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Abstract—Social recommendation explores social information
to improve the quality of a recommender system. It can be further
divided into explicit and implicit social network recommendation.
The former assumes the existence of explicit social connections
between users in addition to the rating data. The latter one
assumes the availability of only the ratings but not the social
connections between users since the explicit social information
data may not necessarily be available and usually are binary
decision values (e.g., whether two people are friends), while the
strength of their relationships is missing. Most of the works in
this field use only rating data to infer the latent social networks.
They ignore the dynamic nature of users that the preferences
of users drift over time distinctly. To this end, we propose a
new Implicit Dynamic Social Recommendation(IDSR) model,
which infers latent social network from cascade data. It can
sufficiently mine the information contained in time by mining
the cascade data and identify the dynamic changes in the users
in time by using the latest updated social network to make
recommendations. Experiments and comparisons on three real-
world datasets show that the proposed model outperforms the
state-of-the-art solutions in both explicit and implicit scenarios.

Index Terms—Social recommendation, Latent dynamic social
network, Cascade data

I. INTRODUCTION

Social recommendation, a study aimed at incorporating the

social information of users into a recommender system, has at-

tracted much attention in recent years. It can further be divided

into two types: explicit and implicit social recommendation.

The existing and available social network information is often

used to enhance the performance of a recommender system,

i.e. explicit social recommendation [20] [11] [12] [19]. The

most successful and common strategy is to integrate social

information, either trust or friendship, into a collaborative

filtering model in a certain way.

However, social information data may not necessarily be

available for every recommendation scenario due to practical

difficulties or privacy concerns. For example, Taobao, the most

popular online shopping platform in China which would be

greatly improved by a social recommender system, has not

built a social network module for its users. On the other hand,

most of the signals that a user provides about his preferences

are implicit, such as watching a video or clicking on a link.

Furthermore, for most applications with disclosed social

relationships, data are usually given as a binary decision

value(e.g., whether two people are friends), while the strength

of their relationship is missing. Knowing the strength of social

relationships is very helpful for a recommender system, as

it is reasonable to assume people have more trust in their

close friends compared to their acquaintances. In addition,

the quality of the given social information is sometimes

questionable. Since most social data are collected from the

web or social network services, inevitably they contain noise.

Although it is generally believed that trust or friendship are

positively correlated with the level of common-taste of people,

the work in [1] shows that two users may not have similar

rating tastes even though they strongly trust each other. Thus,

an absolute acceptance of the given social connections can

harm recommendation performance.

These concerns emerges another research direction named

implicit social recommendation, which aims at mining im-

plicit user social relationships from historical rating data

for better recommendations. Implicit social recommendation

can be further divided into two types, one is to determine

the social connection strength of the existing binary social

network [3] [4] to enhance the quality of recommendation

based on the given rating data. The other is data to generate

an implicit social network from given historical ratings without

any explicit social data [6] [15] [16] [20]. The pseudo links

and/or their strengths can then act as a surrogate of the explicit

social network [5] [35] to be incorporated into any explicit

social recommendation model.

However, most of the existing implicit social recommen-

dation research ignore the dynamic nature of the users. They

only use the rating data to study the implicit social relation-

ships, and ignore the dynamic information propagation. The

dynamic nature of users’ preferences means that they may

drift over time in dynamic recommendation, resulting in users

having different preferences for particular items at different

times [29] [36]. For example, if the user gets married or

moves to another city, his preferences are likely to change

dramatically, and it is natural for him to turn to new friends

for advice rather than old friends. A recommender system

should take a user’s actions into account instantaneously and

adapt recommendations to the user’s most recent preference.

In fact, the fresher the feedback, the more informative it is

on the user’s current preference. Thus it is much desired

that the dynamic social information can be effectively utilized

to capture the dynamic drift of the users’ preferences and
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Figure 1. An example of Implicit Dynamic Social Recommendation (IDSR) framework. We infer both the structure and the strength of latent dynamic social
network A from cascade data C to catch the dynamic changes of the users by using a generative probabilistic model. Based on the inferred latent dynamic
social network A, IDSR model learns the low-rank item matrix V and user matrix U to predict the missing values in rating data R. By jointly learning the
social relationships and missing ratings from both rating and cascade data, IDSR can absorb the potential damage brought up by noisy explicit social network
and capture the most recent preferences of the users and give the exact recommendations.

give exact recommendations in time, and finally improve the

recommendation performances.

To this end, in this paper, we propose a new Implicit

Dynamic Social Recommendation (IDSR) model which

uses cascade data to infer latent social network and attempts

to identify the dynamic changes in the users’ preferences

to improve the performance of recommender system. We

define cascade data as the observed action time stamps of

users on certain items. We follow the idea of the generative

probabilistic model to infer both the structure and the strength

of the latent social network. By jointly learning the social

relationships and ratings from the data, our model can absorb

the potential damage caused by a noisy explicit social network.

By exploring the information in time data, we capture the most

recent preferences of the users and give exact recommenda-

tions. Figure 1 shows an example of the IDSR framework.

Experiments show that the proposed solution outperforms the

state-of-the-art models in both explicit and implicit scenarios.

The contributions of the paper are summarized as follows:

1) We study a new problem of implicit dynamic social rec-

ommendation, which infers the latent social network from

cascade data and uses rating data to make recommenda-

tions based on the inferred latent social network. It can

sufficiently mine the dynamic information propagation

and identify the dynamic changes of users’ preferences

in time.

2) We propose a new Implicit Dynamic Social Recom-

mendation (IDSR) model to combine the learning of

social network and rating prediction together as an unified

optimization problem, which is different from most of the

existing approaches of implicit social network recommen-

dations which treat the learning of the social networks and

recommendations as two independent tasks.

3) We use two new real-world datasets (Zomato and

Douban movie data) we collected, and a public Movie-

Lens dataset to evaluate the performance of the proposed

model. Experiments show that the proposed model out-

performs the state-of-the-art solutions in both explicit and

implicit social recommendation scenarios on these three

real-world datasets.

The rest of this paper is organized as follows: Section II

surveys the related work. Sections III and IV introduce the

problem and IDSR model in detail. Section V discusses the

proposed algorithm. Section VI describes the experiments and

Section VII concludes the paper.

II. RELATED WORK

In this section, we review several major approaches to social

recommendations. Firstly we briefly introduce the principle of

social recommendation, then we introduce the recent research

on the two main categories: explicit social recommendation

which uses external social networks and implicit social rec-

ommendation which uses the social networks inferred from

the rating data.

Social recommendation [19] is defined as any recom-

mendation with online social relations as additional input,

i.e., augmenting an existing recommendation engine with

additional social signals [28]. Social relations can be trust

relations, friendships, memberships or following relations and

so on [20] [10]. The underlying assumption is that users are

correlated when they establish social relations [19] [21].

Most existing social recommender systems choose CF mod-

els as their basic models to build systems and propose ap-



proaches to capture social information based on the results of

social network analysis [28]. Matrix factorization techniques

are widely used in CF models. The general idea of matrix

factorization is to model the user-item interactions with factors

representing the latent characteristics of the users and items in

the system, like the preference class of users and the category

class of items [31]. Numerous social matrix factorization based

RSs have recently been proposed to improve recommendation

accuracy [33] [19] [32].

Explicit social recommendation uses rating data and all

the information from external social networks. Early re-

search [11] [21] searches the trust network to determine the

recommended items. Later on, researchers started to bring

social information into matrix factorization models with diver-

sified assumptions for integration. SoRec [19] proposes shared

user latent factors for both rating matrix and social matrix

factorization. RSTE [17] predicts a user’s ratings by the linear

combination of the user and their trusted friends’ latent factors

vectors. SocialMF [12] defines that a user’s latent factors

should be close to the linear combination of his or her trusted

friends’ latent factors. Social Regularization [20] considers a

pairwise assumption that two users who trust each other should

have similar latent factors, and thus appends a regularization

term to the classical matrix factorization model. Moreover,

social influence is also considered in social recommendation,

such as conditional random field [30] and probabilistic Poisson

factorization [2]. TrustSVD [8] incorporates trust networks

with SVD++, a variant of matrix factorization modeling

implicit influence from user latent factors through observed

ratings.

Implicit social recommendation attempts to extract latent

social correlation between two users from historical rating

behaviors. The generated information serves as the surrogate

for explicit social networks in explicit social recommender

systems. Since it is time-consuming to evaluate the quadratic

number of pairwise users or item social relations, several

studies assume that an explicit social network is available but

the explicit edge strength information is missing. Fazeli et

al. [4] survey and compare the performance of different trust

strength metrics on an explicit social network combined with

SocialMF. Fang et al. [3] use support vector regression with

matrix factorization to learn both the ratings and strengths

from an explicit trust network. However, in order to train

this model, a binary social network is still required. Despite

the quadratic time complexity of evaluating relations, Guo et

al. [6] study user-based collaborative filtering that recommends

items using a trust network generated from predefined trust

metrics. With the existence of extra features, Lin et al. [15]

(rating time ) and Guo et al. [7] (text review) present methods

to obtain implicit social networks. There are also several

studies that apply matrix factorization techniques on implicit

social networks [18]. And Social Regularization [16] reads

implicit social networks generated by the evaluation of cosine

similarity and Pearson correlation respectively together with

predefined thresholds to determine the social connections.

In some cases, the existing explicit and implicit social

recommendation cannot achieve appropriate performance, be-

cause they ignore the dynamic changes of uses’ preferences.

To address this issue, out model is proposed to learn the struc-

ture and the dynamic strength of social connection through

cascade data simultaneously, which is more general because

implicit signals such as clicks can be used to obtain the cascade

data. Furthermore, by modeling the rating prediction and social

strength learning as a joint optimization task, the proposed

model mutually reinforces the quality of each to achieve better

results.

III. PROBLEM DEFINITION

The rating data is denoted by matrix R ∈ R
N×M , where

N is the number of users and M is the number of items. An

observed or non-missing entry Rij , records a numerical rating

score that user i, 1 ≤ i ≤ N , gives to item j, 1 ≤ j ≤ M , as

a training instance. An adjacent matrix A ∈ R
N×N denotes

the social network, where entry Aij is a positive value which

represents the strength of the edge from node i to node j.

Time observations are also recorded on the N users and

consist of a set C of cascades {t1, . . . , tM}. Each cascade tc is

a record of observed action time stamps within the population

during a time interval of length T . A cascade is an N -

dimensional vector tc := (tc1, . . . , t
c
N ) recording when nodes’

actions are observed, tck ∈ [0, T ]∪{∞}. The symbol ∞ labels

users that are not observed acting during observation window

[0, T ], which does not imply the nodes will never act. Each

cascade is reset to start at 0 as we are not concerned about the

specific time but the relative time. Lengthening the observation

window T increases the number of observed infections within

a cascade tc and results in a more representative sample of

the underlying dynamics [23].

Our goal is to mine the implicit dynamic social network

A from cascade data C, and predict the missing value of

the original rating matrix R simultaneously by solving an

optimization problem.

IV. THE PROPOSED IDSR MODEL

The formula of the Implicit Dynamic Social Recommen-

dation (IDSR) model, which consists of dynamic social net-

work inferring term and social recommendation regularization

term, is shown in Eq. (1).

min
A,U,V

−
1

2

∑

c∈C

logf(tc, A) +
λ1

2

n
∑

i=1

n
∑

j=1

Ai,j‖Ui − Uj‖
2

+
λ2

2

n
∑

i=1

m
∑

j=1

Iij(Rij − UT
i Vj)

2 +
λ3

2
‖U‖2F +

λ4

2
‖V ‖2F

s.t. A ≥ 0, U ≥ 0, V ≥ 0
(1)

where Iij is the entry of indicator matrix I . Iij is equal to

1 if user ui rates item vj and equals to 0 otherwise. Matrix

U ∈ R
K×N and V ∈ R

K×M with K << min(M,N) are

two low-rank matrices to approximate the rating matrix R.

Matrix A ∈ R
N×N is the inferred social network and the

entry Aij represents the strength of the influence from user i



to user j. N is the number of users, M is the number of items

as previously introduced. tc ∈ C is a N-dimensional cascade

vector. λ1, λ2, λ3 and λ4 are positive parameters to control the

weight of each term.

Indeed, the model in Eq. (1) mainly comprises three terms.

The first term − 1
2

∑

c∈C logf(tc, A) is the dynamic social

network inferring. The second term λ1

2

∑n

i=1

∑n

j=1 Ai,j‖Ui−

Uj‖
2 is the social recommendation regularization, and the third

term λ2

2

∑n

i=1

∑m

j=1 Iij(Rij −UT
i Vj)

2 is the standard matrix

factorization based recommender system, with the last two

terms λ3

2 ‖U‖
2
F and λ4

2 ‖V ‖
2
F been added to avoid overfitting.

Our model conducts the learning of social network and rating

prediction together as a unified framework. By using the

dynamic social network inferring term, the proposed model

can infer the latent social network from cascade data which

sufficiently mine the dynamic information propagation and

catch the latest dynamic changes of the users in time to

improve the performance of recommendation.

A. Dynamic social network inference

In this section, we introduce the method of inferring dy-

namic social network from cascade data. We first introduce

the pairwise transmission likelihood, then we give the formula

of likelihood of a cascade, and finally show the social network

inferring term.

• Pairwise transmission likelihood. With the cascades data,

we calculate the pairwise transmission likelihood as follow. We

assume that infections can occur at different rates over differ-

ent edges of a network, and aim to infer the transmission rates

between pairs of nodes in the network. Define f(ti|tj , Aj,i)
as the conditional likelihood of transmission between a node

j and node i. The transmission likelihood depends on the

infection times (tj , ti) and a pairwise transmission rate Aj,i.

A node cannot be infected by a node infected later in time. In

this paper, we estimate the well-known exponential parametric

likelihood model (2)

f(ti|tj ;Aj,i) =

{

Aj,i · e
−Aj,i(ti−tj), if tj < ti

0, otherwise
(2)

where Aj,i ≥ 0 is transmission rate. If Aj,i → 0, the likelihood

of infection tends to zero and the expected transmission time

becomes arbitrarily long.

The cumulative density function F (ti|tj ;Aj,i) is computed

from the transmission likelihoods [27]. Given that node j is

infected at time tj , the survival function of edge j → i is the

probability that node i is not infected by node j by time ti:

S(ti|tj ;Aj,i) = 1− F (ti|tj ;Aj,i) = e−Aj,i(ti−tj) (3)

The hazard function [27] [23], or instantaneous infection rate,

of edge j → i is the ratio

H(ti|tj ;Aj,i) =
f(ti|tj ;Aj,i)

S(ti|tj ;Aj,i)
= Aj,i (4)

• Likelihood of a cascade. We compute the probability

that a node survives uninfected until time T , given that

some of its parents are already infected. Consider a cascade

t = (t1, . . . , tN ) and a node i, which is not infected during the

observation window (i.e., ti > T ). Since each infected node k

may infect i independently, the probability that nodes 1 . . . N
do not infect node i by time T is the product of the survival

functions of the infected nodes 1 . . . N |tk ≤ T targeting i,
∏

tk≤T

S(T |tk;Ak,i) (5)

Since we assume infections are conditionally independent

given the parents of the infected nodes, the likelihood factor-

ization over nodes is

f(t≤T ;A) =
∏

ti≤T

f(ti|t1, . . . , tN\ti;A) (6)

where t≤T = (t1 . . . , tN |ti ≤ T ). Given an infected node i,

we compute the likelihood of a potential parent j to be the

first parent by applying Eq. (5),

f(ti|tj ;Aj,i)×
∏

j 6=k,tk<ti

S(ti|tk;Ak,i) (7)

With Eq. (6), the likelihood of the infections in a cascade

is shown in Eq. (8) by removing the condition k 6= j,

f(t≤T ;A) =
∏

ti≤T

∏

k:tk<ti

S(ti|tk;Ak,i)×
∑

j:tj<ti

f(ti|tj ;Aj,i)

S(ti|tj ;Aj,i)

(8)

Eq. (8) only considers infected nodes. We add the multi-

plicative survival term from Eq. (5) to include the information

of the nodes which are not infected during the observation

window and also replace the ratios in Eq. (8) with hazard

functions,

f(t;A) =
∏

ti≤T

∏

tm>T

S(T |ti;Ai,m)

×
∏

k:tk<ti

S(ti|tk;Ak,i)
∑

j:tj<ti

H(ti, tj ;Aj,i)
(9)

Assuming independent cascades, the likelihood of a set of

cascades C = {t1, . . . , tM} is the product of the likelihoods

of the individual cascades in Eq. (10)
∏

tc∈C

f(tc;A) (10)

• Social Network inferring. We aim to find the strength Aj,i

of every pair of nodes such that the likelihood of an observed

set of cascades C = {t1, . . . , tM} is maximized. Thus, we

can solve the following optimization problem (11) to obtain

the latent social network from the given cascade data,

min
A

−
∑

c∈C

logf(tc;A)

s.t. Aj,i ≥ 0, i, j = 1, . . . , N, i 6= j

(11)

where A := {Ai,j |i, j = 1, . . . , n, i 6= j} are the variables.

The edges of the network are those pairs of nodes with

transmission rates Aij > 0.



B. Social recommendation regularization term

In the real world, it is usual to turn to friends for movie

, music or book recommendations since we have confidence

in the tastes of our friends. Due to the assumption that the

closer the relationship between the users, the more similar

preferences they have, we set the social regularization term in

Eq. (12)
N
∑

i=1

N
∑

j=1

Aij‖Ui − Uj‖
2

(12)

where N is the number of users, Aij , 1 ≤ i ≤ N, 1 ≤ j ≤ N

is the inferred implicit social network matrix.

C. Low-rank matrix factorization.

An efficient and effective approach to recommender systems

is to factorize the user-item rating matrix, and utilize the

factorized user-specific and item-specific matrices to make

further missing data prediction [20] [22] [24] [25] [34]. The

premise behind a low-dimensional factor model is that there

is only a small number of factors influencing the preferences,

and that a user’s preference vector is determined by how each

factor applies to that user [22].

In this paper, we consider an N × M rating matrix R

describing N users’ numerical ratings on M items. A low-rank

matrix factorization approach seeks to approximate the rating

matrix R by a multiplication of K-rank factors, where K <<

min(N,M), and the singular value decomposition method is

traditionally utilized [20] to approximate a rating matrix R by

minimizing 1
2‖R−UTV ‖2F where U ∈ R

K×N , V ∈ R
K×M ,

and ‖ · ‖2F denotes the Frobenius norm. However, due to

a large number of missing values contained in R, we only

need to factorize the observed ratings in it. In order to

avoid overfitting, two regularization terms are added. Hence,

objective function is changed to

min
U,V

1

2

N
∑

i=1

M
∑

j=1

Iij(Rij − UT
i Vj)

2 +
α

2
‖U‖2F +

β

2
‖V ‖2F

(13)

where α, β > 0, and Iij is the indicator function that is equal

to 1 if user Ui rated item Vj and equal to 0 otherwise.

The optimization problem in Eq. (13) minimizes the sum-of-

squared-errors objective function with quadratic regularization

terms.

According to the above discussions, the implicit social

network inferring term, the social recommendation regular-

ization term and the traditional matrix factorization-based

recommender system term, are unified in our IDSR model

for implicit dynamic social recommendation.

V. ALGORITHM

In this section, we use a coordinate descent algorithm to

solve the IDSR model. We first introduce the algorithm in

Section V-A, and analyze its convergence and time complexity

in Section V-B and Section V-C respectively.

Algorithm 1 Implicit Dynamic Social Recommendation

Require:

C = {t1, . . . , tM}: Cascade data;

R ∈ R
N×M : Rating data;

λ1, λ2, λ3 and λ4: Tradeoff parameters;

K: Latent feature space dimension parameter.

Ensure:

U ∈ R
K×N : User matrix;

V ∈ R
K×M : Item matrix;

A ∈ R
N×N : Social network matrix.

1: Initialize: U0 = E, V0 = E,A0 = E where E is the

identity matrix;

2: while Not convergent do

3: At+1 ← Apply Eq. (16) with Ut to update At;

4: Ut+1 ← Apply Eq. (20) with At+1, Vt to update Ut;

5: Vt+1 ← Apply Eq. (24) with At+1, Ut+1 to update Vt;

6: t← t+ 1;

7: end while

8: return A∗ = At; U
∗ = Ut, V

∗ = Vt.

A. Implicit Dynamic Social Recommendation algorithm

In the coordinate descent algorithm, we iteratively update

one variable by fixing the remaining two variables. The steps

will be repeated until convergence. Algorithm 1 summarizes

the steps.

• update A with fixed U and V

With fixed U, V , model (1) degrades to problem (14)

min
A≥0

−
1

2

∑

c∈C

logf(tc, A) +
λ1

2

N
∑

i=1

N
∑

j=1

Ai,j‖Ui − Uj‖
2

(14)

where f(tc, A) is shown in Eq. (9) with t replaced by tc.

Problem (14) is convex and consistent [23]. For the fixed i

and j, problem (14) degrades to problem (15)

min
A≥0

1

2

∑

c:tc
i
≤T,tc

j
>T

(T − tci )Aij +
λ1

2
‖Ui − Uj‖

2Aij

+
1

2

∑

c:tc
i
<tc

j
,tc

j
≤T

((tcj − tci )Aij − logAij)
(15)

To set the derivative of Aij equal to 0, we can obtain the

update strategy of At+1
ij as Eq. (16)

A
∗
ij =

2N C̃
ij∑

c∈Ĉij
(T − tci ) +

∑
c∈C̃ij

(tcj − tci ) + λ1‖Ui − Uj‖2

(16)

where Ĉij = {c ∈ C : tci ≤ T, tcj > T}, C̃ij = {c ∈ C : tci <

tcj , t
c
j ≤ T} and N C̃

ij is the number of the cascades in C̃ij for

the fixed i, j.



• update U with fixed A and V

With fixed A, V , model (1) degrades to problem (17)

min
U≥0

λ2

2

N
∑

i=1

M
∑

j=1

Iij(Rij − UiV
⊤
j )2 +

λ3

2
‖U‖2F

+
λ1

2

N
∑

i=1

N
∑

j=1

Ai,j‖Ui − Uj‖
2

(17)

Problem (17) is convex and consistent with variable U . It is

equal to problem (18)

min
U≥0

λ2

2

N
∑

i=1

M
∑

j=1

Iij(Rij −
K
∑

p=1

UipVjp)
2 +

λ3

2

N
∑

i=1

K
∑

p=1

U2
ip

+
λ1

2

N
∑

i=1

N
∑

j=1

K
∑

p=1

Aij(Uip − Ujp)
2

(18)

For the fixed i and p, the derivative of Uip is in Eq. (19)

∇F

∇Uip

=− λ2

M
∑

j=1

IijVjp(Rij −

K
∑

q=1

UiqVjq) + λ3Uip

+ λ1

N
∑

j=1

Aij(Uip − Ujp)

(19)

Make the derivative equal to zero, we can obtain

U
∗
ip =

λ2

∑M

j=1
IijVjp(Rij −

∑K

q=1,q 6=p
UiqVjq) + λ1

∑N

j=1
AijUjk

λ2

∑M

j=1
IijV

2
jp + λ3 + λ1

∑N

j=1
Aij

(20)

• update V with fixed A and U

With fixed A,U , model (1) degrades to problem (21)

min
V≥0

λ2

2

N
∑

i=1

M
∑

j=1

Iij(Rij − UiV
⊤
j )2 +

λ4

2
‖V ‖2F (21)

Problem (21) is equal to problem (22)

min
V≥0

λ2

2

N
∑

i=1

M
∑

j=1

Iij(Rij −

K
∑

p=1

UipVjp)
2 +

λ4

2

M
∑

j=1

K
∑

p=1

V 2
jp

(22)

For fixed j and p, the derivative of Vjp is

∇F

∇Vjp

= −λ2

N
∑

i=1

IijUip(Rij −

K
∑

q=1

UiqVjq) + λ4Vjp (23)

Make the derivative equal to zero, we can obtain

V ∗jp =
λ2

∑N

i=1 IijUip(Rij −
∑K

q=1,q 6=p UiqVjq)

λ4 + λ2

∑N

i=1 IijU
2
ip

(24)

B. Convergence Analysis

Algorithm 1 is an typical coordinate descent algorithm,

which will convergent to the local optimums. When updating

A,U and V , in each step, the degraded optimization problem,

which only contain one variable, is a convex optimization.

We can obtain the temporary optimum in each step, which

would make the objective function decrease persistently until

convergent to one of its local optimums.

C. Complexity Analysis

In Algorithm 1, IDSR takes constant time for the initializa-

tion (line 1). When update social network matrix A, suppose

the maximum number of cascades, in which ti < T contained,

is Ic, it takes O(IcN
2) (line 3). When update matrix U ,

since rating matrix R is very sparse, it takes O(ǫM + N)
for each entry, where ǫ is the sparse rate. Thus, this part takes

O(ǫMNK +N2K) (line 4). When update matrix V , it takes

O(ǫN) for each entry, so the actual time expense of line 5 is

O(ǫNMK). To sum up, the total worst-case time complexity

of Algorithm 1 is O(ǫMNKC+N2KC+N2IcC) where C

is the maximum number of iterations until convergence.

VI. EXPERIMENTS

In the following, we first introduce the details of the

datasets and metrics we use in Section VI-A and Section VI-B

respectively. We then introduce the experimental setup and

benchmark methods. Finally, we describe the comparison in

detail with three aspects. Firstly, we evaluate the performance

of the proposed algorithm with respect to MAEs and RMSEs

compared with the five state-of-the-art benchmark methods

in Section VI-D. Secondly, we explore the performance of

the IDSR method in terms of data freshness (time distances

between the target ratings and historical ratings) in Sec-

tion VI-E, and finally we explore the performance of IDSR

method in terms of observation window T in Section VI-F.

All experiments are conducted on a Windows 8 machine with

3.00GHz CPU and 8GB memory.

A. Datasets

We evaluate the performance of the proposed IDSR model

on three real-world datasets, i.e., Zomato 1, MovieLens 2 and

Douban movie 3 dataset. The statistics of the datasets are show

in Table I. The sparsity shown in the table is defined as 1 −
nonzero entries

total entries
.

1) Zomato1: is a restaurant search and discovery service

website founded in 2008. It operates in many countries,

including the United States, Australia, India etc. It features

restaurant information such as scanned menus and photos

sourced by local street teams, as well as user reviews and

ratings.

We collect the ratings (1-5) data and the time points of

the posted reviews of 5336 users for the most popular 1012

restaurants in Sydney from September 2008 to April 2016.

We also collect information on the existing social networks

provided by the website, and the followers’ and followees’

data, which will be used in some of the benchmark methods for

comparison. This dataset is very sparse with a 0.0031 sparsity

value.

1https://www.zomato.com
2http://www.grouplens.org/node/73
3http://movie.douban.com



Table I
STATISTICS OF DATASETS

Dataset Douban MovieLens Zomato

# of users 249408 943 5336

# of items 100 1682 1012

# of ratings 877572 100000 38367

sparsity 0.0330 0.0630 0.0031

Average cascade length 8755.70 59.45 38.06

Longest cascade length 29234 583 302

Shortest cascade length 480 1 3

Time interval
2015.1.1 1997.9.17 2008.9.21

-2016.4.30 -1998.4.22 -2016.4.30

2) MovieLens data2 : is a web-based research recom-

mender system that debuted in the autumn of 1997. Each

week, hundreds of users visit MovieLens to rate and receive

recommendations for movies. MovieLens is a popular dataset

used in social recommendation researches. It was collected

through the MovieLens website4 during the seven-month pe-

riod from September 19th, 1997 to April 22nd, 1998. The

dataset consists of 100,000 ratings (1-5) from 943 users on

1682 movies and each user has rated at least 20 movies. This

data has been cleansed that users who had less than 20 ratings

or did not provide complete demographic information were

removed from this data set. Detailed descriptions of the data

file can be found in [9]. And the sparsity of this dataset is

0.0630.

3) Douban3: is one of the most popular rating website in

China. It comprises several parts: Douban Movie, Douban

Read and Douban Music, etc. Douban Movie provides the

latest movie information, and users can record the movies they

wish to watch and rate them after they have watched them.

They can also share their reviews with their friends.

We collect the ratings and the time stamps of the rating

data on the 100 most popular movies in Douban. It includes

877572 ratings (1-5) and the time stamps of 249408 users from

January 2015 to April 2016. In this dataset, the data of time

stamps are very dense, where the average length of cascades

is 8755.7 with the longest one is 29234. The sparsity of this

dataset is 0.0330.

B. Metrics

Recommender systems research has used several types of

measures to evaluate the quality of recommender systems.

Root Mean Square Error (RMSE) and Mean Absolute Error

(MAE) are the most popular metrics used to evaluate the

deviation of recommendations from their true user-specified

values. Specifically, RMSE and MAE are defined in Eqs. (25)

and (26) respectively.

RMSE =

√

1

Ntest

∑

i,j

(Rij − R̂ij)2 (25)

4https://movielens.org/

MAE =
1

Ntest

∑

i,j

|Rij − R̂ij | (26)

where Rij denotes the rating user i gives to item j, R̂ij denotes

the rating user i gives to item j as predicted by the method,

and Ntest denotes the number of ratings in test set. From the

definitions, we can see RMSE gives higher weights to larger

errors as the errors are squared before taking their average.

It is always larger or equal to MAE. The lower the values

of RMSE and MAE, the more accurately the recommendation

engine predicts.

C. Experimental setup

Training and testing data setup In many studies [26] [13],

the training and testing data are randomly chosen for the ex-

periments. But this is unsuitable for the evaluation of dynamic

recommendation in which we can use only historical data but

not future data for current predictions in real applications.

Following [14] [29], we split the training and testing data

based on time and evaluate the performance. Specifically, we

sort the entire data set in normal time order, and use the

earlier part as the training set to adjust all parameters in the

recommendation algorithm. We run algorithms on the test set

then and generate the estimated rating for each user-item pair

and compare the estimated ratings with real rating to calculate

RMSEs and MAEs.

Parameter settings focus on the meanings and settings of

the parameters. We implement the proposed algorithm and

compare it with benchmark methods under these parameters.

Parameter K controls the dimension of the latent feature space.

If K is too small, it is difficult for the model to make a

distinction among users or items. If K is too large, users

and items will be too unique for the system to calculate their

similarities and the complexity will considerably increase.

Here we choose the best value of K through grid search from

5 to 50 in steps of 5. The tradeoff parameters λ1, λ2, λ3 and

λ4 in Eq. (1) control the weights of each part in the model

and we choose the best value for them through grid search in

[10−8, 108] with the step of 102.

Benchmark methods To evaluate the performance of our

method, we compare the proposed IDSR with the following

five approaches.

• BaseMF is the baseline matrix factorization approach

proposed in [25], which does not take the social network

into account;

• SocialMF [12] improves the recommendation accuracy

of BaseMF by taking into account the social trust

between users. It always uses all social links available

in the dataset;

• SR1pcc [20] imports average-based regularization in

social recommendation regularization term to form the

social recommendation model;



Table II
PERFORMANCE COMPARISONS

Dataset Training Metrics BaseMF SocialMF SR1pcc SR2pcc SR
u+−
i+− IDSR

Douban

80%

MAE 0.9260 0.8019 0.7946 0.7831 0.7049
0.6609

Improve 28.64% 17.59% 16.83% 15.61% 6.25%

RMSE 1.0525 1.0308 1.0257 1.0083 0.9710
0.9484

Improve 9.90% 8.00% 7.54% 5.95% 2.33%

60%

MAE 0.9469 0.8618 0.8622 0.8497 0.7637
0.7046

Improve 25.59% 18.24% 18.28% 17.08% 7.74%

RMSE 1.1059 1.0893 1.0414 1.0336 1.0641
0.9500

Improve 14.09% 12.78% 8.77% 8.08% 10.72%

Movielens

80%

MAE 1.0187 0.8984 0.8814 0.8772 0.7849
0.7375

Improve 27.61% 17.91% 16.33% 15.93% 6.04%

RMSE 1.0964 1.0505 1.0587 1.0331 0.9909
0.9511

Improve 13.25% 9.46% 10.16% 7.93% 4.01%

60%

MAE 1.0464 0.9386 0.9452 0.9335 0.8981
0.8284

Improve 20.84% 11.75% 12.36% 11.26% 7.77%

RMSE 1.1962 1.1660 1.1536 1.1316 1.1297
1.0067

Improve 15.84% 13.66% 12.73% 11.03% 10.88%

Zomato

80%

MAE 0.9773 0.8505 0.8537 0.8317 0.7489
0.7038

Improve 27.99% 17.25% 17.56% 15.38% 6.02%

RMSE 1.1027 1.0558 1.0333 1.0249 0.9870
0.9319

Improve 15.49% 11.73% 9.81% 9.07% 5.58%

60%

MAE 0.9958 0.9117 0.9292 0.8948 0.8150
0.7402

Improve 25.67% 18.81% 20.34% 17.28% 9.18%

RMSE 1.1136 1.1019 1.1042 1.0934 1.0562
0.9934

Improve 10.79% 9.84% 10.03% 9.14% 5.95%

• SR2pcc [20] is another social recommendation method

where individual-based regularization is imported as its

social recommendation regularization term;

• SRu+−
i+− [16] is an implicit social network recom-

mendation approach which uses both implicit similar

and dissimilar user information as well as similar and

dissimilar item information in its recommendation model.

D. Comparisons

In this section, we compare the recommendation results of

the proposed approach IDSR with all benchmark methods to

evaluate the effectiveness.

For the three datasets, we use different training data settings

(80% and 60%) to test the algorithms. Training data 80%,

for example, means we use the first 80% of the cascade and

rating data as the training data to predict the last 20% of the

ratings. The experimental results are shown in Table II. For the

MovieLens and Douban datasets, social network data are not

provided, so we choose the five most similar users for each

user as her/his friends and build the explicit social network

which is used in the benchmark methods.

From the results, we can observe that our method consis-

tently outperforms the other approaches in all the settings of

the three datasets. Firstly, we can see our algorithm generates

significantly better results than the BaseMF method which

does not take the social network into account. There is an

average 26.05% improvement in MAEs (max 28.63%, min

20.84%), and an average 13.23% improvement in RMSEs

(max15.84%, min 9.90%) on all the three datasets. This

observation illustrates that employing implicit user social

information helps increase the recommendation quality.

Furthermore, our method performs better than the state-of-

the-art explicit social recommendation algorithms SocialMF,

SR1pcc and SR2pcc on all the three datasets. Specifically,

the proposed IDSR achieves 16.93% improvement on av-

erage (max 18.81%, min 11.75%) in MAEs and 10.91%
improvement on average (max 13.66%, min 8.00%) in RMSEs

compared with SocialMF. Compared with the other two ex-

plicit social recommendation approaches SR1pcc and SR2pcc,

our method achieves on average 16.95% (max 20.34%, min

12.36%) and 15.42% (max 17.28%, min 11.26%) improve-

ment in MAEs respectively and an average 9.84% (max

12.73%, min 7.54%) and 8.54% (max 11.03%, min 5.95) im-

provement in RMSEs respectively. These observations demon-

strate that in many situations, implicit social networks can

much more accurately describe a user’s preferences compared

with explicit social networks and avoid the noise contained in

the explicit social networks.

Compared with the implicit social recommendation ap-

proach SRu+−
i+− , our algorithm also achieves better results

an average 7.17% (max 9.18%, min 6.02%) improvement in

MAEs and an average 6.58% (max 10.88%, min 2.33%) im-

provement in RMSEs. This observation shows that our implicit

dynamic social recommendation model also outperforms the

state-of-the-art static implicit social recommendation systems.
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Figure 2. MAEs and RMSEs obtained by IDSR algorithm in terms of different data freshness (time distances between the target ratings and historical ratings)
values on the three datasets.
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Figure 3. MAEs and RMSEs obtained by IDSR algorithm in terms of observation window on the three datasets.

E. Performance in terms of data freshness

In this section, we explore the performance of the proposed

model in terms of data freshness. All the three datasets

contain abundant rating records and cascade data which are

collected over a reasonable period of time and are different

in composition and dynamic in nature. We define the time

distances between the target ratings and historical ratings

as data freshness. We manually assign twelve different data

freshness values by classify the cascades into multiple phases,

i.e., within 1 week, within 2 weeks,..., within 12 weeks.

Figure 2 shows the MAEs and RMSEs of our IDSR using

the data in different setting of data freshness on the three

datasets. It is clear that the more fresh the data, the better

the performance. Such observation means using closer data

sources to train recommender system, the difference between

the original ratings and the predicted ones becomes smaller.

F. Performance in terms of observation window

In this section, we explore the performance of the IDSR

model in terms of observation window T . We use different

sized training sets. For MovieLens and Douban datasets, we

rebuild four new training datasets based on the original one. In

the new training datasets, the rating data were proposed within

1 week, 1 month, 3 months and 6 months respectively while

for the Zomato dataset we rebuild four new training datasets

in 1 year, 2 years, 3 years and 6 years due to its high sparsity.



Figure 3 shows the results of IDSR with different observa-

tion windows. We can see in most cases, MAEs and RMSEs

are large when the observation windows are very short. With

longer observation windows, MAEs and RMSEs decrease at

first and then increase again, which means the predicted results

become better at first and then become worse later. This is

because the longer cascades may contain more noise which

harms the predicted results. However, if the cascades are too

short, they do not contain enough information to infer the

whole latent social network, which also harms the algorithm

performances.

VII. CONCLUSION

In this paper, we formulate a new implicit dynamic social

recommendation problem where the inferred latent dynamic

social network is used for enhancing the social recommen-

dation performance. We proposed a new model IDSR which

uses cascade data to infer implicit dynamic social networks.

IDSR addresses the commonly existing preference drafting

issues in real social recommendation studies, and identifies

dynamic changes in the users closely by taking advantage of

the information contained in time. This is different from most

of the existing implicit social recommendation approaches

which only use rating data to infer implicit social networks.

The proposed IDSR model also undertakes the learning of

social structures and rating predictions together in a unified

optimization problem, rather than treating the learning of

social networks and recommendations as two independent

tasks. The experiments demonstrate that the proposed IDSR

model outperforms the state-of-the-art models in both explicit

and implicit social recommendation scenarios.
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