
論文 / 著書情報
Article / Book Information

Title An XML Subtree Segmentation Method Based on Syntactic
Segmentation Rate

Author Wenxin Liang, Xiangyong Ouyang, Haruo Yokota

Journal/Book name Proceedings of the Second IEEE International Conference on Digital
Information Management, , , pp. 551-558

Issue date 2007, 10

DOI http://dx.doi.org/10.1109/ICDIM.2007.4444281

URL http://www.ieee.org/index.html

Copyright (c)2007 IEEE. Personal　use of this material is permitted. Permission
from IEEE must be obtained for all other users, including
reprinting/republishing this material for advertising or promotional
purposes, creating new collective works for resale or redistribution to
servers or lists, or reuse of any copyrighted components of this work in
other works.

Note このファイルは著者（最終）版です。
This file is author (final) version.

Powered by T2R2 (Science Tokyo Research Repository)

http://dx.doi.org/10.1109/ICDIM.2007.4444281
http://www.ieee.org/index.html
http://t2r2.star.titech.ac.jp/

An XML Subtree Segmentation Method Based on Syntactic Segmentation Rate

Wenxin Liang Xiangyong Ouyang Haruo Yokota
Japan Science and Technology Agency Tokyo Institute of Technology Tokyo Institute of Technology

Tokyo Institute of Technology ouyang@de.cs.titech.ac.jp yokota@cs.titech.ac.jp
wxliang@de.cs.titech.ac.jp

Abstract

In this paper, we propose an effective method for seg-
menting large XML documents into independent meaningful
subtrees based on two syntactic segmentation rates: verti-
cal segmentation rate and horizontal segmentation rate. In
the proposed method, we use DO-VLEI code to calculate
the required parameters for the subtree segmentation. We
conduct experiments to observe the effectiveness of the pro-
posed subtree segmentation method using real bibliography
XML documents stored in RDBs. We apply our previously
proposed subtree matching algorithm SLAX to match the
segmented subtrees and evaluate how the matching thresh-
old impacts the precision and recall of subtree matching.
Besides, we also integrate the matched subtrees determined
by SLAX by our previously proposed subtree integration al-
gorithm. The experimental results indicate that the pro-
posed subtree segmentation method is effective for segment-
ing XML documents into independent meaningful subtrees
and our previously proposed subtree matching algorithm
achieves reasonable matching precision and recall using
the segmented subtrees.

1 Introduction

XML has rapidly become the de facto standard for rep-
resenting and exchanging data on the Web, because it is
portable for representing different types of data from mul-
tiple sources. Recently, more and more data represented
by XML are disseminated and exchanged on the Internet.
However, XML documents from different sources may con-
tain exactly or nearly the same information but may be dif-
ferent on structures.

Example 1 Figure 1 shows two example XML document
trees with different DTDs. Although the two document trees
are different on structures, they represent very similar in-
formation. Besides, each document has some information
what the other does not do. For example, volume in Fig-
ure 1 (a); and pages in Figure 1 (b).

Bibliography

article article

title author title author volume

XML Sato XML
Joins

 22

volume

9

article

title

XML DBs

author volume

 Lee 3

... ...

 Lee

(a)
References

article article

authors title authorstitle

 XML XML
 Joins

author author author

Sato Tanaka Yang

author

 Lee

pages pages

 22-35 11-22

articles

... ...
articles articles... ...
... ...

(b)

Figure 1. Example XML documents

Along with the increasing size of XML documents, par-
allelly storing and processing large XML documents over
advanced distributed storage systems such as Autonomous
Disks [16] becomes important. To store large XML doc-
uments into different nodes of a distributed storage sys-
tem, we need to segment them into small fragments. XML
Query results are often represented by meaningful subtrees
that contain the query keywords. Therefore, it is important
for segmenting the documents into meaningful subtrees and
treating each subtree as a minimum unit for data placement
and migration in the distributed storage system.

In our previous work [7], we have proposed a method
for segmenting XML documents into independent meaning-
ful subtrees using DOM Parser. However, for large-scale
XML documents stored in RDBs, an imprecise segmenta-
tion problem may occur by using our previous method. In
order to solve this problem, in this paper we propose a new
subtree segmentation method for segmenting XML docu-
ments stored in RDBs into independent meaningful subtrees

based on two syntactic segmentation rates: vertical segmen-
tation rate and horizontal segmentation rate. In the proposed
subtree segmentation method, we use the DO-VLEI code to
calculate the required parameters for the subtree segmenta-
tion. We apply our previously proposed subtree matching
algorithm SLAX to match the segmented subtrees and eval-
uate how the matching threshold impacts the precision and
recall of subtree matching. Besides, we also apply our pre-
viously proposed subtree integration algorithm for integrat-
ing the matched subtrees selected by SLAX.

The main contributions of this paper are as follows:

1. We propose a new method for segmenting XML docu-
ments into independent meaningful subtrees based on
the vertical and horizontal segmentation rates using
our previously proposed DO-VLEI code. We exper-
iment with real bibliography XML documents stored
in RDBs to compare the effectiveness of subtree seg-
mentation using the proposed method with that using
the original one. The experimental results show that
the proposed method is effective for segmenting XML
documents into meaningful subtrees.

2. We apply our previously proposed leaf-clustering
based XML join algorithm SLAX to match the seg-
mented subtrees and integrate them at each hit sub-
tree. We conduct experiments using SIGMOD Record
and DBLP XML documents to observe how the match-
ing threshold impacts the precision and recall of the
subtree matching. Our experimental results indicate
that SLAX is effective for matching the segmented sub-
trees. And we derive from the results that the matching
threshold around 0.4 achieves the best performance for
the bibliography XML documents used in our experi-
ments.

3. We also perform experiments to apply our previous
proposed subtree integration algorithm to integrate the
matched subtree determined by SLAX. The experimen-
tal results show that our previously proposed subtree
integration algorithm is effective and applicable for the
XML documents segmented by the proposed method.

The remainder of this paper is organized as follows.
Section 2 briefly describes related work and our previous
work. In Section 3, we discuss the imprecise segmentation
problem of our previously proposed subtree segmentation
method and propose the new method. Section 4 describes
the XML data preprocessing: parsing XML data into re-
lational tables, labeling them by DO-VLEI codes and cal-
culating the required parameters for subtree segmentation.
Section 5 briefly describes the subtree matching based on
the clustered leaves of segmented subtrees and the subtree
integration method based on the insertion operation. In Sec-
tion 6, we conduct experiments and show the experimental

results. Finally, Section 7 concludes this paper and outlines
our future work.

2 Related and Previous Work

Since XML is rapidly becoming a popular data format
on the Internet, the size of the XML documents becomes
larger and larger. This has led to researches focusing on
how to store and handle XML into Relational Databases
(RDBs). Recently, many researches are focusing on storing
and querying XML data into RDBs [3, 4, 13, 14]. In this
paper, we treat the XML documents stored in RDBs as the
application object. We simply parse the original XML doc-
uments into three relational tables: element table, attribute
table and text table.

When the XML documents are stored into RDBs, the
structural information such as containment relationships
(child-parent and ancestor-descendant relationships) of the
nodes will be lost. An effective labeling method are help-
ful for reconstructing and detecting the containment re-
lationships between nodes of XML documents stored in
RDBs. Many effective labeling methods have been pre-
sented [2, 6, 10, 11]. In this paper, we use the DO-VLEI
code [6,10] to calculate the required parameters for the sub-
tree segmentation.

It is necessary to segment large XML documents into
small fragments for the data placement and migration over
distributed storage systems. Qin et al. [12] used graph par-
tition algorithm to divide large XML data into small parts.
Yu et al. [17] presented a data placement strategy based
on path instances. Kido et al. [5] proposed a segmentation
method based on DataGuide. However, these work do not
address the problem of segmenting XML data into indepen-
dent meaningful subtrees.

In our previous work, we have proposed SLAX [8] for
matching the segmented subtrees based on the Subtree Sim-
ilarity Degree (SSD) which is defined as follows:

Definition 1 (Subtree Similarity Degree (SSD)) For a
base subtree tbi and a target one ttj , the subtree similarity
degree between them, SSD(tbi, ttj) is defined by Equation
(1) as the percentage of the number of matched leaf nodes
(the pair of leaf nodes that has the same PCDATA value)
out of the number of leaf nodes in the base subtree tbi,
where N and Nbi denote the number of matched leaf nodes
and the number of leaf nodes in the base subtree tbi.

SSD(tbi, ttj) =
N

Nbi

× 100 (%) (1)

In the ith join loop, the matched subtree and the hit sub-
tree for the base subtree tbi are defined as follows:

Definition 2 (Matched Subtree) The matched subtree
tm[i] for the base subtree tbi is defined as the pair of

subtrees that has the maximum subtree similarity degree in
the join loop; that is, the subtree similarity degree between
tbi and tm[i], SSDm[i] can be calculated as follows, where
kt is number of subtrees in the target document tree.

SSDm[i] = Maxkt

j=1(SSD(tbi, ttj)) (2)

Definition 3 (Hit Subtree) In the ith join loop, the
matched subtree tm[i] is a hit subtree th[i], iff SSDm[i] ≥
T (0 < T ≤ 1), where T is the user defined threshold.

For the base subtree tbi and its hit subtree th[i], the in-
tegration of them can be simply implemented by inserting
the branches of unmatched leaf nodes in the hit subtree th[i]
into the base one tbi [9]. Assume the number of leaf nodes
in the base subtree tb and the target one tt is Nb and Nt, and
the number of matched leaves in tt is Nm, the total number
of leaf nodes N in the integrated subtree and the number of
insertions Ni can be calculated by the following two equa-
tions.

N = Nb + Nt − Nm (3)

Ni = N − Nb = Nt − Nm (4)

3 Subtree Segmentation Method

3.1 Basic Definition

In [7], we have presented a method for segmenting XML
documents into subtrees representing independent mean-
ingful items. The basic definitions for the subtree segmen-
tation method are listed as follows:

Definition 4 (Candidate Element) An element is a candi-
date element, if it has at least 2 children, or the distance to
its furthest descendant is at least 3.

Definition 5 (Link Branch) A branch between two candi-
date elements is a link branch.

Definition 6 (Segmentation Path) A segmentation path P

is a top-down path from the top candidate element to the
bottom one via link branches.

Definition 7 (Weighting Factor) For a candidate element
E(n, d), let n denote the number of link branches below it,
and d denote the distance to its furthest descendant. The
weighting factor W is defined as follows:

W = n × dφ (0 < φ ≤ 1) (5)

where φ is an adjustable constant.

References(2,5)

article(1,3) article(1,3)

authors(0,2) title authors(0,2)title

 XML XML
 Joins

author author author

Sato Tanaka Yang

author

 Lee

pages pages

22-33 11-22

articles(2,4) articles(2,4)

article(1,3)

title authors(0,2)

 XML
 Queries

author

Black

author

Smith

 pages

7-20

article(1,3)

authors(0,2)title

 XML
Indexing

author author

Bush White

pages

9-22

 link
branch

date="06/05/01"

Figure 2. Example of imprecise segmentation

3.2 Imprecise Segmentation Problem

In our previous subtree segmentation method [7], the
subtree segmentation was based on the maximum weighting
factor in each segmentation path, which was effective for
small XML documents with simple structures. However,
for large XML documents stored in RDBs, an imprecise
segmentation problem might occur; that is, the segmented
subtrees sometimes do not correctly represent independent
meaningful items.

Example 2 Figure 2 shows an example of imprecise seg-
mentation using our previously proposed subtree segmenta-
tion method based on the maximum weighting factor. Be-
cause the element Reference(2,5) gets the maximum
weighting factor, the document is segmented into two sub-
trees as circled in Figure 2. However, here we can see that
the two segmented subtrees do not represent independent
meaningful items, because each of the them includes two
independent articles.

3.3 Proposed Segmentation Method

In order to solve the imprecise segmentation problem
and hence improve the precision of subtree segmentation
for XML documents in RDBs, we define the vertical seg-
mentation rate and horizontal segmentation rate as follows.

Definition 8 (Vertical Segmentation Rate) For an XML
document tree T , assume M subtrees are segmented out of
total N segmentation paths, the vertical segmentation rate
Rv(T) is defined as the following equation.

Rv(T) =
M

N
× 100 (%) (6)

Definition 9 (Horizontal Segmentation Rate) For an
XML document tree T , the horizontal segmentation
rate Rh(T) is defined as percentage of the number of
segmentation spots (ns) out of all their siblings (n).

Input: XML document tree T

Output: Segmented subtrees

begin{
Let M be the number of segmentation path, N be the number of elements in the
segmentation path, and τ be the segmentation threshold.

max = 0;
for (depth = 1 to N){

for (i = 1 to M){
Segment subtrees into array segSub;

}
Calculate Rv(T);
Calculate Rh(T);
Calculate R(T);
if (R(T) ≥ max){

max = R(T);
result = segSub;

}
}
Return (result);

}end

Figure 3. Subtree segmentation algorithm

Rh(T) =
ns

n
× 100 (%) (7)

Then, the overall segmentation rate, R(T) can be defined
as follows.

Definition 10 (Segmentation Rate) For an XML docu-
ment tree T , the segmentation rate can be determined by
the following equation, where θ is an adjustable constant1.

R(T) = Rv(T) × Rh(T)θ (0 < θ ≤ 1) (8)

The larger the segmentation rate R(T) is, the more inde-
pendent the meaningful items represented by the segmented
subtrees are. Therefore, for each segmentation path, we can
segment the document at all the candidate elements from
the top to the bottom in the segmentation path. Then, we
can calculate both the vertical and horizontal segmentation
rates at each segmentation level. Finally, the best subtree
segmentation can be determined by the segmentation that
achieves the maximum segmentation rate. The details of the
subtree segmentation algorithm based on the segmentation
rate is illustrated in Figure 3

Example 3 Figure 4 shows an example of subtree segmen-
tation by using the proposed segmentation method. There
are four segmentation paths in the document. Firstly, the
subtree will be segmented at the two candidate elements
articles. In this case, the vertical segmentation rate
Rv(T) = 2

4 × 100% = 50%, horizontal segmentation rate
Rh(T) = 2

2 × 100% = 100%, and hence the segmenta-
tion rate R(T) = 50% × 100% = 50%. For the sec-
ond segmentation at the four candidate elements article,

1For the sake of simplicity, we set θ = 1 in this paper.

References

article article

authors title authorstitle

 XML XML
 Joins

author author author

Sato Tanaka Yang

author

 Lee

pages pages

22-33 11-22

articles articles

article

title authors

 XML
 Queries

author

Black

author

Smith

 pages

7-20

article

authorstitle

 XML
Indexing

author author

Bush White

pages

9-22

 link
branch

date="06/05/01"

Figure 4. Example of subtree segmentation

Rv(T) = 4
4×100% = 100%, Rh(T) = 4

4×100% = 100%
and R(T) = 100%×100% = 100%. For the third segmen-
tation at the four candidate elements authors, Rv(T) =
4
4 × 100% = 100%, Rh(T) = 4

12 × 100% = 33.3% and
R(T) = 100% × 33.3% = 33.3%. Therefore, the four
subtrees as circled in Figure 4, which are segmented by the
second segmentation that gets the maximum R(T), will be
output as the final results. From the segmentation results,
we can see that each segmented subtree represents the com-
plete information of an independent article.

4 Data Preprocessing

In this paper, we take XML documents stored in RDBs as
the application object. In store and handle XML documents
stored in RDBs, we perform the following data preprocess-
ing: parsing XML documents into relational tables, labeling
them by Dewey Order labeling methods and calculating the
required parameters for the subtree segmentation using the
Dewey Order labels. The schema of each relational table
used in this paper is shown in Table 1.

4.1 Parsing XML Data into Relational Table

The original XML document is parsed into three rela-
tional tables: element table, text table and attribute table. In
the parsing phase, preorder numbers are assigned to the ele-
ment and text nodes as their IDs, and the element name, text
value, attribute name and value are stored into correspond-
ing attributes of each relational table.

4.2 DO-VLEI Code

In [6], we have proposed the VLEI (Variable Length End-
less Insertable) code which is defined as follows.

Definition 11 (VLEI Code) A bit sequence v = 1 ·
{0|1}∗is a VLEI code, if the following condition is satisfied.

v · 0 · {0|1}∗ < v < v · 1 · {0|1}∗

Table 1. Schema of each relational table
Element Table

Attribute Type of value Description
ID INTEGER Preorder ID of element node

ParentID INTEGER ID of its parent node
Label STRING Dewey Order label
CE BOOLEAN 1 for candidate element, 0 for non-candidate element

ChildNum INTEGER Number of children
CECNum INTEGER Number of candidate elements among its children

Depth INTEGER Depth of element node
Dist INTEGER Distance to its furthest descendant

Name STRING Element name
Text Table

Attribute Type of value Description
ID INTEGER Preorder ID of text node

ParentID INTEGER ID of its parent node
Label STRING Dewey Order label
Value STRING PCDATA value

Attribute Table
Attribute Type of value Description

ElementID INTEGER ID of the element it belongs to
Name STRING Attribute name
Value STRING Attribute value

Bibliography
 (1)

article
(1.10)

article
 (1.1)

 title
(1.10.10)

 author
(1.10.1)

 title
(1.1.10)

author
(1.1.1)

volume
(1.1.11)

 XML
(1.10.10.10)

 Sato
(1.10.1.10)

XML
 Joins
(1.1.10.10)

 3
(1.1.11.10)

 Lee
(1.1.1.10)

 volume
(1.10.11)

 9
(1.10.11.10)

date="06/05/01"

Figure 5. Example of labeling by using DO-
VLEI code

For example, 10 < 1 < 11 and 100 < 10 < 101 < 1 <

110 < 11 < 111. In [10], we have proposed the DO-VLEI
(Dewey-Order VLEI) code, as defined as follows.

Definition 12 (DO-VLEI Code)
1. The DO-VLEI code of the root node, Croot = 1.
2. The DO-VLEI code of a non-root node, C = Cparent +
“.” + Cchild, where Cparent denotes the DO-VLEI code of
its parent and Cchild denotes the VLEI code satisfying the
order of sibling.

An example XML document tree labeled by DO-VLEI
code is shown in Figure 5.

4.3 Calculating Required Parameter for Segmen-
tation

After parsing and labeling the XML document in RDBs,
we have already had the information of ID, ParentID, Label
and Depth for the element table. The parameters required
for segmentation: ChildNum, Dist, CE and CECNum can be

// Number of children
SELECT COUNT(*) AS ChildNum FROM element, text
WHERE trim(start ’.’ from substring (’child.Label’ from length(’parent.Label’))) not
LIKE ’%.%’

// Distance to its furthest descendant
SELECT MAX(parent.Depth-child.Depth) AS Dist FROM element, text
WHERE child.Label LIKE parent.Label

// Whether it is a candidate element or not
UPDATE element SET CE = 1
WHERE ChildNum > 1 OR Dist > 2

// Number of candidate elements among its children
SELECT COUNT(*) AS CECNum FROM element
WHERE trim(start ’.’ from substring (’child.Label’ from length(’parent.Label’))) not
LIKE ’%.%’
AND child.CE = 1

Figure 6. SQL for calculating required param-
eters for segmentation

calculated by the SQL shown in Figure 6 using the Dewey
Order labels.

Example 4 Table 2, Table 3 and Table 4 show the created
element table, text table and attribute table, respectively for
the XML document in Figure 4.

5 Join and Integration

After the data preprocessing, the subtree segmentation
can be implemented by the proposed subtree segmenta-
tion method based on the segmentation rate, and then the
join process will be executed based on the clustered leaves

Table 2. Element table for the XML document
in Figure 4

ID ParentID Label CE CECNum Depth Name
1 1 1 1 2 6 Reference
2 1 1.1 1 2 5 articles
3 2 1.1.1 1 1 3 article
4 3 1.1.1.1 0 0 1 title
6 3 1.1.1.2 1 0 2 authors
7 6 1.1.1.2.1 0 0 1 author
9 6 1.1.1.2.2 0 0 1 author

11 3 1.1.1.3 0 0 1 pages
13 2 1.1.2 1 1 3 article
14 13 1.1.2.1 0 0 1 title
16 13 1.1.2.2 1 0 2 authors
17 16 1.1.2.2.1 0 0 1 author
19 16 1.1.2.2.2 0 0 1 author
21 13 1.1.2.3 0 0 1 pages
23 1 1.2 1 2 5 articles
24 23 1.2.1 1 1 3 article
25 24 1.2.1.1 0 0 1 title
27 24 1.2.1.2 1 0 2 authors
28 27 1.2.1.2.1 0 0 1 author
30 27 1.2.1.2.2 0 0 1 author
32 24 1.2.1.3 0 0 1 pages
34 23 1.2.2 1 1 3 article
35 34 1.2.2.1 0 0 1 title
37 34 1.2.2.2 1 0 2 authors
38 37 1.2.2.2.1 0 0 1 author
40 37 1.2.2.2.2 0 0 1 author
42 34 1.2.2.3 0 0 1 pages

of each segmented subtree using SSD2. Given a matching
threshold T , the integration of the base subtree and the
hit subtree can be executed by inserting the branch of un-
matched leaves in the hit subtree into the base subtree3.

Example 5 For the base subtree tb, and the target one tt
shown in Figure 7 (a) and (b), let the matching threshold
T = 0.5. Because SSD(tb, tt) = 66.7% > T , the tt is the
hit subtree for tb and should be integrated with tb. Figure 7
(c) shows the result of integration. We can also learn that
the insertion operations does not cause any relabeling of
any node by using the DO-VLEI code.

6 Experiment and Evaluation

6.1 Experiment Setup

The experiments have been done under the environment
shown in Table 5. In our experiments, we use the XML
document of SIGMOD Record [1], named sigmod.xml
(482KB, about 20,000 nodes) and we divide DBLP.xml [15]
into 955 fragment documents, named dblp1∼955.xml. The
size of each fragment is 300KB, about 15,000 nodes.

2The details of the leaf-clustering based join are available in [7, 8]
3The details of the subtree-based integration method are available in [9]

Table 3. Text table for the XML document in
Figure 4

ID ParentID Label Value
5 4 1.1.1.1.1 XML
8 7 1.1.1.2.1.1 Sato

10 9 1.1.1.2.2.1 Tanaka
12 11 1.1.1.3.1 11-22
15 14 1.1.2.1.1 XML Queries
18 17 1.1.2.2.1.1 Smith
20 19 1.1.2.2.2.1 Black
22 21 1.1.2.3.1 7-20
26 25 1.2.1.1.1 XML Indexing
29 28 1.2.1.2.1.1 Bush
31 30 1.2.1.2.1.2 White
33 32 1.2.1.3.1 9-22
36 35 1.2.2.1.1 XML Joins
39 38 1.2.2.2.1.1 Lee
41 40 1.2.2.2.1.2 Yang
43 42 1.2.2.3.1 22-33

Table 4. Attribute table for the XML document
in Figure 4

ElementID Name Value
1 date 06/05/01

6.2 Evaluation of Subtree Segmentation

In order to observe the effectiveness of the subtree seg-
mentation, we apply the new method and the original one to
segment subtrees from sigmod.xml and dblp290∼292.xml.
The experimental results of using the new method are
shown in Table. 6. For the sigmod.xml, the horizontal seg-
mentation rate using the previous proposed method Rh is
100%. However, the vertical segmentation rate Rv is only
4.45%. For the DBLP fragment files, the segmentation
rates using the previous method are the same as those using
the new method. Therefore, we consider that the proposed
method is more effective for segmenting XML documents
into independent meaningful subtrees than the previous pro-
posed method.

6.3 Evaluation of Subtree Matching and Integra-
tion

In order to evaluate the effectiveness of subtree match-
ing, we define precision and recall as follows.

Table 5. Experimental environment
CPU AMD Opteron Processor 248×2

Memory 6.0 GB
Hard Disk Seagate ST336607LC 37GB

OS Linux 2.6.9
DBMS PostgreSQL 8.1.3

Java Sun JDK 1.5.0

article
 (1)

 title
(1.10)

 author
 (1.1)

 XML
(1.10.10)

 Sato
(1.1.10)

volume
 (1.11)

 9
(1.11.10)

article
 (1)

 title
(1.100)

author
 (1.10)

 XML
(1.100.10)

 Sato
(1.10.10)

pages
(1.11)

111-122
(1.11.10)

author
 (1.1)

 Tanaka
 (1.1.10)

(a)Base subtree tb (b)Target subtree tt

article
 (1)

 title
(1.10)

author
 (1.1)

 XML
(1.10.10)

 Sato
(1.1.10)

 pages
(1.1101)

 111-122
(1.1101.10)

author
(1.110)

 Tanaka
(1.110.10)

volume
 (1.11)

 9
(1.11.10)

(c) Integrated subtree

Figure 7. Example subtree integration using
DO-VLEI code

Table 6. Result of subtree segmentation using
the proposed method

File name Np Ns Rs(%) Rh(%) R(%)
sigmod.xml 1504 1504 100% 100% 100%
dblp290.xml 698 698 100% 100% 100%
dblp291.xml 569 569 100% 100% 100%
dblp292.xml 653 653 100% 100% 100%
Np: Number of segmentation paths
Ns: Number of segmented subtrees, Rv : Vertical segmentation rate
Tsd: Horizontal segmentation rate, R: Segmentation rate

Definition 13 (Precision) The precision of subtree match-
ing (P) is the percentage of the number of correctly selected
hit subtrees (Ns) out of the total number of hit subtrees
(Nh).

P =
Ns

Nh

× 100 (%) (9)

Definition 14 (Recall) The recall of subtree matching (P)
is the percentage of the number of correctly selected hit sub-

Table 7. Result of subtree matching
T Nh Nc P R

0.1 916 128 13.97% 90.14%
0.2 624 127 20.35% 89.44%
0.3 226 122 53.98% 85.92%
0.4 214 120 56.07% 84.51%
0.5 184 117 63.59% 82.39%
0.6 81 77 95.06% 54.23%
0.7 39 36 92.31% 25.35%
0.8 22 21 95.45% 14.79%
0.9 11 11 100% 7.75%

T : Matching threshold, Nh: Number of hit subtrees
Nc: Number of correctly matched subtrees, P : Precision, R: Recall

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

0.00% 10.00% 20.00% 30.00% 40.00% 50.00% 60.00% 70.00% 80.00% 90.00% 100.00%

Recall

P
re

ci
si

on

T=0.1

T=0.2 T=0.3

T=0.5

T=0.4

T=0.6
T=0.7

T=0.8

T=0.9

Figure 8. Precision and Recall of subtree
matching

Table 8. Result of subtree integration
T Nh Ni Ti(s)
0.1 916 9994 331.48
0.2 624 6509 233.78
0.3 226 2149 79.11
0.4 214 1989 66.46
0.5 184 1649 59.89
0.6 81 723 25.69
0.7 39 343 12.39
0.8 22 175 6.50
0.9 11 77 2.49

T : Matching threshold, Nh : Number of hit subtrees
Ni: Number of branch insertions, Ti : Integration time

trees (Ns) out of the total number of correct answer(Nc).

P =
Ns

Nc

× 100 (%) (10)

We experiment with sigmod.xml and dblp290.xml to ob-
serve how the matching threshold impacts the precision and
recall of the subtree matching. Table 7 shows the results of
subtree matching. Figure 8 indicates that the precision of
subtree matching using the proposed method is almost di-
rectly proportional to the matching threshold, while the re-
call is nearly inversely proportional to the matching thresh-
old. We can also learn from the results that the matching
threshold around 0.4 achieves the best performance for the
documents used in our experiments.

We also integrate the matched subtrees based on the in-
sertion of the unmatched leaves. Table 8 shows the results
of subtree integration. The integration of sigmod.xml and
DBLP290.xml requires 2623.1 insertions on the average.
Figure 9 indicates that the integration time is proportional
to the number of insertions.

7 Conclusion and Future Work

In this paper, we have proposed a new method for seg-
menting XML documents into independent meaningful sub-
trees based on two syntactic segmentation rates: vertical

0

50

100

150

200

250

300

350

0 2000 4000 6000 8000 10000 12000

Number of insertions

T
im

e(
se

c.
)

Figure 9. Time for subtree integration

segmentation rate and horizontal segmentation rate. In the
proposed subtree segmentation method, we use our pre-
viously proposed the DO-VLEI code to calculate the re-
quired parameters for the subtree segmentation. We have
performed experiments with real bibliography XML docu-
ments stored in RDBs. The experimental results show that
the proposed subtree segmentation method is effective for
segmenting XML documents into independent meaningful
subtrees.

We have also performed experiments to evaluate how the
matching threshold impacts the precision and recall of the
subtree matching by using our previously proposed subtree
matching algorithm SLAX. The experimental results indi-
cate that the precision is almost directly proportional to the
matching threshold, while the recall is nearly inversely pro-
portional to the matching threshold. We have learned from
the results that our previously proposed subtree matching
algorithm achieves reasonable matching precision and re-
call using the segmented subtrees. Besides, we have per-
formed experiments to integrate the matched subtrees. The
experimental results indicate that our previously proposed
subtree integration algorithm is effective and applicable for
XML documents segmented by our proposed method.

In the future, we plan to do further experiments with
large-scale XML documents over distributed storage sys-
tems. In addition, path-based and semantics-based subtree
matching are to be taken into consideration to improve the
precision and recall of subtree matching.

Acknowledgments

This work was supported in part by the Grant-in-Aid
for Scientific Research of MEXT Japan (grant number
16016232), by CREST of JST (Japan Science and Tech-
nology Agency), and by the TokyoTech 21COE Program
“Framework for Systematization and Application of Large-
Scale Knowledge Resources”.

References

[1] ACM SIGMOD Record in XML. Available at
http://www.acm.org/sigmod/record/xml/.

[2] T. Amagasa, M. Yoshikawa, and S. Uemura. QRS: A Robust
Numbering Scheme for XML Documents. In Proc. of ICDE
2003, pages 705–707, 2003.

[3] J. E. Funderburk, G. Kiernan, J. Shanmugasundaram, E. J.
Shekita, and C. Wei. XTABLES: Bridging Relational Tech-
nology and XML. IBM Systems Journal, 41(4):616–641,
2002.

[4] H. V. Jagadish, S. Al-Khalifa, A. Chapman, L. V. S. Laksh-
manan, A. Nierman, S. Paparizos, J. M. Patel, D. Srivastava,
N. Wiwatwattana, Y. Wu, and C. Yu. TIMBER: A Native
XML Database. VLDB Journal, 11(4):274–291, 2002.

[5] K. Kido, T. Amagasa, and H. Kitagawa. An Improved Par-
allel Processing of XML Data Using PC Clusters and Per-
formance Evaluation (in Japanese). In Proc. of DEWS (The
18th IEICE Data Engineering Workshops), 2007.

[6] K. Kobayashi, W. Liang, D. Kobayashi, A. Watanabe, and
H. Yokota. VLEI code: An Efficient Labeling Method for
Handling XML Documents in an RDB. In Proc. of ICDE
2005, pages 386–387, Tokyo, Japan, 2005.

[7] W. Liang and H. Yokota. LAX: An Efficient Approximate
XML Join Based on Clustered Leaf Nodes for XML Data
Integration. In Proc. of BNCOD 2005, pages 82–97, Sun-
derland, UK, 2005.

[8] W. Liang and H. Yokota. SLAX: An Improved Leaf-
Clustering Based Aproximate XML Join Algorithm for In-
tegrating XML Data at Subtree Classes. IPSJ Transactions
on Databases, 47(SIG8(TOD30)):47–57, June 2006.

[9] W. Liang and H. Yokota. Subtree-based XML Data Inte-
gration Using Leaf-Clustering Based Aproximate XML Join
Algorithms. DBSJ Letters, 4(4):21–24, March 2006.

[10] K. Nagara, K. Kobayashi, D. Kobayashi, and H. Yokota.
Evaluation of XML Labeling Methods Using VLEI Code.
In Proc. of IEICE DEWS2005 (in Japanese), 2005.

[11] P. E. O’Neil, E. J. O’Neil, S. Pal, I. Cseri, G. Schaller, and
N. Westbury. ORDPATHs: Insert-Friendly XML Node La-
bels. In Proc. of ACM SIGMOD Conference 2004, pages
903–908, 2004.

[12] J. Qin, S. Yang, and W. Dou. Parallel Storing and Query-
ing XML Documents Using Relational DBMS. In Proc. of
APPT, pages 629–633, 2003.

[13] T. Shimura, M. Yoshikawa, and S. Uemura. Storage
and Retrieval of XML Documents Using Object-Relational
Databases. In Proc. of DEXA’99, pages 206–217, 1999.

[14] I. Tatarinov, S. Viglas, K. S. Beyer, J. Shanmugasundaram,
E. J. Shekita, and C. Zhang. Storing and Querying Ordered
XML Using a Relational Database System. In Proc. of ACM
SIGMOD Conference 2002, pages 204–215, 2002.

[15] XML Version of DBLP. Available at http://dblp.uni-
trier.de/xml/.

[16] H. Yokota. Autonomous Disks for Advanced Database Ap-
plications. In Proc. of DANTE, pages 435–442, 1999.

[17] Y. Yu, G. Wang, G. Wu, J. Hu, and N. Tang. Data Placement
and Query Processing Based on RPE Parallelisms. In Proc.
of COMPASC, 2003.

