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Abstract

Identifying modules, or natural communities, in large complex networks is fundamental in many

fields, including social sciences, biological sciences and engineering. Recently several methods

have been developed to automatically identify communities from complex networks by optimizing

the modularity function. The advantage of this type of approaches is that the algorithm does not

require any parameter to be tuned. However, the modularity-based methods for community

discovery assume that the network structure is given explicitly and is correct. In addition, these

methods work best if the network is unweighted and/or sparse. In reality, networks are often not

directly defined, or may be given as an affinity matrix. In the first case, each node of the network

is defined as a point in a high dimensional space and different networks can be obtained with

different network construction methods, resulting in different community structures. In the second

case, an affinity matrix may define a dense weighted graph, for which modularity-based methods

do not perform well. In this work, we propose a very simple algorithm to automatically identify

community structures from these two types of data. Our approach utilizes a k-nearest-neighbor

network construction method to capture the topology embedded in high dimensional data, and

applies a modularity-based algorithm to identify the optimal community structure. A key to our

approach is that the network construction is incorporated with the community identification

process and is totally parameter-free. Furthermore, our method can suggest appropriate

preprocessing/normalization of the data to improve the results of community identification. We

tested our methods on several synthetic and real data sets, and evaluated its performance by

internal or external accuracy indices. Compared with several existing approaches, our method is

not only fully automatic, but also has the best accuracy overall.
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I. Introduction

Complex network structures have drawn much interest lately in many fields, ranging from

biological sciences, engineering, to social sciences. (See [1] for reviews.) In the framework

of network analysis, a system is modeled as a graph, where the vertices are the elements of

the system, and the edges represent certain relationships between pairs of vertices. It is well

known that networks of real-world problems often have natural community structures, i.e.

highly connected subnetworks that are not expected by chance [1], [2]. The identification
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and characterization of communities are fundamental in understanding the organization and

dynamics of complex systems, and have become one of the key problems in analyzing

complex networks.

In order to identify such communities, many graph theoretical algorithms have been

developed recently. Among them, three types of methods have received broad attention:

Markov Cluster algorithm (MCL) [3], Affinity Propagation (AP) [4], and modularity-

optimization algorithms [5], [2]. Unlike previous graph partitioning approaches that require

a user to specify the number of partitions (explicitly or implicitly), MCL and AP are

relatively parameter free. MCL is a graph cluster algorithm based on simulation of

(stochastic) flow in graphs [3], and requires a single parameter called inflation. AP is a

clustering algorithm that groups data points by passing messages between them. In AP, a

user needs to determine a prior, preferably for every node. Although the parameters in both

MCL and AP can be set relatively easily, still, one has to supply a series of parameters and

manually choose one based on inspection of the modules identified, possibly with the

assistance of a different data source.

In the last few years, several modularity-based methods have been developed in the

statistical physics domain, pioneered by Newman and his colleagues [5], [2]. These

approaches distinguish themselves from conventional graph partitioning algorithm in that

they are aimed at optimizing an objective function called modularity, or Q for short;

therefore, no parameter is required at all. The modularity function, which we will define

later in Methods, has been shown to be effective in measuring the overall quality of

community structures in many cases [6], [5], [7], [8]. On the other hand, several recent

studies have suggested that the modularity function has a so-called resolution limit, i.e., it

tends to miss small yet genuine communities if they are attached to a large community via a

small number of edges [9], [10]. A few algorithms have been developed to address this

problem [9], [11], [8].

A common problem with the modularity-based community identification algorithms is that

they all assume the network structure has been explicitly given and is correct. In addition,

these algorithms work best if the network edges are unweighted and/or sparse, because of an

intrinsic limitation of the modularity function (discussed later in Methods).

In practice, however, many networks are defined implicitly by the attributes of their vertices/

nodes. For example, in a genetic network, each gene can be defined by its expression levels

under various conditions; in a document network, each document is defined by a list of

words and their frequencies in the document. In these cases, each node can be represented as

a point in a high dimensional space. In order to identify modular structures in such systems,

traditional clustering algorithms are usually applied, which tend to ignore the topological

structure underlying the system [12]. Alternatively, there have been several approaches

which first construct a graph from the data by connecting pairs of nodes that are similar, and

then search for dense subgraphs. Examples include DBScan [13], Chameleon [14], and

SPARCL [15]. These types of approaches often require a number of parameters to be set by

the user both to construct the network and to identify dense subgraphs.
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In addition, sometimes a network may be given as a weight matrix W, where Wij represents

the affinity between nodes i and j based on some measurement. For example, in a

collaboration network, the affinity between two researchers may be the number of papers

they have co-authored, normalized by the total number of papers published by each author.

This is another type of high dimensional data if one considers each node as being defined by

its affinity to all the other nodes. However, the affinity measure is not necessarily a metric,

and therefore the data points may not have a direct geometric meaning. In such cases,

although one can still apply traditional clustering algorithm, their performance is often

suboptimal. Spectral clustering algorithms, such as the one proposed in [16], often works

well by treating the affinity matrix as a network with weighted edges. Similar to many

clustering algorithms, however, it requires the number of clusters to be determined either

explicitly or implicitly.

Inspired by the current development of community identification algorithms, we believe it

will be highly desirable to have an algorithm to automatically identify community structures

from these types of high dimensional data. One idea would be to apply modularity

optimization algorithm directly to the affinity matrix or similarity matrix derived from

attribute values. However, as mentioned, the modularity function does not extend well to

affinity/similarity matrix, which is a dense weighted network. Another idea would be to

construct a sparse unweighted network from the data, and then apply modularity

optimization to find community structures. However, the construction of the network is

often done in an arbitrary way, and is not incorporated into the process of community

identification. Different network construction methods or parameters will result in different

networks and usually different community structure as well.

In this work, we propose a very simple method that incorporates network construction and

modularity-based community identification. Given a set of high dimensional points or an

affinity matrix, we construct a series of nearest neighbor networks, and then apply a

modularity-based algorithm to search for the optimal community structure in each network.

At the same time, we compare the community structures obtained from different networks,

and select the one with the highest absolute modularity, which is essentially modularity

corrected for the biases caused by different network densities. As absolute modularity is a

global measurement of community strengths, this simple idea can also be used to guide the

pre-processing/normalization step such that the resulting network has the best community

structure.

We tested our methods on a large number of synthetic and real data sets, and evaluated our

method by internal or external accuracy indices. Compared with several existing approaches,

including k-means, MCL and AP, our method is not only fully automatic, but also has the

best accuracy overall.

The paper is organized as follows. In Section 2, we introduce our method for constructing

networks and identifying communities. We present experimental results in Section 3 and end

with some concluding remarks in Section 4.
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II. Methods

In this section, we first provide a brief overview of the modularity function, and two

modularity-based algorithms. One algorithm, called Qcut, has been shown to be able to

optimize modularity efficiently and effectively [8]. The other algorithm, HQcut, is an

extension of Qcut for addressing the resolution limit problem [8]. We then present our

algorithm, based on these two algorithms, to automatically identify the optimal community

structure from high dimensional points or affinity matrices.

A. Community identification via modularity optimization

1) Modularity—Given an unweighted network with N vertices and M edges, and a partition

that divides the vertices into k communities, the modularity function is defined as

(1)

where eii is the number of edges within community i, and ai is the total degree for the

vertices in community i [2]. The Q function measures the fraction of edges falling within

communities, subtracted by what would be expected if the edges were randomly placed. A

larger Q value indicates stronger community structures. If a partition gives no more intra-

community edges than would be expected by chance, Q ≤ 0. For a trivial partition with a

single cluster, Q = 0. Given the definition of Q, the community discovery problem is to find

a partition of the network that optimizes Q.

The definition of Q per se can be easily extended to weighted networks, by replacing vertex

degree with total edge weight. However, Q is ill-defined for weighted and dense network.

This is because, unlike an unweighted network, a weighted network cannot be randomly

rewired and yet remain its degree sequence. Therefore, the second term in the above formula

does not reflect the expected fraction of edges falling within communities. This limitation,

along with the resolution limit of the modularity function, creates a problem when one wants

to identify communities via modularity optimization from dense weighted networks.

Below, we briefly describe an algorithm to optimize modularity, and an algorithm to address

the resolution limit problem. We will later utilize these two algorithms to identify

community structures from dense weighted networks.

2) Qcut—Qcut is an spectral-based modularity optimization algorithm developed in [8].

This algorithm combines recursive graph partitioning with local search to balance between

efficiency and accuracy. It has been shown to outperform several other modularity-

optimization methods in terms of both efficiency and accuracy [8]. The code is written in

MATLAB and freely available from the authors.

3) HQcut—HQcut is another algorithm developed by the same authors as Qcut. HQcut

successfully solved the resolution limit problem of the modularity function by iteratively

applying Qcut to each community that has been identified, as long as the partitioning seems

statistically significant [8].
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B. Our algorithm

Assume that we are given a sample S containing n data points, X1, …, Xn, which are i.i.d.

vectors in Rd. Our objective is to construct an unweighted and undirected graph, where each

data point is a vertex of the graph, and two vertices are connected if the distance between

their respective vectors is small enough. Distances can be measured by any metric that is

deemed appropriate by the user, and is usually specific to applications. Euclidean distance is

used throughout this work. Given the distance measure, we construct a mutual kNN graph

[17]. Briefly, for each point Xi in S, let Nk(Xi) be the k nearest neighbors of Xi, the network

kNN(S, k) is defined as follows: Xi and Xj are connected if Xi ∈ Nk(Xj) AND Xj ∈ Nk(Xi).

Several alternative methods can be used as well. For example, one can define a network

based on a distance threshold cutoff: Xi and Xj are connected if the distance between Xi and

Xj is smaller than a threshold, ε. Another alternative approach is to connect Xi and Xj if Xi ∈

Nk(Xj) OR Xj ∈ Nk(Xi) (called asymmetric kNN in [17]). Each method has some advantages

and disadvantages, and a thorough discussion is out of the scope in this work. Briefly,

compared to the threshold-based approach, the mutual kNN approach is better capable of

identifying clusters of different shapes and sizes, and compared to the asymmetric kNN

approach, the mutual kNN approach is less prone to noises in data and can identify outliers

[17]. In this work, we always use the mutual kNN approach.

Given a network constructed with one of the methods above, we can then apply Qcut or

HQcut to identify community structures. However, as the final community structure depends

on the network topology, which is determined by the single parameter, k, it is critical to

determine a good k, preferably in an automated way. In this work, we propose the following

fully automated approach.

The idea is simple - when a good k is chosen, there should be relatively more intra-

community edges than would be expected. Therefore, the modularity score should be high.

On the other hand, it is known that even random sparse networks may have some modularity

by chance, and the sparser a network is, the higher modularity it may have by chance [18].

Therefore, we search for the k that gives the largest absolute modularity, defined as the

difference between the modularity of the real network and the modularity of an appropriate

random network. In order to obtain a random network that has the same density as the real

network, we randomize the real network by randomly shuffle the ends of all edges. With this

approach, not only the random network has the same overall density as the real network, but

each node in the random network has exactly the same degree as in the real network. The

pseudocode of our algorithm is shown in Figure 1.

Compared to existing algorithms, our algorithm has a few advantages. First, by constructing

a mutual kNN graph, it can capture clusters of various sizes, shapes, and density, and is

robust with respect to noises. Second, our algorithm automatically determines the best k in

order to achieve the optimal modularity. Furthermore, in real applications, it is often desired

to normalize the data before clustering, in order to eliminate systematic biases caused by

technical or other reasons. For example, gene expression data needs to be normalized to

eliminate biases introduced by experimental protocols or equipments. Many normalization

techniques have been developed and it is often unclear to the user which one should be
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performed. Assuming that a good normalization technique should preserve the modular

structure of the data, the absolute modularity measure we defined here can be used to choose

a good normalization strategy prior to clustering - one can try several normalization methods

and choose the one with the highest absolute modularity.

The most time-consuming part of our algorithm is in constructing the kNN graph, which can

be done in O(n2) time. Note that we did not search all possible k’s. We have found that the

algorithm is typically robust with respect to a large range of values of k. We choose k to be a

power of 2; therefore only log2(n) iterations of Qcut needs to be executed. This significantly

reduces running time without sacrificing the performance of the algorithm.

III. Experimental Results

We extensively tested our method on several types of data sets, including a large number of

synthetic affinity matrices, synthetic gene expression microarray data, synthetic high

dimensional data with irregular shapes, as well as an image data set and a large-scale gene

expression microarray data set. All experimental results show that the performance of our

algorithm is superior to a number of existing algorithms. Due to space constraints, we

omitted the synthetic and real microarray test cases here.

In this work, clustering accuracy is measured using Jaccard Index, which is defined based on

the number of correctly identified intra-community vertex pairs [19]. Given a true

community structure, Ct, and a predicted community structure, Cp, let S1 be the set of vertex

pairs in the same community of Ct, and S2 the set of vertex pairs in the same community of

Cp. The Jaccard Index is defined as

The value of Jaccard Index is in [0, 1], with one being the most accurate. The results using

two other accuracy measurements, adjusted Rand Index [19] and Variation of Information

[19], are similar, but are omitted here for clarity.

A. Evaluation using synthetic data

1) Community structure in affinity matrices—We first tested the case where the

network is given as a general affinity matrix W, where Wij represents the affinity between

nodes i and j based on some measurement. The affinity in this example has no physical

meaning and is a not a metric. To identify community structures for this network, one can

either apply a cutoff to remove some edges with lower weights, or following the same idea

in this work, construct a mutual kNN graph by connecting two nodes if their affinity is

within each other’s top k. Here we test whether our algorithm can be utilized to derive an

optimal mutual kNN graph in order to recover the community structures in this type of

networks.

In this experiment, we first generate an unweighted and undirected network with 500 nodes,

divided into 10 equalsized communities. Each node has a 0.3 probability to connect to
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another node in the same community, and a 0.03 probability to connect to a node outside of

the community. On average, each node has 15 within-community edges and approximately

12 between-community edges. Let A denote the adjacency matrix of the network, i.e., Aij = 1

if and only there is an edge between nodes i and j. We then create an affinity matrix W using

the following formula:

W = A + c * R, where c is a scale factor, and R a symmetric matrix with uniformly

distributed random numbers between 0 and 1. We set c to be between 0.5 and 2.5.

We applied our algorithm to each matrix in order to derive an optimal kNN graph and

identify an optimal community structure simultaneously. To compare, we also applied the

community discovery algorithm (HQcut) directly to W. Figure 2(a) shows that the optimal

network structure for an example affinity matrix with c = 1 is obtained when k = 32. Figure

2(b) shows the clustering accuracy of the two methods. Clearly, for c between 1.5 and 2, our

algorithm in this work significantly outperforms HQcut. For c values lower than 1.5, both

algorithms work equally well, and for c values higher than 2, both methods suffer from low

accuracy.

2) Community structure in high dimensional data—Furthermore, to test the

performance of our algorithm on high dimensional data points, we used a synthetic data

generator SynDECA (http://cde.iiit.ac.in/soujanya/syndeca/) to generate a large number of

data sets. Each data set contains 1000 points, divided into 20 clusters, with about 5% of

uniformly distributed noisy points (outliers). SynDECA can generate regular (circle, eclipse,

square and rectangle) as well as random/irregular shapes. The dimensions of these data sets

are between 10 and 100.

We applied HQcut, the algorithm in this work, and k-means algorithm to these data sets. For

k-means, the number of clusters is set to 21. In addition, we constructed kNN graphs using

all possible values of k, and applied HQcut to each resulting network to find the one with the

best clustering accuracy (instead of the best absolute modularity). This represents the

optimal clustering accuracy that can be achieved by applying HQcut to the best kNN graphs

(optimal-kNN). Figure 2(c) shows the clustering accuracy of the four approaches. The

accuracy of our algorithm is clearly much higher than k-means. HQcut has the worst

accuracy in these test cases, because of the intrinsic limitation of the modularity function.

Furthermore, the accuracy of our algorithm is very close to optimal-kNN, indicating that the

simple strategy for choosing the best k is fairly effective.

B. Real application in image clustering

For a real application, we applied our algorithm to cluster a set of face images taken from

the UCI KDD Archive (data set name: CMU face images). The data set consists of 624

black and white face images of 20 people. Each people has 28 to 32 images, taken with

varying pose (straight, left, right, up), expression (neutral, happy, sad, angry), eyes (wearing

sunglasses or not), and size. Figure 3(a) shows some example face images for 4 people.

Some images for the same people look quite different, even to human eyes. We therefore ask

whether it is possible to automatically separate the images for each person into a single

cluster.
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To apply our algorithm, we first converted each image, which has size 64×60, into a vector

of 3840 dimensions. We therefore obtained a matrix of 624 rows and 3840 columns, where

each row represents an image and each column represents a pixel. In image clustering, it is

often useful to normalize the vectors before applying a distance measure to compare images.

Many different normalization approaches exist and it is often not clear which normalization

approach should be performed. As mentioned earlier, we can use the modularity measure to

help us determine an appropriate normalization strategy.

We first clustered the images without any normalization. Second, we normalized the images

so that each vector has a unit length. Third, we normalized each pixel using quantile

normalization. With this normalization, the histogram of each pixel becomes identical, and

therefore gives equal emphasis to all pixels during clustering. We applied our algorithm to

the three matrices, and compared the identified clusters to the actual clusters, where the

images of one individual are put in one cluster.

Interestingly, the three normalization methods resulted in very different modularity and,

correspondingly, very different clustering accuracy (Table 1). The matrix without

normalization and the one with length normalization both had a modularity 0.62, and

clustering accuracy 0.54 and 0.53, respectively. In comparison, the quantile normalization

resulted in much higher modularity and clustering accuracy.

The optimal kNN graph, constructed with k = 32 on the quantile normalized data, is shown

in Figure 3(b), where different clusters identified by our algorithm is shown with different

colors. The nodes in yellow are not in a same cluster; rather, they highlight the ones that

have been misclustered. On the top left corner, a small group of photos was clustered in the

gray cluster to its right, while it should belong to the green cluster below it. On the top right

corner, a small set of photos was identified as a separate cluster, which actually contains

photos belonging to the two neighboring clusters (red and blue, corresponding to the first

and third person in Figure 3(a), respectively). Also, a photo on the bottom left corner was

identified as a singleton. A closer inspection shows that the image is contaminated, possibly

due to problematic camera setup. It is interesting that our algorithm correctly singled it out

as an outlier.

To compare, we also tested several other algorithms for clustering the images. We first

applied k-means to the quantile normalized matrix, to find 18 to 22 clusters. The best

clustering accuracy 0.70 was obtained with 20 clusters. We also tested another algorithm,

the Affinity Propagation algorithm (AP) [4]. This algorithm works on affinity matrices.

Therefore, we computed the Euclidean distance matrix and converted it into an affinity

matrix by multiplying each value by −1. The algorithm also depends on a single parameter

called prior, which implicitly determines the number of clusters that will be generated. We

varied a wide range of values for prior. The best clustering accuracy we obtained with AP is

0.82. Finally, we applied the Markov Clustering algorithm (MCL), another popular graph

clustering algorithm [3]. This algorithm works on sparse graphs, and requires a single

parameter, inflation. Therefore, we take the optimal network returned by our algorithm, and

varied the inflation parameter from 1.2 to 2.0, with an incremental at 0.05. The best

clustering accuracy, 0.86, is achieved at I = 1.8. This indicates that (1) the optimal network
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returned by our algorithm captures the modularity of the data well, so that the MCL

algorithm can also successfully identify the correct clusters, and (2) the community structure

identified by out algorithm without any parameter tuning is possibly optimal, with an

accuracy comparable to that of MCL which requires extensive parameter tuning.

IV. Conclusions

In this work, we have introduced a very simple yet robust method for identifying

communities from high dimensional data and affinity matrices. By constructing a mutual

kNN network, our method is able to detect clusters of various sizes, shapes and densities,

and is robust to noises. As the construction of the network is integrated with a modularity-

based community discovery algorithm, the optimal parameter for network construction is

determined automatically. In addition, using absolute modularity as a criterion, our method

can be used to suggest the most appropriate preprocessing/normalization for the data.

We tested our methods on a large number of synthetic and real data sets. Experimental

results show that our method is highly effective. Even though it is fully automatic, it

outperformed a number of existing algorithms that requires user-defined parameters.
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Figure 1.
Pseudocode of our algorithm.
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Figure 2.
Results on synthetic data. (a) Modularity as a function of k for a synthetic affinity matrix. (b)

Clustering accuracy on synthetic affinity matrices. (c) Clustering accuracy on synthetic high

dimensional data points having irregular shapes. In (b) and (c), each point is an average of

10 data sets.
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Figure 3.
Clusters among face images. (a) Some example face images. (b) A kNN graph connecting

all face images, and the identified community structure. Best viewed in color.
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Ruan Page 14

Table I
Effect of Normalization to Image Clustering

Normalization metod Modularity Accuracy

None 0.62 0.54

Length normalization 0.62 0.53

Quantile normalization 0.74 0.86
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