8]—[16]]. If the time intervals are not
constant, the performance is degraded in return for simpler
modeling for temporal dependencies.

The second approach is typically used for asynchronously
observed event sequences, such as in log records and process-
series data. Along with other features representing events, the
timestamps or intervals between events are explicitly input to
the model for encoding the dependencies between successive
events. RNN models have been used for this purpose [17]-
[19]. However, if the timestamps are not reliable, directly
inputting them into the model might not be effective.

For modeling the event sequences with ambiguous times-
tamps, we addressed three major modeling requirements.

Time-shift invariance
The model should be invariant against time shifts, since
almost the same patterns would be recorded with a time
shift if there is no instantaneous and on-demand control.

Robustness against timestamp uncertainty
The model should be robust against uncertainty in times-
tamps, since the timestamps represent when they were
recorded but not when events have occurred.

Natural forgetting
The ability to forget meaningless past information should
be inherited from time-series models, enabling the han-
dling of infinite sequences and long-term dependency.

We propose a time-discounting convolution method that
uses a specific convolutional structure and a dynamic pooling
mechanism. Our convolutional structure has a uni-directional
convolution mechanism across time with two kinds of pa-
rameter sharing for efficiently representing the dependency
between events in a time-shift invariant manner. It also has a
mechanism of naturally forgetting by discounting the effects of
past observations. The structure is based on the eligibility trace
in dynamic Boltzmann machines (DyBMs) [12]]-[16], whose
learning rules have a biologically important characteristic, i.e.,
spike-timing-dependent synaptic plasticity (STDP). This is our
first contribution. The dynamic pooling mechanism provides
robustness against the uncertainty in timestamps and enhances
the time-discounting capability by dynamically changing the
window size in its pooling operations. This is our second
contribution.

Several time-convolutional models have been proposed to
capture shift-invariant patterns while representing temporal
dependencies. The time-delay neural network [20] is a pio-
neering model. Convolutional neural networks (CNNs) have
recently been applied to sequential data, such as stock price
movements [21], sensor outputs [22], radio communication
signals [23], videos [24]], and EHRs [1]], [3], [25]. However,
these models do not have a temporal nature, i.e., the natural
forgetting capability, which is one of our modeling require-
ments. To represent the both convolutional and temporal
natures, stacking combinations of convolutional models and
time-series models have also been studied recently [26], [27].
Our model inherently has both a time-series and convolutional
aspects. This reduces the number of model parameters, which
is quite useful when the amount of training data is limited.

We empirically evaluated the effectiveness of the proposed
method in numerical experiments to examine its utility of
the method for the real event sequences with ambiguous
timestamps and general workability of the method for the real
time-series data. We found that the proposed method improves
predictive accuracy.

II. PREDICTION FROM TEMPORAL EVENT SEQUENCES

Our goal is to construct a model for predicting objective
variables, y[t] at time ¢, from an event sequence before
time ¢, X[<t|, where vector y!*! can be a future event itself
(autoregression) or any other unobservable variable (regres-

Weights at each time point

exponentially dW

Weights of convolutional patch at each

time point exponemiallydey

O 0O
t—d—7x t
Time-discounting convolution

DyBM [17],[18]

Fig. 2: Proposed time-discounting convolution method.

sion or classification), and X [<? represents all the observed
sequences before time t.

An event sequence is a set of records of events with
timestamps. A record has the values of D attributes, and
each of the attributes may or may not be observed with
other attributes at the same time, as shown in Fig. E} For
ease of analysis, the sequence X< is usually represented
as a D x T matrix [3]], [25], [28]. The horizontal dimension
represents the timestamp at regular intervals with the highest
temporal resolution in the sequence, and the vertical dimen-
sion represents the attribute values, as shown in Fig. E], ie.,
X<t = {glt=d}t=t where) is the vector of attribute
values at t. If the event records are originally observed at
regular intervals and all the attributes are always observed,
the temporal event sequence is reduced to ordinary time-
series data. If the original observation intervals vary over time
and all the attributes are not observed simultaneously, several
elements of the matrix will be missing. We replace missing
values with large negative values (sufficiently lower than the
minimum value of each attribute), which works well with our
dynamic pooling described in the following section.

We learn the parameters 6 of our prediction model, f(e,8),
by minimizing the objective function:

N

co)=> o),

t=1
) =L(y", f(X[<1,0)),

where (D

where N is the number of training samples (N > T') and
L(e) is a loss function, which is selected for each task and
the corresponding objective variables y!*), from mean squared
error, cross entropy, log likelihood, and other functions.

By using the learned parameters, 6, we can predict y;

g = f(X[<1.6). 2
We define our prediction model in the following section.
ITI. TIME-DISCOUNTING CONVOLUTION

A. Prediction model with time-discounting convolution

We propose a time-discounting convolution method for the
prediction model. It has a convolutional structure across time,

where the weight of a convolutional patch decays exponen-
tially at each time point, as shown in Fig. [2| The proposed
model has parameters 8 = [W,b] and predicts the j-th
element of y¥! by the use of a non-linear function h(e) that
maps a K x T-dimensional input to a 1-dimensional output:

(X1, 0)]; 3)
({2 >) -))
i =0 1<k<K,1<d<T
where Wédﬂ“] is a convolutional parameter across time with
” [t—d]

7y, for the i-th attribute value z, at time ¢ — d, and T}, is
the time length of the k-th convolutional patch. We use bias
parameter by individually for each of the K feature maps.
The non-linearity in i (e) makes this apparently redundant for-
mulation meaningful, analogous to CNNs. We define specific
functional forms of h(e) for each task in Section along
with the details of the implementation.
We use two different parametric forms for Wikl

k,i,j
Wigu,l{;k] = ATy 4, and (4)
Wi = 1 Vi (5)
4 Tk]

where A, 11 € [0, 1) is the decay rate. Note that W, forms
a tensor and corresponds to a patch in CNNs. Eq @]) uses
Uk,:,; consisting of a single parameter across time for each
k, i, and j. In the convolutional patch based on Eq. (HI),
Uy,i,; is replicated and used for multiple temporal positions
of the time convolution with the decay rate of A4t™*. The
parameterization with shared parameters in Eq. (@) works
similarly to the eligibility trace of DyBM, as shown on the
left side of Fig. that is, the convolutional patch extracts
the feature that represents the frequency of each observation
and its distance from the current prediction. Eq. () uses
Vi,ry,i,; consisting of individual parameters for each time
T, and other indexes k, ¢, and j. The Vj . ;; forms the
convolutional patch by itself and all the parameters in this
patch decay together by 1 in accordance with the timestamp
d. We use Eqgs. (@) and (§) in the same proportion in our K
feature maps. The proposed method can capture discriminative
temporal information in a shift-invariant manner because of
its convolutional operation. Also, it can naturally forget past
information, and prediction and gradients in learning do not
diverge in the limit of 7' — oo thanks to the decay rates A
and £ in Eqs. (@) and (3).

We can use our model as a layer in a neural network, can
incorporate a neural network into our model via h(e), or as a
preprocessor of the input X <% in Eq. (3. In our experiments,
we actually used our model along with a fully-connected layer
and activation functions for prediction.

B. Dynamic pooling

We introduce dynamic pooling as a powerful mechanism to
avoid overfitting to vague timestamps and past meaningless
information. Our pooling window increases in accordance

0 I IR
o 00 [00100/000 0000 oap[o
8 00 -60000066060000/0
0 0o 0000000000000
- : ———Time
t—o0 t—d Dynamic pooling 4 t—1
5 © 00060
6 -0-0000
0 O 0000

‘Time”

Fig. 3: Dynamic pooling

with the time from prediction point ¢ as shown in Fig. [3
Specifically, we let

A = (27, (6)

max
T €[0,lo x1t]
where [y is the initial window size and [is the growth
rate of the window. We can dynamically downsample the
observed event sequences or latent representations by taking
the maximum value over sub-temporal regions along with
increasing the window size exponentially.

Dynamic pooling is used in the proposed method both as a
preprocessor of input X [<*I and function h(e) in Eq. (3). As
a preprocessor of X [<!, we first apply dynamic pooling to a
raw sequence then use the preprocessed sequence as X [<%. As
h(e), we apply dynamic pooling to the latent representations
that are the inputs to h(e).

Dynamic pooling leads to tractable analysis of the missing
values by ignoring them in its max operation as the first
pooling layer. It also enables us to easily handle infinite
sequences when we make the final window size infinite. Also,
we can handle the varying (horizontal) dimensions of X (<!l
across different ¢ in the same manner as handling infinite
sequences. The pooling layer after convolution works as an
ordinary pooling method, i.e., the patterns having the largest
effect are extracted. Because the rate of selecting each time
point in the max operation decreases due to the growth of
the window width in accordance with the time length from
the prediction point ¢, the expected effect of each time point
decays exponentially. This is also similar to the eligibility trace
in DyBM. We can define other pooling mechanisms, such
as dynamic mean-pooling, by replacing the max(e) operation
with another operation.

C. Learning Model Parameters

In our experiments, we tackled autoregression and classifi-
cation problems. We define the objective function £[*1(9) for
each problem setting and derive the learning rules. For the
autoregression problems, we use the L2-norm in Eq. (I):

cll(g) = || x1 - f(xI<1, 9)|,)

For the classification problems, we use the following form in

Eq. (1):

£1(0) = Le(y", o (£(X<1, 0))), (8)

where the function L (e) is the cross entropy, and function
o(e) is the softmax function. For the classification problems,
we use o (f(X[<* @) as the prediction model.

The model parameters are learned by mini-batch gradient
descent. The update rule with ¢ is defined as

1« oaclme
ocomy 3 Yo

m=t—M+1

where 7 is the learning rate and M is the mini-batch size.
The specific gradients of the parameters are omitted due to
space limitations (see the Appendix). In the training phase, the
dynamic pooling is simply passed through the gradient to the
unit selected as maximum, analogous to ordinary max-pooling.
In the mini-batch gradient descent, the learning rate 7 is
controlled using the Adam optimizer with the hyperparameters
recommended in [29], and the mini-batches are set as M = 16
examples. We used the same procedure for all the models
we compared in our experiments. The detailed settings of the
hyperparameters K, Ty, A, u, lg, and [are described for each
experimental task in Section

D. Relationships to Other Models

Our model can be seen as a generalization of DyBM. The
corresponding prediction model by the DyBM is defined as

[foysm (X <1, 0)];

- h({ Z; x,Et_d]W,ﬂj - Z bk’i}1<k<K,1<d<T)'

(10)

This is a special case of our model (Eq. (3)) when T, = 0
for any k. In Eq. (I0), the conduction delay of DyBM is
assumed to be zero. In other words, we extend the summa-
tion and definition of the eligibility trace in DyBM to the
1D-convolutional operation in our model. We also extended
DyBMs to be applicable to classification problems and neural-
network layers.

Our model reduces to a VAR model with lag T if we use
only Eq. (), let h(e) be the summation over d, and set T}, =
T, u=1, and k = 1. Eq. () then reduces to

T
[fyar(X<1,0)]; = Z Z 2V -,

i T=1

Y

where we omit k£ and d because of the above assumptions.

From the above relationships, our model can be seen as an
ensemble of convolutional terms (generalization of eligibility
trace of DyBM) and VAR-like terms. The convolution with
Ty # oo or T particularly differentiates our model from them.

DyBM can be considered a temporal expansion of the re-
stricted Boltzmann machine (RBM). By replacing the temporal
sequences with hidden variables, the RBM’s prediction model
for the j-th hidden variable is

[frBMm(2,0)]; = h({ ZIZWIMJ - Z bk,i,j}j:1)~ (12)

Convolution

RB&

Temporal expansion

{ Convolutional RBM (C-RBM, CNN) |

Temporal expansion

Convolution

Dym

} Time-di ting convolution ‘

Special parametrization
(Eligibility traces)

Special parametrization (Egs. 4, 5)
and convolution

Fig. 4: Relationships among RBM, DyBM, C-RBM, VAR, and our
model (time-discounting convolution).

Its convolutional extension is a convolutional restricted Boltz-
mann machine (C-RBM). For two-dimensional data, the pre-
diction model for the (i, j)-th hidden variable is

[ferBMm (2, 0)];; = h({ Z WhrsTitrj+s — bk}K),

k=1

13)
From Eq. (T3)), our model can be seen as a temporal expansion
of a C-RBM with 1D-convolution and special parameteriza-
tions in Eqs. (@) and (5) having exponential decay inspired by
DyBM. We summarize these relationships in Fig. §]

)

IV. EXPERIMENTAL RESULTS

We assessed the effectiveness of our method in numerical
experiments. First, we applied our method to a real-world
event sequence with ambiguous timestamps extracted from an
EHR. Since our method was designed for general event se-
quences including ordinary time-series data, we then evaluated
its effectiveness for real-world time-series data.

A. Prediction from Real-world Event Sequence with Ambigu-
ous Timestamps

We evaluated the proposed method using two real-world
event sequence datasets, EHRs for patients at a Japanese
hospital [30]. The first dataset included data on 30,117 patients
treated for diabetic nephropathy (DN). We constructed a model
for predicting progression of DN from stage 1 to stage 2 after
180 days from the latest record in the input EHR (binary
classification task). The progression label of the i-th input
EHR was defined as y; € {0,1} such that y; = 0 means
that the patient remained in stage 1 and y; = 1 means
that the patient had progressed to stage 2. The ¢-th input
EHR was represented as a 180-day sequence of real-valued
results of the lab tests, where we represented the sequence
as a matrix X; € RP*T for which the horizontal dimension
corresponds to the timestamp (time length 7" = 180) and the
vertical dimension corresponds to the lab tests having D = 25
attributes, i.e., Albumin, Albuminuria, ALT(GPT), Amylase,
AST(GOT), Blood Glucose, Blood Platelet Count, BMI, BUN,
CPK, CRP, eGFR, HbAlc, Ht, Hgb, K, Na, RBC, Total
Bilirubin, Total Cholesterol, Total Protein, Troponin, Uric acid,
WBC count, and y-GTP. The second dataset included data on
36,502 patients treated for cardiovascular disease (CVD). We
constructed a model for predicting the occurrence of major
cardiovascular events after 180 days from the latest record in
the input EHR (binary classification task). The label of the
i-th input EHR was defined as y; € {0,1} such that y; = 0

Raw sequence X (<Y

Time

Proposed method

Dynamic pooling

Time-discounting convolution ‘

Dynamic pooling

|
‘Function h(e)in Eq. (3) ‘

Prediction 9

Fig. 5: Overall structure of proposed method for experiments.

TABLE I: Comparison of proposed and baseline methods in terms
of AUC (higher is better).

Task DN CVD

DyBM 0.607 0.620

CNN 0.647 0.635

CNN w/ dynamic pooling 0.664 0.636
Proposed w/o dynamic pooling 0.660 0.635
Proposed w/ dynamic pooling 0.674 0.647

means that the patient did not experience any of the events and
y; = 1 means that the patient had experienced the event. The
definition of X; was the same as for the DN case. For both
tasks, following [3], the first 67% of each dataset was used
for training, and the remaining 33% was used for testing. We
standardized the attribute values by subtracting its mean and
dividing by its standard deviation in the training data.

1) Implementation: Since we were solving the classifica-
tion tasks, we used Eq. (8) for the objective function. We
show the overall structure of the proposed method for the
experiments in Fig. 5] We first applied dynamic pooling to the
raw matrix X. Then, the outputs of the first dynamic pooling
were inputted to time-discounting convolution. After that, we
applied dynamic pooling again. Finally, we used a fully con-
nected neural network as h(e) in Eq. @), >, 4 ng(;(gk,d) +

bg-f) where W/l and bl/] are parameters, g is the inputs to
h(e) in Eq. (@), and the function §(e) is a rectified linear
unit (ReLU) [31]. We also used Ll-regularization for the
hidden units, which are outputs of the second dynamic pooling,
in the optimization of Eq. (I). We tuned the regularization
parameter ¢ of L1-regularization and hyperparameters of the
proposed method using the last 20% of the training data as
validation data. We then trained the model using all of the
training data and the tuned parameters. The candidates for
c were {1072,107%,10°}. The hyperparameters candidates
were K € {4,8,16,24}, A\, € {0.8,0.85,0.9,0.95}, ly €
{1,2,3,4,5,10}, and ! € {1.0,1.05,1.1,1.2}. We used four
different T}: 1, 2, 4, and the sequence length. We used them
in the same proportion in our K feature maps.

2) Results: We used the area under the curve (AUC) as
the evaluation metric since the tasks were binary classifica-
tion. We compared the results against those of two baseline
methods, DyBM, a state-of-the-art model for the time-series
data, and CNN, a state-of-the-art model for EHR analysis.
For fair comparison, we tuned their hyperparameters in the

TABLE II: Comparison of proposed and baseline methods in terms
of RMSE (lower is better).

Task Sunspot Price
Average Best Average Best
VAR 0.213 0.213 0.329 0.165
DyBM 0.0734 0.0717 0.0466 0.0302
CNN 0.0751 0.0697 0.0845 0.0306
Proposed 0.0719 0.0690 0.0489 0.0291

same manner as with the proposed method for each task.
For prediction with DyBM, we used the prediction model of
DyBM defined in Eq. (I0) (DyBM). For the prediction with
CNN, we used the prediction model by replacing the time-
discounting convolution in Fig. [5] with ordinary convolutional
layer in Eq. (I3) (CNN) and that with the two dynamic pooling
in Fig. 5] (CNN w/ dynamic pooling). We also present the
results of the proposed method without dynamic pooling. As
shown in Table[l} the AUC for the proposed method was better
than those for the baselines. This shows that the convolutional
structure and our temporal parameterization work well for
event sequences with ambiguous timestamps. Moreover, the
values for the DN dataset were higher than the 0.64 reported
for a stacked convolutional autoencoder model using the same
dataset [3]. The selected hyperparameters for the proposed
method were ¢ = 0.01, K = 8, A = 0.95, u = 0.95, [y = 4,
and [= 1.05 for DN, and ¢ = 1.0, K = 8, A = 0.80,
w=0.80, lp = 1.0, and [= 1.05 for CVD.

B. Prediction from Real-world Time-series Data

We also evaluated the proposed method using two real-
world time-series datasets. The first dataset was a publicly
available dataset containing the monthly sunspot number
(Sunspot). We constructed a model for predicting the sunspot
number for the next month from the obtained sunspot time-
series data (autoregression task). The time-series data X; €
[0,1]P*T had D = 1 dimension and T = 2,820 time
steps (corresponding to January 1749 to December 1983). The
second dataset was a publicly available dataset containing the
weekly retail gasoline and diesel prices (Price). We constructed
a model for predicting the prices for the following week
from the obtained price time-series data (autoregression task).
The X; € [0,1]P*T had D = 8 dimensions (corresponding
to eight locations in the U.S.) and T' = 1,223 time steps
(corresponding to April 5th, 1993, to September 5th, 2016).
For both tasks, following [14]], the first 67% of each time series
was used for training, and the remaining 33% was used for
testing. We normalized the values of each dataset in such a
way that the values in the training data were in [0, 1] for each
dimension, as in [16].

1) Implementation: Since we were solving the autoregres-
sion tasks, we used Eq. (7) for the objective function. In these
tasks, the overall structure of the proposed method and the
hyperparameters candidates were the same as in the event-
sequence experiment in Section IV-A.

2) Results: We evaluated the methods by using the average
test root mean squared error (RMSE) after 1000 iterations

and that of the best case. We compared the results against
those of three baseline methods, VAR, DyBM, and CNN. For
DyBM and CNN, we used as the same implementation of them
in the event-sequence experiment. For VAR, we simply used
Eq. (TI) for the prediction function. As shown in Table [[I] the
RMSE for the proposed method was comparable to or better
than those of the baselines. Moreover, the RMSE values for
the proposed method were lower than the 0.0734 [14] and
0.0698 [16] for the Sunspot data and the 0.0564 [14] and
0.0399 [16] for the Price data, which were reported as the
results from experiments including other DyBM variants and
LSTM models. These results indicate that the convolutional
structure and our temporal parameterization work well even
for ordinary time-series data. The selected hyperparameters
for the proposed method were ¢ = 0.01, K = 4, A = 0.85,
w=0.85, lp = 1.0, and [= 1.0 for Sunspot, and ¢ = 0.01,
K =8 A=0.85, £ =0.85,1y=1.0, and [= 1.0 for Price.

V. CONCLUSION

We proposed a time-discounting convolution method that
can handle time-shift invariance in event sequences and has
robustness against the uncertainty in timestamps while main-
taining the important capabilities of time-series models. Exper-
imental evaluation demonstrated that the proposed method was
comparable to or even better than state-of-the-art methods in
several prediction tasks using event sequences with ambiguous
timestamps and ordinary time-series data. The next step in our
work is to develop a learning algorithm in an online manner for
the proposed method. Actually, we can approximately update
the model parameters in an online manner without back propa-
gation through infinite sequences or storing infinite sequences
by leveraging dynamic pooling. Increasing the interpretability
of our method is another interesting next step.

ACKNOWLEDGMENTS
Takayuki Katsuki and Takayuki Osogami were supported in
part by JST CREST Grant Number JPMJCR1304, Japan.
APPENDIX

A. Specific gradients for model parameters

Here, we show the gradients used in our learning of the
model parameters by mini-batch gradient descent in Section
II-C. The gradient of £[™(@) with respect to the parameter
U, k,i,j is

oct™l9) ocl™(e) [af(X<m.0)]" anyu

OUy,i,j N 8f(X[<m],0)[ok } aUk’i’j(’14)
where we shorten the partial set of the inputs of the function
h(e) on the right-hand side of Eg. related to the j-th
element of f(X[<™ @) and the index k in the K x T-
dimensional inputs as 7; 5, and

omj k pmedem |
Gk A\d+TE p[m—d =Tk } .
8Uk,i,j { Z ’ d=1

Tk

5)

The gradient of £I")(8) with respect to the parameters
% acl™l (o) oLl™ (o)

ki and by, gp—=" and ===, are almost the same
to Eq (14) — they differ only for the gradient of 7 ; with

regard to V4 -, ;; and b,. We show them simply as

onyik meder |
_ gk AT TR } , 16)
Wi i i {M ' d=1 (
onjk T
—— ={-1};_. 17
abk { }d—l ()
H aLlm(6) . . .
ere, —g—— for autoregression problems with Eq. is
oLl (o)
= 2f(X[<m g) — 2x[m] 18
of (X[<m] 9) # 0) 19
and that for classification problems with Eq. (8) is
8£[m] (0) 1— y[m] y[m]
OF(XI=m.0) — 1-o(f(XI<m.0)) o(F(XI<.0))°
(19)

[<m]
Through the function h(e) and the gradient af()&(niw

i,k
other functions, such as the activation function, and other
layers can be applied to our model and the learning algorithm.

REFERENCES

[1] Y. Cheng, F. Wang, P. Zhang, and J. Hu, “Risk prediction with electronic
health records: A deep learning approach,” in Proceedings of the 2016
SIAM International Conference on Data Mining. SIAM, 2016, pp.
432-440.

[2] Z. Che, Y. Cheng, S. Zhai, Z. Sun, and Y. Liu, “Boosting deep learning
risk prediction with generative adversarial networks for electronic health
records,” in Data Mining (ICDM), 2017 IEEE International Conference
on. IEEE, 2017, pp. 787-792.

[3] T. Katsuki, M. Ono, A. Koseki, M. Kudo, K. Haida, J. Kuroda,
M. Makino, R. Yanagiya, and A. Suzuki, “Risk prediction of diabetic
nephropathy via interpretable feature extraction from ehr using convo-
lutional autoencoder,” Studies in health technology and informatics, vol.
247, pp. 106-110, 2018.

[4] H. Liitkepohl, New introduction to multiple time series analysis.
Springer Berlin Heidelberg, 2005, vol. Part I.

[5] L. E. Baum and T. Petrie, “Statistical inference for probabilistic
functions of finite state markov chains,” The annals of mathematical
statistics, vol. 37, no. 6, pp. 1554-1563, 1966.

[6] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal
representations by error propagation,” California Univ San Diego La
Jolla Inst for Cognitive Science, Tech. Rep., 1985.

[71 S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735-1780, 1997.

[8] G. W. Taylor, G. E. Hinton, and S. T. Roweis, “Modeling human
motion using binary latent variables,” in Advances in neural information
processing systems, 2007, pp. 1345-1352.

[9]1 G. E. Hinton and A. D. Brown, “Spiking boltzmann machines,” in
Advances in neural information processing systems, 2000, pp. 122-128.

[10] I. Sutskever and G. Hinton, “Learning multilevel distributed represen-
tations for high-dimensional sequences,” in Artificial Intelligence and
Statistics, 2007, pp. 548-555.

[11] I. Sutskever, G. E. Hinton, and G. W. Taylor, “The recurrent temporal
restricted boltzmann machine,” in Advances in Neural Information
Processing Systems, 2009, pp. 1601-1608.

[12] T. Osogami and M. Otsuka, “Seven neurons memorizing sequences
of alphabetical images via spike-timing dependent plasticity,” Scientific
Reports, vol. 5, p. 14149, 2015.

, “Learning dynamic boltzmann machines with spike-timing depen-
dent plasticity,” arXiv preprint arXiv:1509.08634, 2015.

[14] S. Dasgupta and T. Osogami, “Nonlinear dynamic Boltzmann machines
for time-series prediction,” in The 31st AAAI Conference on Artificial
Intelligence (AAAI-17), January 2017.

[13]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

H. Kajino, “A functional dynamic Boltzmann machine,” in Proceedings
of the International Joint Conference on Artificial Intelligence (IJCAI-
17), 2017, pp. 1987-1993.

T. Osogami, H. Kajino, and T. Sekiyama, “Bidirectional learning for
time-series models with hidden units,” in Proceedings of the 34th
International Conference on Machine Learning (ICML 2017), August
2017, pp. 2711-2720.

E. Choi, M. T. Bahadori, A. Schuetz, W. F. Stewart, and J. Sun, “Doctor
ai: Predicting clinical events via recurrent neural networks,” in Machine
Learning for Healthcare Conference, 2016, pp. 301-318.

S. Xiao, J. Yan, X. Yang, H. Zha, and S. M. Chu, “Modeling the intensity
function of point process via recurrent neural networks.” in AAAI 2017,
pp. 1597-1603.

Z. Che, S. Purushotham, K. Cho, D. Sontag, and Y. Liu, “Recurrent
neural networks for multivariate time series with missing values,”
Scientific reports, vol. 8, no. 1, p. 6085, 2018.

A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, and K. J. Lang,
“Phoneme recognition using time-delay neural networks,” IEEE trans-
actions on acoustics, speech, and signal processing, vol. 37, no. 3, pp.
328-339, 1989.

X. Ding, Y. Zhang, T. Liu, and J. Duan, “Deep learning for event-driven
stock prediction.” in [jcai, 2015, pp. 2327-2333.

D. Singh, E. Merdivan, S. Hanke, J. Kropf, M. Geist, and A. Holzinger,
“Convolutional and recurrent neural networks for activity recognition
in smart environment,” in Towards Integrative Machine Learning and
Knowledge Extraction. Springer, 2017, pp. 194-205.

T. J. O’Shea, J. Corgan, and T. C. Clancy, “Unsupervised representa-
tion learning of structured radio communication signals,” in Sensing,
Processing and Learning for Intelligent Machines (SPLINE), 2016 First
International Workshop on. 1EEE, 2016, pp. 1-5.

K. Bascol, R. Emonet, E. Fromont, and J.-M. Odobez, “Unsupervised
interpretable pattern discovery in time series using autoencoders,” in
Joint IAPR International Workshops on Statistical Techniques in Pattern
Recognition (SPR) and Structural and Syntactic Pattern Recognition
(SSPR). Springer, 2016, pp. 427-438.

T. Katsuki, M. Ono, A. Koseki, M. Kudo, K. Haida, J. Kuroda,
M. Makino, R. Yanagiya, and A. Suzuki, “Feature extraction from elec-
tronic health records of diabetic nephropathy patients with convolutional
autoencoder,” in AAAI 2018 Joint Workshop on Health Intelligence,
2018.

R. Sennrich, B. Haddow, and A. Birch, “Neural machine translation
of rare words with subword units,” in Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), vol. 1, 2016, pp. 1715-1725.

S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet, Z. Su, D. Du,
C. Huang, and P. H. Torr, “Conditional random fields as recurrent neural
networks,” in Proceedings of the IEEE International Conference on
Computer Vision, 2015, pp. 1529-1537.

F. Wang, N. Lee, J. Hu, J. Sun, and S. Ebadollahi, “Towards het-
erogeneous temporal clinical event pattern discovery: a convolutional
approach,” in Proceedings of the 18th ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 2012,
pp. 453-461.

D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proceedings of the 3rd International Conference for Learning Rep-
resentations (ICLR2015), 2015.

M. Makino, M. Ono, T. Itoko, T. Katsuki, A. Koseki, M. Kudo, K. Haida,
J. Kuroda, R. Yanagiya, and A. Suzuki, “Artificial intelligence predicts
progress of diabetic kidney disease-novel prediction model construction
with big data machine learning,” 2018.

V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltz-
mann machines,” in Proceedings of the 27th international conference on
machine learning (ICML-10), 2010, pp. 807-814.

	I Introduction
	II Prediction from Temporal Event Sequences
	III Time-discounting Convolution
	III-A Prediction model with time-discounting convolution
	III-B Dynamic pooling
	III-C Learning Model Parameters
	III-D Relationships to Other Models

	IV Experimental Results
	IV-A Prediction from Real-world Event Sequence with Ambiguous Timestamps
	IV-A1 Implementation
	IV-A2 Results

	IV-B Prediction from Real-world Time-series Data
	IV-B1 Implementation
	IV-B2 Results

	V Conclusion
	Appendix
	A Specific gradients for model parameters

	References

