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Abstract—In this paper, we describe FEGASUS, an open 2) The careful implementation dd M V, with several
source Peta Graph Mining library which performs typical optimizations, and several graph mining operations
graph mining tasks such as computing the diameter of the (PageRank, Random Walk with Restart(RWR), diame-

graph, computing the radius of each node and finding the

connected components. As the size of graphs reaches several ter estimation, and connected components). Moreover,

Giga-, Tera- or Peta-bytes, the necessity for such a library the method is linear on the number of edges, and scales
grows too. To the best of our knowledge, BGASUs is the first up well with the number of available machines.
such library, implemented on the top of the HaDoOP platform, 3) Performance analysis, pinpointing the most successful

the open source version of MPREDUCE.
Many graph mining operations (PageRank, spectral cluster-
ing, diameter estimation, connected components etc.) arese

combination of optimizations, which lead to up %o
timesbetter speed than naive implementation.

sentially a repeated matrix-vector multiplication. In this paper 4) Analysis Of_ large, _rea| graphs, including one of the
we describe a very important primitive for PEGASUS, called largest publicly available graph that was ever analyzed,
G MV (Generalized lterated Matrix-Vector multiplication). Yahoo's web graph.

G M Vis highly optimized, achieving (a) good scale-up on the . .
number of available machines (b) linear running time on the The rest of the paper is organized as follows. Sec-

number of edges, and (c) more tharb times faster performance tion Il presents the related work. Section Ill describes our
over the non-optimized version ofGl M V. framework and explains several graph mining algorithms.

Our experiments ran on M45, one of the top 50 supercom-  Section IV discusses optimizations that allow us to achieve
pUteLS in thled\_/vorld. Weffer?Of} our f'”d'fk‘fll_sl on S‘?l"%fla' \rﬁa'b significantly faster performance in practice. In Section ¥ w
graphs, Including one of the largest publicly available Web egent timing results and Section VI our findings in real

Graphs, thanks to Yahoo!, with ~ 6,7 billion edges. . .
P g world, large scale graphs. We conclude in Section VII.
Keywords-PEGASUS; graph mining; hadoop

1. BACKGROUND AND RELATED WORK
. INTRODUCTION The related work forms two groups, graph mining, and
o , HADOOP.

Graphs are ubiquitous: computer networ_ks, social net- Large-Scale Graph Mining.There are a huge number
Works_, moblle_ call networks, the World Wide Web [1], graph mining algorithms, computing communities (eg.,
protein regulation networks to name a few. [3], DENGRAPH [4], METIS [5]), subgraph discovery(e.g.,

The large volume of available data, the low cost OfStorag%raphSig 6], [7], [8], [9], gPrune [10], gApprox [11]
and the stunning success of online social networks angspan [12] "Subdue [13j HSIGRAM/VSIGRAM [14]’
webZ.O a_\pplications f.:\II. lead to_ graph§ of unprecedented [15], CSV [16]), finding important nodes (e.g., PageR-
size. Typlcgl graph mining algorithms §|Iently assume thaty i [17] and HITS [18]), computing the number of tri-
the graph fits in the memory of a typical work'_stanon, O angles [19], [20], computing the diameter [21], topic de-
at least on a single disk; the above graphs violate thesgciion [22], attack detection [23], with too-many-totlis
assumptions, spanning multiple Giga-bytes, and heading Qiternatives for each of the above tasks. Most of the previou
Tera- and Peta-bytes of data. B algorithms do not scale, at least directly, to several ol

A promising tool is parallelism, and specifically A#RE-  anq pillions of nodes and edges.

DUCE [2] and its open source version, ABOOP. Based For connected components, there are several algorithms,
on HADOOP, here we describe HBASUS, a graph min-  ysing Breadth-First Search, Depth-First-Search, “prapag

ing package for handling graphs withillions of nodes tjgn» ([24], [25], [26]), or “contraction” [27] . These wokk
and edges. The HEASUS code and several dataset are rely on a shared memory model which limits their ability to
at http://www.cs.cmu.edu~-pegasus The contributions are  pgndle large, disk-resident graphs.

the following: MapReduce and HadoopMAPREDUCE is a program-

1) Unification of seemingly different graph mining tasks, ming framework [2] [28] for processing huge amounts of
via a generalization of matrix-vector multiplication unstructured data in a massively parallel wayaBREDUCE
(A M V). has two major advantages: (a) the programmer is oblivious



of the details of the data distribution, replication, loaal-b 2) conbi neAl | ;(z1,...,xz,) : combine all the results
ancing etc. and furthermore (b) the programming concept is from conbi ne2() for nodes.

familiar, i.e., the concept of functional programming.&tly, 3) assi gn(v;, vpew) : decide how to update; with
the programmer needs to provide only two functionsyap Unew-

and areduce The typical framework is as follows [29]: (8)  The ‘lterative’ in the name of@ MV denotes that
the map stage sequentially passes over the input file andye apply the x operation until an algorithm-specific
outputs (key, value) pairs; (b) trehufflingstage groups of = conyergence criterion is met. As we will see in a moment,
all values by key, (c) theeducestage processes the values py cystomizing these operations, we can obtain different,
with the same key and outputs the final result. useful algorithms including PageRank, Random Walk with
HADOOP is the open source implementation ofAVRE-  Restart, connected components, and diameter estimation.
DUCE. HADOOP provides the Distributed File System pgy; first we want to highlight the strong connection of
(HDFS_) [30] and PIG,_ a high Iev_el Ignguage for datag wm v with SQL: Whenconbi neAl | ;() andassi gn()
analysis [31]. Due to its power, simplicity and the fact can pe implemented by user defined functions, the operator
that building a small cluster is relatively cheapabbopr xc can be expressed concisely in terms of SQL. This
is a very promising tool for large scale graph mining yiewpoint is important when we impleme6t M V in large
application;_ something already reflected_ in academia, s€& e parallel processing platforms, includingbop, if
[32]. In addition to PIG, there are several high-level laage  they can be customized to support several SQL primitives
and environments for advancedA¥REDUCE-like systems, including JOIN and GROUP BY. Suppose we havesaige
including SCOPE [33], Sawzall [34], and Sphere [35]. table E(si d, did, val) and avect or tableV(id,
val ), corresponding to a matrix and a vector, respectively.

. . ) Then, x corresponds to the following SQL statement -
How can we quickly find connected components, diametey, G P g SQ

_— we assume that we have (built-in or user-defined) functions
PageRank, node proximities of very large graphs7aste . i noa | .0 and combi ne2()) and we also assume
show t_hat, even ".c they seem unre_lgted, e"er_‘t“a”y W&hat the resulting table/vector will be fed into thesi gn()
can unify them using the&d MV primitive, standing for function (omitted, for clarity):
Generalized lIterative Matrix-Vector multiplication, vdhi ’ '

IIl. PROPOSEDMETHOD

we describe in the next. SELECT E.sidconbi neAl T 5 w;4(Conbi ne2(E.val,v.val)
. FROM E, V
A. Main Idea WHERE E.did=V.id
G MV, or ‘Generalized Iterative Matrix-Vector multipli- GROUP BY E.sid
cation’ is a generalization of normal matrix-vector mulitip In the following sections we show how we can customize

cation. Suppose we havenaby n matrix A/ and a vecton G MV, to handle important graph mining operations in-
of sizen. Let m; ; denote thei( j)-th element ofM/. Then  cluding PageRank, Random Walk with Restart, diameter
the usual matrix-vector multiplication is estimation, and connected components.

M x v =" wherev; = 37 m; jv;.
There are three operations in the previous formula, whichB- G MV and PageRank
if customized separately, will give a surprising number of  Qur first application ofG M V is PageRank, a famous

useful graph mining algorithms: algorithm that was used by Google to calculate relative
1) conbi ne2: multiply m; ; andv;. importance of web pages [17]. The PageRank vegtof n
2) comnbi neAl | : sum n multiplication results for node web pages satisfies the following eigenvector equation:
" p=(cE" + (1 -)U)p

3) assi gn: overwrite previous value of); with new
result to makev;,.

In @ MV, let's define the operatox o, where the three
operations can be defined arbitrarily. Formally, we have:

wherec is a damping factor (usually set to 0.8%),is the
row-normalized adjacency matrix (source, destinationyj a
U is a matrix with all elements set to/n.

To calculate the eigenvectgr we can use the power

v = M/X_G” ) ) , method, which multiplies an initial vector with the matrix,
wherev; = assi gn(v;,combi neAl | ;({z; | j = several times. We initialize the current PageRank vegtsi
L.n, andz; =combi ne2(m;,;,v;)})). and set all its elements tb/n. Then the next PageRank

The functions conbi ne2(), conbineAll (), and prest js calculated byp™c*t = (cET + (1 — c)U)p**". We
assi gn() have the following signatures (generalizing continue to do the multiplication untji converges.
the product, sum and assignment, respectively, that the pageRank is a direct application 6f M V. In this view,
traditional matrix-vector multiplication requires): we first construct a matrix\/ by column-normalizeE™”
1) combi ne2(m, ,v;) : combinem, ; andv;. such that every column of/ sum to 1. Then the next



PageRank is calculated y**®* = M x5 p*" where the E. G M V and Connected Components

three operations are defined as follows: We propose léc, a new algorithm for finding connected
1) combi ne2(m;,;,v;) = ¢ x m(ifj_f v components in large graphs. LikeaHI, Hcc is an appli-
2) conbineAl I i(x1, ... n) = = + 30, cation of G M V with custom functions. The main idea is
3) assi gn(vi, Vnew) = Unew as follows. For every node; in the graph, we maintain

C. G MV and Random Walk with Restart a component icc? which is the minimum node id within

h hops fromu;. Initially, ¢ of v; is set to its own node

7
id: that is, ¢! = i. For each iteration, each node sends its
current ¢} to its neighbors. Ther"*!, component id of

i

Random Walk with Restart(RWR) is an algorithm to
measure the proximity of nodes in graph [36]. In RWR,

the proximity vectorr; from node k satisfies the equation: . -
P y k q v; at the next step, is set to the minimum value among

f:k = cMry, + (- C)ekh h g , q its current component id and the received component ids
whereey, IS a n-vector whosé™ elementis 1, and every ¢, jts neighbors. The crucial observation is that this

oth_er \_eleme_znts are (: is a restart_probab|l|ty paramgter communication between neighbors can be formulated in
which is typically set to 0.85 [36]. M is a column-normalized G MV as follows:

and transposed adjacency matrix, as in Section IlI-B. In g h
G MV, RWR is formulated by** = M x g r{*" where ¢ =MXec o
the three operations are defined as followz{ is 1 if = is where M is an adjacency matrix; ** is a vector of length
true, and O otherwise.): nhivlh'Ch is L_lpdatehd by _
1) conbi ne2(m; ;,vj) = ¢ x m;j X v; ¢ =assign(g ,cor}r:ol neAll ;({z; | j = 1.n, and
2) combi neAl | ;(z1,..,zn) = (1 — )I(i # k) + & =combine2(m;;,cj)}h)),

S and the three operations are defined as follows:
Jj=1"J .
3) assi gn(viavnew) = VUnew 1) conbi neZ(mi_,j,vj) =m; X Uj.

2) conbi neAl | ;(z1,...,z,) = MIN{z; | j = 1.n}

. X . . 3) assi gn(viavnew) = MlN(Uiavnew)-
HADI [21] is an algorithm to estimate the diameter and

. . . By repeating this process, component ids of nodes in a
radius of large graphs. The diameter of a graph is thecomponent are set to the minimum node id of the compo-

maximum of the length of the shortest path between CVeent. we iteratively do the multiplication until component

EilrsotLQtO \(Ijvees.m;l'; de tga:j(elgihotfh: fg(:tiee ;f-;\t]vz ngg:jzefrr;; ids converge. The upper bound of the number of iterations
P Y in Hcc are determined by the following theorem.

The main idea of .HDI_ is as follows. For gach node in Theorem 1 (Upper bound of iterations ficc): Hcc
the graph, we maintain the number of neighbors reaChabl(laequires maximuml iterations wherel is the diameter of

from v; within A hops. Ash increases, the number of

D. G M V and Diameter Estimation

. . . . . the graph.
neighbors increases unfil reaches it maximum value. The Proof: The minimum node id is propagated to its
diameter ish where the number of neighbors within+ 1 : ' , propag
neighbors at most times. |

does not increase for every node. For further details and
optimizations, see [21].

The main operation of WDI is updating the number
of neighbors ash increases. Specifically, the number of IV. EAST ALGORITHMS FORG M V
neighbors within hoph reachable from node; is encoded
in a probabilistic bitstringy? which is updated as follows:

bt = b BITWISE-OR {b} | (i,k) € E}

In @ MV, the bitstring update of WDI is represented by

bh+1 =M X bh

where M is an adjacency matri*+! is a vector of length A. G MV BASE: Naive Multiplication

Since the diameter of real graphs are relatively smaticH
completes after small number of iterations.

How can we parallelize the algorithm presented in the
previous section? In this section, we first describe naive
Hapoorp algorithms for G M V. After that we propose
several faster methods f@& M V.

n which is updated by G MV BASE is a two-stage algorithm whose pseudo
bi+! =assi gn(bl,conbi neAl | ;({z; | j = l.n, and  code is in Algorithm 1 and 2. The inputs are an edge
x; =conbi neZ(mi,j,b?)}))’ file and a vector file. Each line of the edge file contains
and the three operations are defined as follows: one (idsyc, idgs:, mval) which corresponds to a non-zero
1) conbi ne2(m; ;,v;) = m;; x v;. cell in the adjacency matrid/. Similarly, each line of the
2) combi neAl | j(x1,...,xz,) = BITWISE-OR{z; | j =  vector file contains onéid, vval) which corresponds to an
l.n} element in the vectol. St agel performsconbi ne2
3) assi gn(v;, vnew) = BITWISE-ORv;, Vpew)- operation by combining columns of matridg,; of M)

The x ¢ operation is run iteratively until the bitstring for with rows of vector{d of V). The output ofSt agel are
all the nodes do not change. (key, value) pairs where key is the source node id of the



Algorithm 1: G M V BASE Stage 1. Algorithm 2: 3 M V BASE Stage 2.

Input : Matrix M = {(idgc, (idast, mval))}, Input : Partial vectorV’ = {(idgsc, vval’)}
Vector V' = {(id,vval)} Output: Result VectorV = {(idsy., vval)}
Output: Partial vector

St age2- Map(Key k, Val ue v) ;
V' = {(idsy,conmbi ne2(muval,vval)} i begi% p(Key )
1 Stagel- Map(Key k, Val ue v) ; 3 Outputf, v);
2 begin 4 end
if (k,v) is of type Vthen i )
Output, v); I (k: id, v: vval) Z Ste{;%ez Reduce(Key k, Value v[1..m)
else if (k, v) is of type Mthen 5 others_v [ ]:

(idgst, mval) «— v; 8 self v e[ ;

0 ~N o g b~ W

Outputldst, (k, mval)); I (K idgpe) 0 foreach v € o[1..m] do

end 10 (tag,v') « v;
9 Stagel- Reduce(Key k, Value v[1..n]) ; 11 if tag == “same” then
10 begin 12 self_v '
11 saved_kv [ ]; 13 else iftag == “others” then
12 saved_v | ]; 14 Add v’ to others_v;
13 foreach v € v[1..m] do 15 end
14 if (k,v) is of type Vthen 16 Output.assi gn(self_v,conbi neAl | y(others_v)));
15 saved_v « v; 17 end
16 Outputl, (“sel 7, saved_v));
17 else if (k, v) is of type Mthen TOWelemy,  COlelemy, , MVAleiem,. ).  Similarly, the format
18 Add v to saved_kv I (Vi (idsre, mual)) of a vector block with k nonzero elements is
19 end (idblocka Z.delefnl 5 Uvaleleml g eeey idelemk 5 Uvalelemk)- Only
20 foreach (id.,,., mval’) € saved_kv do blocks with at least one nonzero elements are saved to disk.
21 Outputfd.,,..., (“others” ,conbi ne2(muval’, saved_v)his block encoding forces nearby edges in the adjacency
22 end matrix to be closely located; it is different fromA®O0OP's
23 end default behavior which do not guarantee co-locating them.

After grouping, @ MV is performed on blocks, not on

matrix(ids,. of M) and the value is the partially combined individual elements@ M V BL is illustrated in Figure 1.
resultconbi ne2(mwal, vval)). This output of St agel Vo Vi
becomes the input @&t age2. St age2 combines all partial Bo1 Bos CHEH iy 3K K
results fromSt agel and assigns the new vector to the old ——L - - -
vector. Theconbi neAl | ;() andassi gn() operations are Boo
done in line 16 ofSt age2, where the “self” and “others”
tags in line 16 and line 21 d8t agel are used to make;
andv,.,, of G MV, respectively. B2,

This two-stage algorithm is run iteratively until
application-specific convergence criterion is met. In Algo Figure 1. G M VBL using 2 x 2 blocks. B represents a matrix block,
rithm 1 and 2, Outpuf{, v) means to output data with the and v; represents a vector block. The matrix and vector are joirledkb
key k and the valua;. wise, not element-wise.
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S In our experiment at Section \G M V BL is more than 5
B. G MV BL: Block Multiplication times faster thai® M V BASE. There are two main reasons

G MV BL is a fast algorithm forG M V which is  for this speed-up.

based on block multiplication. The main idea is to group « Sorting Time Block encoding decrease the number
elements of the input matrix into blocks or submatrices of of items to sort in the shuffling stage ofABooP.
size b by b. Also we group elements of input vectors into We observed that the main bottleneck of programs in
blocks of lengthb. Here the grouping means we put all the HADoOOP is its shuffling stage where network transfer,
elements in a group into one line of input file. Each block sorting, and disk 1/0 happens. By encoding to blocks
contains only non-zero elements of the matrix or vector. of width b, the number of lines in the matrix and the
The format of a matrix block with k nonzero elements vector file decreases to/b? and 1/b times of their

is (rowsiock s COlblock, TOWelem, s COletemy s MUGLelemy s v original size, respectively for full matrices and vectors.



o Compression The size of the data decreases signifi-Hcc. By multiplying diagonal blocks and vectors until the
cantly by converting edges and vectors to block format.contents of the vectors do not change in one iteration, we

The reason is that il M V BASE we need! x 2 bytes

save a node id using Integer. HoweverGhM V BL
we can specify eachblock using a block row id and
a block column id with two 4-byte Integers, and refer
to elements inside the block usir2gx logb bits. This

is possible because we can usebldyts to refer to a
row or column inside a block. By this block method

can pass node ids to neighbors located more than one step
to save each (srcid, dstid) pair since we need 4 bytes taway. This is illustrated in Figure 3.

1-4

we decreased the edge file size(e.g., more than 50%

for YahooWeb graph in Section V).
C. G MV CL: Clustered Edges

5-8

9-12 B2,1 Bz,z

When we use block multiplication, another advantage is
that we can benefit from clustered edges. As can be seen
from Figure 2, we can use smaller number of blocks if
input edge files are clustered. Clustered edges can be built
if we can use heuristics in data preprocessing stage so that
edges are clustered, or by co-clustering (e.g., see [3BB. T
preprocessing for edge clustering need to be done only once;
however, they can be used by every iteration of various
application ofG M V. So we have two variants @ M V:

G MV CL, which isA@ M V BASE with clustered edges,
and G MV BL-CL, which is G MV BL with clustered
edges. Be aware that clustered edges is only useful when
combined with block encoding. If every element is treated
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separately, then clustered edges don’t help anything ®r thrigure 3. Propagation of component id(=1) when block wigthti Each

performance ofd M V.

element in the adjacency matrix of (a) represents a 4 by 4kbleach

column in (b) and (c) represents the vector after each iteraG M V DL

1.2 3 4 5 6 1.2 3 4 5 6
14110 |00 |0 11|00 (1Q30]|0
2Q1|1jJo0(0fjo0|o0 210 |10 |00 1
3jo|jofj1 (140 0 3jojoj1|0g1|0
4j0(0g1|140|0 411(0j0|140|0
5Qo0jojo (o1 |1 50|01 (0f1|0
6jo|jofjojog1 |1 6Jo0o |10 |0jo0 1

Figure 2.  Clustered vs. non-clustered graphs with sameldgpoThe
edges are grouped into 2 by 2 blocks. The left graph uses otlpcks
while the right graph uses 9 blocks.

iterations in Hcc DI with block sizeb.

D. A M V DI: Diagonal Block Iteration

G MV is its shuffling and disk I/O steps. Sinc@ MV

finishes in 4 iterations whil&l M V BL requires 8 iterations.

We see that in Figure 3 (c) we multiplyg; ; with v,
several times untily; do not change in one iteration. For
example in the first iteratiom, changed from{1,2,3,4 to
{1,1,1,% since it is multiplied toB four times.G MV
DI is especially useful in graphs with long chains.

The upper bound of the number of iterations ic¢&iDI
with chain graphs are determined by the following theorem.

Theorem 2 (Upper bound of iterations kicc DI): In a
chain graph with lengthn, it takes maximun® x [m/b] — 1

Proof: The worst case happens when the minimum
As mentioned in Section IV-B, the main bottleneck of node id is in the beginning of the chain. It requires 2

iterations(one for propagating the minimum node id inside

iteratively runs Algorithm 1 and 2, and each Stage requireshe block, another for passing it to the next block) for the
disk 10 and shuffling, we could decrease running time if weminimum node id to move to an adjacent block. Since

decrease the number of iterations.

the farthest block is[m/b] — 1 steps away, we need

In Hcg, itis possible to decrease the number of iterations2 « ([m/b] — 1) iterations. When the minimum node id
The main idea is to multiply diagonal matrix blocks and reached the farthest away bloctl M V DI requires one
corresponding vector blocks as much as possible in onelore iteration to propagate the minimum node id inside
iteration. Remember that multiplying a matrix and a vectorthe last block. Therefore, we ne&€d« ([m/b] — 1) +1 =
corresponds to passing node ids to one step neighbors @« [m/b] — 1 iterations.



E. Analysis A. Results

We analyze the time and space complexityGbivt V. In
the theorems below)/ is the number of machines.
Theorem 3 (Time Complexity & M V): One iteration
of G M V takesO (L logHE ) time.
Proof: Assuming uniformity, mappers and reducers
of Stagel and St age2 receivesO(Y5tE) records per
machine. The running time is dominated by the sorting time In Figure 4 (a), for all of the methods the running time

We first show how the performance of our method changes
as we add more machines. Figure 4 shows the running time
and performance ol M V for PageRank with Kronecker
graph of 282 million edges, and size 32 blocks if necessary.

for YEE records, which isO(YEE1og YEE), m decreases as we add more machines. Note that clustered
M d M M o .\
Theorem 4 (Space Complexity @fM V): G M V edges@ M V CL) didn't help performance unless it is com-
requiresO(V + E) space. bined with block encoding. When it is combined, however,

Proof: We assume the value of the elements of thelt showed the best performancél (v V BL-CL).
input vectorv is constant. Then the theorem is proved by |n Figure 4 (b), we see that the relative performance
noticing that the maximum storage is required at the outpupf each method compared 16 M V BASE method de-
of St agel mappers which require®(V + E) space up to  creases as number of machines increases. With 3 machines

a constant. B  (minimum number of machines whichasoop distributed
mode supports), the fastest meth@di# V BL-CL) ran
V. PERFORMANCE AND SCALABILITY 5.27 times faster thad M V BASE. With 90 machines,
We do experiments to answer following questions: G MV BL-CL ran 2.93 times faster tha@@ M V BASE.
Q1 How doesd M V scale up? This is expected since there are fixed component(JVM load

Q2  Which of the proposed optimizations(block mul- time, disk 1/0, network communication) which can not be
tiplication, clustered edges, and diagonal block®Ptimized even if we add more machines.

iteration) gives the highest performance gains? Next we show how the performance of our methods
The graphs we used in our experiments at Section V anghanges as the input size grows. Figure 4 (c) shows the
VI are described in Table 1 . running time of G MV with different number of edges
Name | Nodes| Edges| Description under 10 machines. As we can see, all of the methods scales
YahooWeb | 1,413 M | 6,636 M | WWW pages in 2002 linearly with the number of edges.
LinkedIn 7.5 M 58 M | person-person in 2006
4.4 M 27 M | person-person in 2005 Finally, we compare the performance 6f M V DI and
13%& 2'3%"4 person-person in 2004 G M V BL-CL for Hcc in graphs with long chains. For this
person-person in 2003 . . .
Wikipedia 35 M 42 M | doc-doc in 2007/02 experiment we made a new graph whose diameter is 17, by
3M 35 M | doc-doc in 2006/09 adding a length 15 chain to the 282 million Kronecker graph

1.6 M 18.5 M | doc-doc in 2005/11

Kronecker 177 K | 1,977 M | synthetic V.Vh_iCh has di"?‘met‘?r 2 A.S we see in Figu_re_CB,M V DI
120 K | 1,145 M | synthetic finished in 6 iteration whiled M V BL-CL finished in 18
50K | 282 M | synthetic iteration. The running time of both methods for the first
BLP 4%"}2 14102'\4 zzgglrflg(;]t-document 6 iterations are nearly same. Therefore, the diagonal block
flickr 404 K 2.1 M | person-person iteration method decrease the number of iterations white no
Epinions 75K | 508 K | who trusts whom affecting the running time of each iteration much.
2000
ORDER AND -sr?zbEIeolF NETWORKS 1800 | GIMC;/”&I}‘/%I] 4.’7 e
8 1600 t .
We run REGASUs in M45 HADOOP cluster by Yahoo! § 1400 | -
and our own cluster composed of 9 machines. M45 is $ 1200 | B
one of the top 50 supercomputers in the world with 1.5 = 1000 | B
Pb total storage and 3.5 Tb memory. For the performance ~ E 800 | 7
and scalability experiments, we used synthetic Kronecker = 600 1 B
graphs [37] since we can generate them with any size, and & 388 3 B
they are one of the most realistic graphs among synthetic ol | |
graphs. 6 18
Iteration
Iwikipedia: http://www.cise.ufl.edu/research/sparséfives/ Figure 5. Comparison o8 M V DI andG M V BL-CL for Hce. G M V

Kronecker, DBLP: http://author’'s website/PEGASUS/
YahooWeb, LinkedIn: released under NDA.
flickr, Epinions, patent: not public data.

DI finishes in 6 iterations whil&l M V BL-CL finishes in 18 iterations due
to long chains.
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Figure 4. Scalability and Performance of GIM-V. (a) Runnimge decreases quickly as more machines are added. (b) Tf@mance(d /running
time) of 'BL-CL wins more than 5x (for n=3 machines) over the 'BES (c) Every version ofd M V shows linear scalability.

VI. G M VAT WORK can see that the slope of tail distribution do not change afte
year 2003. We observed the same phenomenon in Wikipedia
raph in Figure 6 (b). The graph show stable tail slopes from
e beginning, since the network were already mature in year
2005.

Absorbed Connected Components and Dunbar’s hum-
ber In Figure 6(a), we find two large connected components
in year 2003. However it became merged in year 2004.
The giant connected component keeps growing, while the

We used the Linkedin social network and Wikipedia pagesecond and the third largest connected components do not
linking-to-page network, along with the YahooWeb graph forgrow beyond size 100 until they are absorbed to the giant
connected component analysis. Figure 6 show the evolutiogonnected component in Figure 6 (a) and (b). This agrees
of connected components of LinkedIn and Wikipedia datawith the observation[39] that the size of the second/third
Figure 7 show the distribution of connected components inconnected components remains constant or oscillatedy) ast
the YahooWeb graph. We have following observations.  the maximum connected component size except the giant
connected component in the LinkedIn graph agrees well

In this section we use BGASUS for mining very large
graphs. We analyze connected components, diameter, ar?
PageRank of large real world graphs. We show that P
GASuUs can be useful for finding patterns, outliers, and
interesting observations.

A. Connected Components of Real Networks

10: " "YahooWeb —x— with Dunbar’s number[40], which says that the maximum
107 | community size in social networks is roughly 150.
106 I Anomalous Connected Componentdn Figure 7, we
» 105 I found two outstanding spikes. In the first spike at size
5 104 300, more than half of the components have exactly the
3 103 Spikes same structure and they were made from a domain selling
102 I '(‘( giant ted | company where each component represents a domain to be
101 I Cg“m“,;*:n‘;nt’ sold. The spike happened because the compeplcated
100 I ] sites using the same template, and injected the discorthecte
100 . . e components into WWW network. In the second spike at
10% 10" 10® 10° 10* 10° 10° 107 10° 10° size 1101, more than 80 % of the components are porn
Size sites disconnected from the giant connected component. By
Figure 7. Connected Components of YahooWeb. Notice the hsmalous  100King at the distribution plot of connected components,
spikes which are far from the constant-slope tail. we could find interesting communities with special purposes

o o which are disconnected from the rest of the Internet.
Power Law Tails in Connected Components Distri-

butions We observed power law relation of count and B.- PageRanks of Real Networks
size of small connected components in Figure 6(a),(b) and We analyzed PageRank of YahooWeb graph wiHGR-
Figure 7. This reflects that the connected components iiSus. Figure 8 shows the distribution of PageRank of the
real networks are formed by processes similar to Chinesgraph. We observed that the PageRank follows a power
Restaurant Process and Yule distribution [38]. law distribution with exponent 1.97, which is very close
Stable Connected Components After Gelling Point to the exponent 1.98 of the in-degree distribution of the
In Figure 6(a), the distribution of connected componentssame graph. Pandurangan et. al.[41] observed that the two
remain stable after a ‘gelling’ point[39] at year 2003.We exponent are same for 100,000 pages in Brown University
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(a) Connected Components of LinkedIn (b) Connected Commusrad Wikipedia

Figure 6. The evolution of connected components. (a) Thatgiannected component grows for each year. However, thendelargest connected
component do not grow above Dunbar’s numkef(50) and the slope of the tail remains constant after théngefioint at year 2003. (b) As in LinkedIn,
notice the growth of giant connected component and the anhstope for tails.
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Size Size

domain. Our result is that the same observation holds true fowikipedia graph, the average diameter was in the range of
10,000 timedarger network with 1.4illion pages snapshot 4.76 and 4.99. Note that the diameter do not monotonically
of the Internet. increase as network grows: they remain constant or shrinks
The top 3 highest PageRank sites at year 200dver time.

are  www.careerbank.com, access.adobe.com, and Bimodal Structure of Radius Plot For every plot,
topl00.rambler.ru. As expected, they have huge inwe observe bimodal shape which reflects the structure of
degrees (fromx=70K to ~70M). these real graphs. The graphs have one giant connected
component where majority of nodes belong to, and many

10 i
10 . " YahooWeb —x—— smaller connected components Whos_e size follqws power
118 law. Therefore, the first mode is at radius zero which comes
from one-node components; second mode(e.g., at radius 6
= 105 | ] in Epinion) comes from the giant connected component.
C
8 4 slope = g z Avg Diameter: 5.89 % i Avg Diameter: 6.09 {3 Z Avg D;ameler 5.28 %}gz Avg Diameter: 5.56
102 e = DO 2 46 Rgadlws;z 14 Ta 18 DO 2 46 Fsadllﬁslz 14 16 18 0246 RgadleSlz 14 16 18 wuo 246 F\?adllgsu 14 16 18
g 2 Wikipedfa 2005 “x— ] A Wikipedia 2006 “x" ] 2 ‘Wikipedia 2007 —%—
2107 Avg Diameter: 4.99 2107 Avg Diameter: 4.73 2107 Avg Diameter: 4.76
00 ; : i ; ; X e i i
107° 10° 10® 107 10® 10° 10* 1073 W\“\ W\\\.‘, Vg\\
PageRank 0 5 10 %?sam%g 25 30 35 0 5 10 1R5ad|ﬁg 25 30 35 0 5 10 ézdfg 25 30 35
4100 [ DBLPdocdod —— ] 10 AT 4190 Epfior = 7
Figure 8. PageRank distribution of YahooWeb. The distidutollows E I R ’ 2 ?
power law with exponent 1.97. 3 \*—K“\\; ;W e

C. Diameter of Real Network

We analyzed the diameter and radius of real networks wit|

PEGASUS. Figure 9 shows the radius plot of real networks.

We have following observations:
Small Diameter For all the graphs in Figure 9, the
average diameter was less than 6.09. This means that the
real world graphs are well connected.
Constant Diameter over Time For LinkedIn graph, the
average diameter was in the range of 5.28 and 6.09. For

T
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Radius

Figure 9.

0246 81012141618
Radius

Radius of real graphs.
axis: radius. Y axis: number of nodes.
ow 1) LinkedIn from 2003 to 2006.

0246 81012141618
Radius

(Row 2) Wikipedia from 2005 to 2007.
(Row 3) DBLP, flickr, Epinion.
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In this paper we proposedeBASUS, a graph mining
package for very large graphs using thedbop architec-
ture. The main contributions are followings:

o We identified the common, underlying primitive of sev-
eral graph mining operations, and we showed that it is a
generalized form of a matrix-vector multiplication. We
call this operation Generalized lterative Matrix-Vector
multiplication and showed that it includes the diameter
estimation, the PageRank estimation, RWR calculation,
and finding connected-components, as special cases.

« Given its importance, we proposed several optimiza-
tions (block-multiplication, diagonal block iterationcgt
and reported the winning combination, which achieves
5 timesfaster performance to the naive implementation.

o We implemented PGASuUs and ran it on M45, one
of the 50 largest supercomputers in the world (3.5 Tb
memory, 1.5Pb disk storage). Using®ASus and our
optimized Generalized Iterative Matrix-Vector multipli-
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important patterns including power law tails, stability 11]
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