
1

Algorithms for Local Sensor Synchronization
Lixing Wang, Yin Yang, Xin Miao, Dimitris Papadias, Yunhao Liu

Department of Computer Science and Engineering, Hong Kong University of Science and Technology

Clear Water Bay, Hong Kong
{lxwang, yini, miao, dimitris, liu}@cse.ust.hk

Abstract— In a wireless sensor network (WSN), each sensor
monitors environmental parameters, and reports its readings to
a base station, possibly through other nodes. A sensor works in
cycles, in each of which it stays active for a fixed duration, and
then sleeps until the next cycle. The frequency of such cycles
determines the portion of time that a sensor is active, and is the
dominant factor on its battery life. The majority of existing work
assumes globally synchronized WSN where all sensors have the
same frequency. This leads to waste of battery power for
applications that entail different accuracy of measurements, or
environments where sensor readings have large variability.

To overcome this problem, we propose LS, a query processing
framework for locally synchronized WSN. We consider that each
sensor ni has a distinct sampling frequency fi, which is determined
by the application or environment requirements. The
complication of LS is that ni has to wake up with a network
frequency Fifi, in order to forward messages of other sensors.
Our goal is to minimize the sum of Fi without delaying packet
transmissions. Specifically, given a routing tree, we first present
a dynamic programming algorithm that computes the optimal
network frequency of each sensor; then, we develop a heuristic
for finding the best tree topology, if this is not fixed in advance.

I. INTRODUCTION

A sensor is a device with a radio and limited computation
capabilities, which takes physical measurements such as
temperature, light and humidity. A wireless sensor network
(WSN) consists of a base station that collects measurements
and/or aggregate information, and a set of sensor nodes, each
of which is able to directly communicate with other sensors
(or the base station) within the area of its radio coverage.
Users register continuous queries at the base station, which are
processed based on the sensor measurements. The
transmission of sensor readings to the base station are
performed according to the topology of the WSN, which can
be either tree-based (e.g., [12]) or multi-path (e.g., [17]). This
work follows the tree-based paradigm due to its simplicity and
high energy efficiency.

In most applications, especially WSN deployed in harsh or
difficult to access environments, sensor battery power is the
main bottleneck of the entire system. In order to minimize
energy consumption, instead of sensors being on continuously,
they operate in cycles. Specifically, within a cycle, each
sensor is active for a fixed duration, during which it (i)
collects measurements from the environment, (ii) receives
data from other sensors in its network neighborhood, (iii)
possibly performs computations1 on the received and collected

1 In case of in-network query processing, sensor nodes perform local

computations instead of simply forwarding raw data; e.g., for a

measurements, (iv) broadcasts data to the WSN, and then
enters the sleep mode until it wakes up for the next cycle.

The power consumption of a sensor is dominated by the
time that its radio remains on [9][18][21]. Accordingly, since
a sensor switches on its radio for a fixed duration in every
cycle, its energy cost is proportional to the frequency of the
cycles. Existing work has focused on query processing in
globally synchronized WSN, where all sensors have the same
frequency. This leads to waste of battery power for
applications that entail different accuracy of measurements
(depending on the sensor location), or environments where
sensor readings have large variability. To overcome this
problem, we propose LS (for local synchronization), a novel
framework that permits sensors to have different frequencies.
For instance, in a factory setting, temperature sensors in
engine rooms, or other areas susceptible to fire, must sample
much more frequently than sensors in warehouses. In other
cases, the different frequencies may be imposed by the
variability of measurements, e.g., a sensor that has stable
readings for long periods should turn on less often than
another whose readings change with a high rate.

Let the sampling frequency fi of sensor node ni be the
minimum frequency by which ni should turn on in order to
take measurements. Given fi, the goal of LS is to determine a
network frequency Fi of each sensor ni so that: (i) Fi is at least
as high as fi in order to satisfy the accuracy requirements, (ii)
ni is active when it needs to forward messages from other
sensors to the base station, and (iii) the sum of network
frequencies for all sensors in the WSN is minimized. Fig. 1a
shows an example subtree of a WSN containing three sensors
n1-n3 and their sampling frequencies f1-f3. Sensor n1 is in the
path of n2 and n3; i.e., it must forward messages from these
sensors to the base station, implying that n1 should be active
whenever n2 and n3 are active. Fig. 1b and Fig. 1c illustrate
two solutions towards this. In Fig. 1b, the network frequency
F2 of n2 increases with respect to its sampling frequency
(2=F2−f2=1), achieving synchronization of n1 and n2 (n1 and
n3 are already synchronized). Consequently, n2 can sample
with higher frequency (3 instead of 2) since its energy
consumption is dominated by the radio. In Fig. 1c, the
network frequencies F1 and F3 become 4, whereas F2=f2=2
(i.e., n2 wakes up once for every two cycles of n1 and n3). The
first solution is better because the total increase (i) of the
network frequency compared to the sampling frequency is

max query, a sensor computes and transmits only the maximum
among the received values and the local measurement (instead of
all values).

2

smaller (1 versus 2). Since the sampling frequencies are fixed
and given, minimizing i is equivalent to minimizing the
total network frequencies.

2

n1

n 3n

f
2 = 2

to base station

f
1 = 3

f
3 = 3

= 3

2

n1

n 3n
F

2 = 3

to base station

F
1

F3 = 3
 2 = 1

= 4

2

n1

n 3n

to base station

F
1

F3 = 4
3= 1

1 = 1

F
2 = 2

(a) Sampling frequencies (b) Optimal network
frequencies

(c) Suboptimal network
frequencies

Fig. 1 Subtree with three sensor nodes

Searching for the optimal network frequencies in a WSN is a
challenging task, for two reasons. First, there is an infinite
search space for the network frequency Fi of a node ni, which
can be any real number satisfying Fifi so that ni is
synchronized with the sensors directly connected to it. Second,
locally optimal solutions do not necessarily lead to globally
optimal ones. Fig. 2a extends the subtree of Fig. 1a by adding
two more sensors n4 and n5, with f4=2 and f5=4. Fig. 2b
expands the solution of Fig. 1b to this setting. Given that F1=3,
the best values for the network frequencies of n4 and n5 are
F4=F5=6 (i.e., a multiple of F1=3), yielding i=7
(2+4+5). On the other hand, by expanding the solution of
Fig. 1c, we obtain the network frequencies of Fig. 2c, which
are minimal (i=4) for this setting.

= 3
2

n1

n 3n
f2 = 2

to base station

f
1 = 3

f3

n4f
4= 2

5n
f
5= 4

 = 3

= 3

= 2

= 6

2

n1

n 3n
F

2 = 3

to base station

F
1

F3

n4
F

4

5n
F

5 = 6

2 = 1

4 = 4

5

= 4

= 4

= 4

2

n1

n 3n
F

2 = 2

to base station

F
1

F3

n4
F

4

5n
F

5
= 4

3 = 1

4 = 2

1 = 1

(a) Sampling frequencies (b) Suboptimal network
frequencies

(c) Optimal network
frequencies

Fig. 2 Subtree with five sensor nodes

The problem is more complex when the tree topology is not
given, but it has to be computed so that it minimizes i. To
our knowledge, the only previous work [11] on locally
synchronized WSN requires proxies. On the other hand, LS
achieves energy-efficient local synchronization without
additional hardware. Specifically, (i) given a tree topology, we
compute the optimal network frequencies through a
polynomial-time dynamic programming algorithm; (ii) we
employ effective heuristics to obtain a high-quality tree
topology, if this is not fixed in advance. Extensive
experiments demonstrate that LS leads to substantial energy
savings compared to the globally synchronized framework.

The rest of the paper is organized as follows. Section II
surveys related work. Section III formally defines two key
tasks in local synchronization: the computation of the optimal
network frequencies and the tree topology. Section IV and V
provides efficient algorithms for the above tasks, respectively.
Section VI examines the effectiveness of the proposed
algorithms using real and synthetic WSN data. Section VII
concludes the paper.

II. RELATED WORK

Section II-A overviews data transmission in WSN. Section II-
B surveys WSN query processing methods that minimize
energy consumption.

A. Data Transmission in a WSN

Due to their limited radio range, most sensors in the WSN
cannot transmit directly to the base station, but must
communicate with the latter through other sensors. These
connections are represented by a connectivity graph G where:
(i) every node niG corresponds to a sensor (we use the terms
sensor and node interchangeably), and (ii) an edge (ni, nj)G
denotes that sensors ni, nj are within the radio range of each
other2. Fig. 3a shows a graph consisting of five sensors n1 to
n5, and a base station n0; n1 and n2 can communicate directly
with the base station n0. On the other hand, n3, n4 and n5 must
relay their messages through n1 and n2. Since there are
multiple choices for n3-n5 to reach the base station, the WSN
must select a routing scheme that determines the routing path
for each message.

= 2= 1

= 1
1

base station n0

n

4n 5n

2n

3n

f1 = 2

f
3

f
4 = 4 f

5

f2

= 2

= 2
1

Base station n0

n

4n 5n

2n

3n

F
1= 4

F
3= 1 F

4= 4 F
5

F
2

1 = 2 2 = 1

1

Base station n0

n

4n 5n

2n

3n

F
1= 4

F
3= 1 F

4= 4 F
5 = 2

F
2 = 1

1 = 2

(a) Connectivity graph (b) Suboptimal tree (c) Optimal tree
Fig. 3 Tree topologies for WSN

A large class of routing schemes organizes sensors in tree
topologies [13]. Specifically, a spanning tree is built from the
connectivity graph, with the base station acting as the root.
Most approaches only consider min-hop trees, in order to
minimize packet losses [8]. A spanning tree TG is min-hop,
if and only if the number of edges between every node ni and
n0 is the minimum among all possible paths in G. For example,
the tree in Fig. 3b is min-hop, whereas that in Fig. 3c, is not
because n5 needs 3 hops to reach n0 and there is a shorter path
n5-n2-n0 in G. In multi-path routing schemes [2][17], a
message may arrive at the base station through several paths.
In the example of Fig. 3a, a data packet from n4 may be
transmitted to both n1 and n2. Compared with routing trees,
multi-path schemes are more robust, at the cost of higher
energy consumption and duplicate packets received by the
base station. Manjhi et al. [15] propose Tributaries-and-
Deltas, combining tree and multi-path routing.

In our work we consider tree topologies. However, in our
setting, conventional minimum spanning tree algorithms (i.e.,
Prim’s and Kruskal’s) do not necessarily minimize the
network frequency. Fig. 3b illustrates a counter-example using
Prim’s algorithm that starts with a single node and keeps
adding the edge with the minimum cost, which is defined as
the i incurred in the path from the new node to the sink. We
begin with the base station n0 and insert all edges that connect

2 We assume that all edges in G are undirected, which holds in most

practical WSNs [14].

3

it with nodes (n1, n2) within its range. Assuming that n0 is
always on, these edges have zero cost. Then, n3 is appended as
a child of n1 also with zero cost. Subsequently, the algorithm
adds node n5, which increases the frequency of n2 to 2 (2 = 1),
and finally n4 with cost 1 = 2. The overhead of this tree
measured by i is 3. On the other hand, the optimal spanning
tree in Fig. 3c has cost 2. The complication is due to the fact
that edge weights are not constant, but keep changing
according to the nodes already inserted in the tree.

B. Query Processing in WSN

WSN query processing techniques can be classified into three
categories, depending on their restrictions on the sensors’
sampling and network frequencies. Methods (e.g., [3], [19],
[20], [22]) in the first category assume that all sensors have
the same sampling frequency f. The second class consists of
techniques (e.g., [12], [13]) that allow different sensors to
have different sampling rates, but require that they use the
same network frequency F=max{fi | ni}. Finally, the
methods of [11] provide flexibility on frequency assignment
using additional base-station-like devices called proxies that
form the backbone of the WSN. Specifically, (i) each sensor is
assigned to one proxy; (ii) all the sensors assigned to the same
proxy have the same frequency; and (iii) sensors assigned to
different proxies may have different frequencies. The use of
proxies, however, limits the applicability of [11], since they
increase the financial costs of the WSN system, as well as the
difficulty for its deployment.

Besides the above, the network community has proposed
Low Power Listening (LPL) [7], a low-level protocol for
unsynchronized WSNs that allows sensors to have arbitrary
working cycles. Unlike synchronized WSNs, in LPL a sensor
ni may be asleep when another node nj needs it to forward a
message. When this happens, nj postpones the message, and
keeps probing ni by continuously sending preamble signals,
until ni wakes up and responds. The two sensors then perform
the delayed data transmissions. Due to such delays, LPL may
not be suitable for applications with strict responsiveness
requirements. Furthermore, the sender of the preamble signals
(i.e., nj) must stay active for long periods, which drains up its
battery power. The above problems amplify as the height of
the routing tree increases. In contrast, the proposed methods
do not incur any result delays or prolonged transmissions of
control signals.

III. PROBLEM DEFINITION

Let fi be the sampling frequency of sensor node ni; fi is a real
number determined by the application requirements on
accuracy, or the variability of measurements. The proposed
LS (local synchronization) assigns to each ni an individual
network frequency Fi, rather than a global one. In practice,
since the work cycle of a sensor must be sufficiently long to
complete the necessary sensing, computation and
communication tasks, its network frequency must not exceed
a constant Fmax. Let N be the total number of sensors
excluding the base station. Our goal is to minimize the
objective function =N

i=1 Fi, referred to as the cost of the

WSN. This cost determines the total time that sensors are
active, and therefore, it dominates the overall energy
consumption. The proposed methods can be easily extended to
other aggregates such as maximum and weighted sum. We
assume that the WSN uses a tree topology T, which guides the
routing of messages between sensors. Table I summarizes
frequent symbols.

TABLE I
SUMMARY OF NOTATIONS

Symbol Meaning
G, T WSN connectivity graph and routing tree

N Number of sensors in the WSN
 Cost of the WSN
ni i-th sensor (if 1iN), or the base station (if i=0)

fi, Fi Sampling and network frequency of ni
FLB

i Lower bound of Fi defined in Lemma 2
Fmax Maximum possible network frequency
Ti Subtree of T rooted at ni
Fi

i Minimum cost of subtree Ti for a given Fi

Each sensor must be able to communicate with the base
station, in order to report its measurements and / or in-network
computation results. To model this, we first introduce the
concept of local synchronization between two directly
connected sensors.

Definition 1 (Local Synchronization): Given a routing tree T,
an internal node ni, and its child nj, ni and nj are locally
synchronized (or simply synchronized when the context is
clear), if and only if (i) ni and nj start one of their respective
cycles at the same time, and (ii) there exists a positive integer
k such that Fi=kFj.

Intuitively, when a node ni is synchronized with its child nj, ni
is able to process and / or forward every message from nj on
time. Among the two conditions in the Definition 1, (i) is a
low-level networking issue, e.g., the clocks of the two sensors
need to be synchronized3, whereas (ii) restricts the sensors’
network frequencies in LS query processing. Hence, in the
following we assume that (i) is always satisfied. We next
model our main constraint.

Lemma 1: Every sensor is able to communicate with the base
station n0 in each cycle, if and only if every pair of parent-
child nodes in T are locally synchronized.

Based on whether T is given, we distinguish two different
versions of the problem. The first, referred to as Problem 1,
takes T as an input (e.g., determined by an existing algorithm
based on link quality considerations [6]), and computes the
network frequencies of the sensors that minimize . In the
second version (Problem 2), T is unknown; instead, given the
WSN connectivity graph G, LS selects both the optimal
topology TG and the network frequencies to minimize .
Compared with Problem 1, the additional flexibility on T may

3 Small differences between ni’s and nj’s clocks are tolerable, as long

as the two sensors can finish message transmissions in one
common working cycle. Furthermore, LS requires only local clock
synchronization (e.g., [4], [5]), which is less demanding than global
clock synchronization of all sensors in the WSN (e.g., [10]).

4

lead to further reduction of , at the expense of an enlarged
search space. Formally, we state the above two problems as
follows.

Problem 1: Given a routing tree T and the sampling frequency
fi of each node ni, compute the network frequency Fi of each ni
so that (i) FmaxFifi, (ii) every pair of parent-child sensors in
T are locally synchronized and (iii) =N

i=1 Fi is minimized.

Problem 2: Given the connectivity graph G and the sampling
frequency fi of each node ni, find the best routing tree TG
that minimizes =N

i=1 Fi, where the network frequency Fi of
each sensor ni is computed according to Problem 1.

Unfortunately, we have the following negative result.

Theorem 1: Problem 2 is NP-hard.

Proof: (by reduction to set cover) Given an instance of the set
cover problem that involves a set E of elements and another S
of subsets, construct a corresponding connectivity graph G as
follows. G contains the base station n0, as well as two layers
of sensors. For each subset sS (resp. element eE) in the set
cover instance, we create a first-layer (resp. second-layer)
node in G. Furthermore, whenever a subset s contains an
element e in the set cover instance, we add an edge connecting
ns and ne in G, where ns and ne are the corresponding nodes of
s and e, respectively. Additionally, there is an edge in G
between each node on the first layer and the base station n0.
The sampling frequency of every first-layer (resp. second-
layer) node is 1 (resp. 2). Then, we solve Problem 2 with the
above G to obtain the optimal routing tree T. The set of first-
layer nodes in T that are parent to at least one second-layer
node correspond to the optimal solution of the set cover
instance. Therefore, Problem 2 is at least as hard as set cover.
Moreover, first-layer (resp. second-layer) nodes always
require 1 (resp. 2) hops to the reach the base station in any
spanning tree of G. Therefore, the routing tree TG is always
min-hop, meaning that Problem 2 is still as hard as set cover
under the min-hop limitation. �

In the following, we describe solutions to both problems. In
addition, we discuss their extensions to the case when the
routing tree (in Problem 1) or the connectivity graph (in
Problem 2) changes over time.

IV. FINDING NETWORK FREQUENCIES

This section focuses on Problem 1, i.e., optimal network
frequency computation with a given routing tree T. Section
IV-A lays down the theoretical foundation of the proposed
solution. Section IV-B describes an efficient dynamic
programming algorithm, and analyses its space and time
complexity. Section IV-C provides further optimizations.

A. Theoretical Foundation

We first investigate the range of feasible values for the
network frequency Fi of a node ni. Apart from fi, there is a
tighter lower bound for Fi, as follows.

Lemma 2: Given a node ni and the subtree TiT rooted at ni, a
lower bound for the network frequency Fi of ni is

max{ | }LB
i j j iF f n T   (1)

Proof: (by induction) For any node njTi, clearly Fjfj
according to the problem definition. Suppose that a node nx is
along the path from nj to ni whose network frequency Fx
satisfies that Fxfj. Let ny be the parent node of nx. Since nx
and ny are locally synchronized, we have FyFxfj. By
induction, Fifj. �

For instance, in Fig. 2a, the network frequency F4 of n4 must
be no smaller than FLB

i =max{f1, f2, f3, f4, f5}=4. Observe that
f4=2<FLB

i ; consequently, f4 in our example does not have any
impact on the choice of F4. To avoid complicated notations, in
the rest of Section IV-A we assume that for each sensor ni,
fi=FLB

i ; whenever this is not the case, FLB
i is used in place of fi.

However, besides Fmax, there is no obvious upper bound for
Fi. Fig. 4a shows an example subtree rooted at sensor n1,
which has two children n2 and n3. The sampling frequencies
are f1=13, f2=5, and f3=11, respectively. Suppose that n2 (resp.
n3) have Cl2 (resp. Cl3) child nodes, which all have identical
sampling frequencies to their respective parent. The marginal
cost of increasing F2 (resp. F3) is then multiplied by Cl2+1
(resp. Cl3+1), as every child of n2 /n3 must also increase their
network frequency by the same amount to synchronize with
their respective parent. Fig. 4b lists several values for F1 and
the corresponding F2 and F3 that minimizes the overall cost of
T1, while satisfying the synchronization requirements. The
best F1 depends on Cl2 and Cl3: when both n2 and n3 have
numerous (e.g., >50) children, the best F1 is 55, which in our
example is a common multiple of both f2 and f3, and thus,
minimizes the cost of the subtrees T2 and T3. Observe that this
is far larger than either one of f1-f3. In general, f2 and f3 can be
non-integer values (e.g., 3.1 and 9.7), in which case the best
F1 may exceed even the product of f2 and f3, depending on the
number of children attached to n2 and n3.

2

n1

n 3n
f
2 = 5

to base station

f
1 = 13

f
3 = 11

... ...
child nodes of n

2 child nodes of n
3

F1 F2 F3
13 6.5 13
14 7 14
15 5 15
16 16/3 16
20 5 20
21 5.25 21
22 5.5 11
55 5 11

(a) Subtree T1 (b) Network frequencies
Fig. 4 Example of choosing network frequencies

The above example also demonstrates that there is an
infinite search space for a network frequency value (F1),
rendering even a brute-force solution rather complicated. We
tackle the problem using a top-down approach. Two key
issues are (i) how to determine the network frequencies of top-
level nodes that are directly connected to the base station, and
(ii) given the network frequency Fi of an internal node ni, how
to choose the network frequencies of its children. We first
focus on (ii). In particular, consider a child nj of ni; in order to
synchronize ni and nj, their network frequencies must satisfy
that Fi=kFj for a positive integer k, according to Definition 1.

5

Meanwhile, since Fjfj, we have kFi / fj. Hence, there is a
finite number of possible Fj’s.

Lemma 3: Let ni be an internal node of T, and nj be a child of
ni. Given the network frequency Fi of ni, the network
frequency Fj must take one of the following values

 1, 2,3,...,j i i jF F k k F f     (2)

For example, in Fig. 4, when F1 is set to 13, according to
Lemma 3, there are two possible values (13 and 13/2=6.5) for
F2, and only one (13) for F3. The question now is how to
select the best Fj for the child nj among the above possibilities.
Intuitively, since Fi is already given, the choice of Fj only
affects the descendents of nj. Accordingly, the best Fj is the
one that minimizes the subtree Tj rooted at nj.

Lemma 4: Given a node ni, suppose that its network
frequency Fi is already determined. Let Fi

i be the minimum
cost of subtree TiT rooted ni with respect to Fi. Then, Fi

i
can be computed recursively as follows:

 /

child of
min 1, 2,...i i

j i

F F k
i i j i jn n

F k F f        (3)

where Fi/k
j is the minimum cost of subtree Tj given Fj=Fi/k.

Proof: Consider an arbitrary child node nj of ni. According to
the definition of Problem 1, besides fj, the value of Fj only
affects the network frequencies of nj’s parent (i.e., Fi of ni)
and children (and, recursively, the descendents of nj). Since Fi
is fixed and given, the choice of Fj has impact only on the cost
of the subtree Tj. Therefore, the best Fj should minimize the
cost of Tj, which, combined with Lemma 2, leads to Equation
(3). �

As a special case, when ni is a leaf node, Fi
i is simply Fi.

Based on Lemma 4, once Fi is determined, it is
straightforward to compute Fi

i , as well as the best network
frequencies of all nodes in the subtree Ti, through exhaustive
search. For instance, in Fig. 2, given F4=6, F5 must be 6, since
f5=4>6/2. F1 can be either 3 or 6. In the former case, F2=F3=3,
hence 3

1 =3+3+3=9. In case that F1=6, F2 can be 2, 3, or 6, F3
can be 3 or 6, and the minimum possible cost for T1 is 6

1
=6+2+3=11. Since 3

1 <6
1 , the best value for F1 is 3, and,

thus, 6
4 =6+3

1 +6=21.
However, the number of possible values for a network

frequency increases exponentially with the depth of the node
in the tree topology. To reduce the number of potential values,
we now describe our most important theoretical result, which
entails the recursive equation (3), only if Fi is a regular
network frequency, defined as follows.

Definition 2 (Regular Network Frequency): A network
frequency Fi is regular, if and only if either (i) Fi=fi or (ii)
there exists a node njni in the subtree Ti rooted at ni such that
Fi=kfj for a positive integer k.

For instance, among the values of F1 listed in Fig. 4b, only 13,
15, 20, 22 and 55 are regular ones (shown in grey). In general,
n1’s regular network frequencies are f1=13 and multiples of
f2=5 (e.g., 15, 20, 55), or f3=11 (22, 55), since all children of

n2 and n3 have the same sampling frequencies as their
respective parent.

Theorem 2: Given an internal node ni and a network
frequency Fi, let F'i be the highest regular network frequency
for ni satisfying F'iFi. Then:

i iF F
i i i iF F     (4)

Furthermore, suppose that when F'i is assigned to ni, the best
network frequency for each node njTi is F'j. Then, when Fi is
assigned to ni, the optimal network frequencies for the nodes
in Ti are:

,j j i i j iF F F F n T     (5)

Proof: We first prove that Equation (5) gives a feasible
solution for Ti that leads to a subtree cost of Fi

i given in
Equation (4). Because when F'i is assigned to ni, F'j is the
optimal network frequency of any node nj in Ti, it must also be
a feasible network frequency for ni. Hence, FjF'jfj.
Meanwhile, consider any internal node nxTi and one of its
children nyTi. Let F'x and F'y be the optimal network
frequencies of nx and ny, respectively, when F'i is assigned to
ni. Clearly, F'x is a multiple of F'y. Let integer kxy=F'x / F'y.
According to Equation (5), Fx / Fy= F'x / F'y= kxy. Hence, Fx is
a multiple of Fy, which enables the local synchronization of nx
and ny. Additionally, we have

i

i

j i j i j i

F
j iF i i i

i j jn T n T n T
i i i

F F F F
F F

F F F



  

        
     (6)

Next we prove by induction that Fi
i given in Equation (4) is

indeed the minimum cost when Fi is assigned to ni. In the base
case, ni is a leaf node in T. The theorem holds trivially, since
Fi

i =Fi, and F'i
i =F'i. In the induction step, suppose that each

child node nj of ni satisfies the theorem. Specifically, given an
arbitrary node nx, let the function CRx(Fx) that returns the
highest regular network frequency for nx satisfying that
CRx(Fx)Fx. As a special case, CRi(Fi)=F'i. The induction
assumption is stated as follows.

 

 
child of , ,

j jj CR FF

j j
j i j

j j

n n F
F CR F

 
  

(7)

According to Lemma 2, when Fi is assigned to ni, Fj must be
Fi/k for a positive integer kFi/fj. Similarly, when F'i is
assigned to ni, Fj must be F'i/k for a positive integer kF'i/fj.
We now prove that Fi/fj=F'i/fj by contradiction. Suppose
that Fi/fjF'i/fj. Then, since F'iFi, we have F'i/fj<Fi/fj,
and, thus, F'i<Fi/fjfjFi. However, Fi/fjfj a regular
frequency for ni, as it is an integer multiple of fj. This
contradicts with the fact that F'i is the largest regular network
frequency for ni satisfying F'iFi.

Substituting Fj with Fi/k and F'i/k in Equation (7),
respectively, we obtain

 

 
1, 2, ,

j ii
CR F kF k

j j
i j

i j i

k F f
F k CR F k

 
     (8)

6

 

 
1,2, ,

j ii
CR F kF k

j j
i j

i j

k F f
F k CR F k

 
      

 (9)

Next we prove CRj(Fi/k)=CRj(F'i/k) by contradiction. Suppose
that CRj(Fi/k)CRj(F'i/k). Because F'i<Fi, CRj(F'i/k)<CRj(Fi/k).
Hence, F'i<CRj(Fi/k)kFi. Since CRj(Fi/k) is a multiple of fx of
a node nx in TjTi, and k is a positive integer, CRj(Fi/k)k is
also a multiple of fx, meaning that CRj(Fi/k)k is a regular
network frequency for ni that is closer to Fi than F'i, which
contradicts with the definition of F'i. Therefore,
CRj(Fi/k)=CRj(F'i/k), and, consequently, the right hand side of
Equation (8) equals that of Equation (9). Their respective left
hand side must be equal as well:

i iF k F k
j j

i iF F

 



 (10)

Let k*Fi/fj be the positive integer satisfying:
*

1,2, , i iF k F k
i j j jk F f        

(11)

According to Lemma 3 and the fact that Fi/fj=F'i/fj, we have
*

child
i i

j

F F k
i i jn

F     (12)

Multiplying both sides of Inequality (11) by Fi/F'i, we obtain
*

1,2, ,
i iF k F k

j i j i
i j

i i

F F
k F f

F F

    
      

 (13)

Combining Equation (10) and Inequality (13), we obtain
*

1,2, , i iF k F k
i j j jk F f      

(14)

Therefore, according to Lemma 3, we have

 

*

*

*

/

child

/

child

/

child

i i

j

i

j

i

j

F F k
i i jn

F k
j i

i n
i

F ki
i jn

i
F
i i

F

F
F

F
F

F
F

F

F







   

 
 



  


 









 (15)

The second line in the above equation is based on Equation
(10), whereas the last step is based on Equation (12).
Therefore, the theorem also holds for ni. �

In the example of Fig. 4, consider an irregular frequency
F1=16. F'1=15 is the highest regular frequency satisfying
F'1F1. According to Fig. 4b, when F1=16 is assigned to n1,
the optimal values for F2 and F3 are 16/3 and 16 respectively.
Meanwhile, when F'1= 15 is assigned to n1, the best network
frequencies for n2 and n3 are F'2=5 and F'3=15 respectively.
Clearly, 16

1 / 15
1 = F2/F'2= F3/F'3=16/15.

Theorem 2 indicates that Fi
i is a piece-wise linear function

of Fi. Specifically, as Fi grows from one regular value to the
next one, Fi

i increases linearly with Fi; when Fi reaches the
next regular value, Fi

i suddenly drops. Subsequently, Fi
i

again increases linearly with Fi until the next regular
frequency, possibly with a different slope. Fig. 5 plots F1

1
against F1 in the example of Fig. 4, assuming that n2 and n3
have 2 and 3 child nodes respectively. Regular frequencies for
n1 between 13 and 55 are shown on the x-axis. The piece-wise
linear pattern, as well as the sudden drops in F1

1 at regular
values for F1, can be clearly observed in the plot.

 1

80

90

100

110

120

130

13 15 22 30 33 40 45 50 55

F1

F1

25 35 4420
Fig. 5 Example plot of Fi

i vs. Fi

Another consequence of Theorem 2 is that an irregular Fi
always leads to a higher subtree cost than the corresponding
regular value F'i preceding Fi. Therefore, for each top-level
node ni for which there is no restriction on its network
frequency Fi, it suffices to consider only its regular values of
Fi.

Corollary 1: Given a node ni that is directly connected to the
base station, the optimal network frequency of ni must be
regular.

For a node nj whose parent is another sensor ni, its network
frequency is restricted to the values described in Lemma 3.
Consequently, given a irregular frequency Fj of nj, the highest
regular frequency F'j preceding Fj may not be able to
synchronize with ni. Hence, the best frequency for Fj can be
irregular. For such nodes, the following algorithm utilizes
Theorem 2 to reduce the computation of Fj

j to that of F'j
j .

B. Algorithm

Given the routing tree T and the sampling frequencies f1, f2, …,
fN, LS searches for the optimal network frequencies F*

1 -F*
N in

two steps. First, it computes the minimum cost * of the
entire WSN and gradually completes a hash table H. Second,
guided by H, LS finds the optimal values F*

1 -F*
N that sum up

to *. The hash table H contains entries of the form
<ni,Fi> Fi

i , where the key is a node ni and a regular
frequency Fi for ni, and the value Fi

i is the minimum cost of
the subtree Ti rooted at ni, given Fi.

The first step involves two functions, namely CTC (short
for compute total cost) and CSC (for compute subtree cost).
Fig. 6 illustrates CTC. The method initially computes the
lower bound FLB

i for the network frequency Fi of each node ni
(lines 2-4). According to Lemma 2, FLB

i is a tighter bound than
fi; whenever fi<FLB

i , the latter is used instead (specifically, in
Equations (2), (3), and Definition 2). After that, the algorithm
examines each top-level node ni, and computes the minimum
cost  min

i of the subtree Ti rooted at ni (lines 5-10). In
particular, line 7 enumerates all regular values for Fi that may
possibly lead to the min

i , according to Corollary 1. Line 8

7

invokes the recursive procedure CSC (described below) to
compute Fi

i ; the smallest Fi
i among all values of Fi becomes

min
i . Finally, line 10 sums up min

i for all top-level nodes to
obtain the minimum overall cost *.

CTC(T, f1-fN): returns * //CTC for compute total cost
// Input: T: routing tree, f1-fN: sampling frequencies of the sensors
// Output: *: optimal cost of the entire WSN
1. Initialize * to 0, and H to an empty hash table
2. For each node niT
3. Compute FLB

i according to Equation (1)

4. If FLBi >fi, use FLB
i in place of fi in the rest of the algorithm

5. For each ni that is directly connected to the base station in T
6. Initialize min

i to +
7. For each regular Fi
8. Call Fi

i =CSC(T, f1-fN, ni, Fi, H)

9. If Fii <min
i , set min

i to Fi
i

10. Update * to *+min
i

11. Return *
Fig. 6 Algorithm CTC

Fig. 7 shows CSC, which recursively computes the optimal
cost Fi

i of the subtree Ti rooted at node ni, given Fi. When Fi
is irregular, the algorithm picks the highest regular frequency
F'i satisfying F'iFi, calculates F'i

i , and applies Theorem 2 to
obtain Fi

i (lines 1-4). On the other hand, when Fi is regular,
Lemma 4 is used to compute Fi

i recursively (lines 6-13). The
result is stored in a new entry of the hash table H with key <ni,
Fi>. When the same parameters ni, Fi are passed to CSC, the
latter looks up H for the stored Fi

i (line 5).

CSC (T, f1-fN, ni, Fi, H): returns Fi
i // CSC for compute subtree cost

// Input: T: routing tree
// f1-fN: sampling frequencies of the sensors
// ni, Fi: root node of the subtree Ti, and its network
frequency
// H: hash table storing subtree costs
// Output: Fi

i : minimum subtree cost of Ti given Fi
1. If Fi is irregular with respect to ni
2. Let F'i <Fi be the highest regular network frequency for ni
3. Call F'i

i =CSC(T, f1-fN, ni, F'i, H)
4. Calculate Fi

i according to Equation (4), and return Fi
i

5. If H contains an entry with key <ni, Fi> and value Fi
i , return Fi

i
6. If ni is a leaf node, return Fi
7. Initialize Fi

i to Fi
8. For each child nj of ni
9. Initialize min

j to +
10. For each value of Fj described in Equation (2)
11. Call Fj

j =CSC(T, f1-fN, nj, Fj, H)

12. If Fj
j <min

j , set min
j to Fjj

13. Update Fi
i to Fii + min

j

14. Add a new entry to H with key <ni, Fi> and value Fi
i

15. Return Fi
i

Fig. 7 Algorithm CSC

Fig. 8 describes the function CNF (short for compute network
frequencies), which implements the second step of the

proposed solution, and computes the optimal frequencies top-
down. The method starts by examining each top-level node ni,
testing regular network frequencies Fi of ni (lines 3-7). Since
Fi is regular, and CTC has called CSC with parameters ni and
Fi, the hash table H already contains an entry <ni,Fi>Fi

i .
The value of Fi that minimizes the subtree cost for Ti becomes
the optimal frequency F*

i of ni. After determining the optimal
frequencies for all top-level nodes, the algorithm continues to
calculate the frequencies of their descendents. Specifically,
given a node ni with known F*

i and one of its children nj, CNF
enumerates all possible values for Fj, and computes the
minimum cost for subtree Ti. For a regular Fj, Fj

j is simply
retrieved from H. When Fj is irregular, Fj

j is obtained using
Theorem 2 and H. In both cases, there is no need for recursive
calls, since the computations have already been performed in
CSC, and the results stored in H.

CNF (T, f1-fN): returns F*
1 -F*

N
// CNF for compute network frequencies
// Input: T: routing tree, f1-fN: sampling frequencies of the sensors
// Output: F*

1 -F*
N : optimal network frequencies of the nodes in T

1. Call * = CTC(T, f1-fN)
2. Let H be the hash table used in CTC
3. For each node ni that is directly connected to the base station n0
4. Initialize min

i to +, F*
i to NULL

5. For each regular Fi
6. Retrieve Fi

i from H with key <ni, Fi>
7. If Fi

i <min
i , set min

i to Fi
i , and F*

i to Fi
8. Repeat
9. For each node nj satisfying (i) F*

j has not been determined and
(ii) F*

i corresponding to the parent ni of nj has been determined
10. Initialize min

j to +, F*
j to NULL

11. For each value of Fj described in Equation (2)
12. Compute Fj

j using H and Theorem 2
13. If Fj

j <min
j , set min

j to Fj
j , and F*

j to Fj
14. Until all optimal network frequencies are determined
15. Return F*

1 -F*
N

Fig. 8 Algorithm CNF

Fig. 9 illustrates an example of the above algorithms. Assume
that Fmax=100 according to the application requirements. The
sampling frequencies are shown alongside their corresponding
nodes. Among them, f3 is smaller than the lower bound FLB

3
given by Lemma 2, which equals the maximum sampling
frequency (i.e., f6=11) in the subtree rooted at n3. Therefore, in
the computation of the optimal network frequencies, the
algorithms simply discard the original value f3=2, and proceed
as if f3 were FLB

3 =11.

f2=5

f4=4

base station

n1

f5=4 f6 =11

f3=2

f1=13

n2 n3

n4 n5 n6

......

=11F 3
LB

...n0

ni Fi Fi

i
n2 5 15
n2 12 20
n3 11 22
n1 13 58.5
n1 15 60

…

1 CSC(n1,13)
2 CSC(n2, 6.5)
3 CSC(n2, 5)
4 CSC(n4, 5)
5 CSC(n5, 5)
6 CSC(n2, 13)
7 CSC(n2, 12)

…

(a) Sampling frequencies (b) Hash table H (c) Calls of CSC
Fig. 9 Example of network frequency computation

8

Next we elaborate the computation of the optimal F*
1 - F*

5 in
the subtree T1 rooted at n1. Since n1 connects directly to n0,
CTC enumerates all its regular frequencies, which include (i)
f1=13 and (ii) all multiples of f2=5, f4=f5=4, and FLB

3 =f6=11
below Fmax=100. Assume that CTC first assigns F1=13, and
invokes CSC to compute 13

1 . Fig. 9c shows the 7 subsequent
calls to CSC, listing only parameters ni and Fi since the others
remain the same for all invocations of CSC. In the first call
CSC(n1, 13), the hash table H does not have an entry with key
<n1, 13>; thus, CSC computes 13

1 recursively by identifying
the best value for the network frequencies F2 and F3 of n1’s
child nodes n2 and n3, given that F1=13. We first focus on F2.
According to Lemma 3, there are two possible values for F2:
F1=13 and F1/2=6.5. Suppose that CSC first calculates 6.5

2 by
recursively calling CSC(n2, F2=6.5). However, 6.5 is not a
regular frequency for n2 because it is not equal to f2=5, or a
multiple of f4=f5=4. Therefore, CSC finds the highest regular
frequency F'2=5 below 6.5, and calls CSC(n2, 5).

To compute 5
2 , which has no corresponding entry in H,

CSC must determine the best F4 and F5 given F2=5.
According to Lemma 3, there is only one possible value 5 for
both F4 and F5. In the next two steps, CSC calls itself with
parameters (n4, 5) and (n5, 5) respectively, which return 5

4

=5
5 =5. With this information, the third call to CSC (i.e., with

parameters n2 and 5) returns 5
2 =5+5

4 +5
5 =15, after adding

a new entry <n2, 5>=15 to H. Subsequently, the second call to
CSC with parameters n2 and 6.5 then returns  6.5

2 = 5
2

6.5/5=19.5, according to Theorem 2. Next, the first call
CSC(n1, 13) tests the other possible F2=13 for n2 by calling
CSC(n2, 13), which leads to another invocation CSC(n2, 12)
with the highest regular network frequency 12 below 13. The
latter eventually returns 12

2 =20, and after CSC(n2, 13) we
have 13

2 =12
2 13/12=65/3. Because 6.5

2 <13
2 , the minimum

cost for subtree T2 given F1=13 is 6.5
2 =19.5. The first call

CSC(n1, 13) then computes the minimum cost for subtree T3
rooted at n3, which is 26 when F3=F6=13. Accordingly, 13

1 =
13+19.5+26 = 58.5, concluding the computation of CSC(n1,
13).

The outer function CTC then computes minimum subtree
costs of T1 with other regular values of F1, e.g., 15, 16, 20, 22,
etc. Finally, CTC establishes that 13

1 =58.5 is the minimum
cost for subtree T1 among all values of F1. After the
termination of CTC, CNF computes the optimal network
frequencies top-down. CNF enumerates all regular values of
F1 and finds the one with the minimum F1

1 using the hash
table H. Having determined that F*

1 =13, CNF continues to
calculate F*

2 , F*
3 , and subsequently F*

4 -F*
6 based on the optimal

subtrees stored in H.

Theorem 3: The space and time complexity of the algorithmic
framework is O(N2C) and O(N2C2), respectively, where
C=Fmax/fmin, and fmin=min{fi|1iN}.

Proof: We first prove that algorithm CTC takes O(N2C) space
and O(N2C) time. Its space consumption is dominated by the
storage of the hash table H, which consists of entries of the

form <ni,Fi>Fi
i , where ni is an arbitrary node, Fi is a

regular network frequency for ni, and Fi
i is the minimum cost

of the subtree Ti rooted at ni, when Fi is assigned to ni.
According to Definition 2, Fi must be a multiple of the
sampling frequency fj of a node njTi. Since FiFmax and
fjfmin, the number of possible regular network frequencies for
ni contributed by nj is upper bounded by C=Fmax/fmin. Since nj
can be any of the O(N) nodes in Ti, the total number of regular
network frequencies for ni is O(NC). Considering that ni can
be any node in the WSN, the number of entries in H is
O(N2C).

Regarding time complexity, the dominating factor is the
time consumed by subroutine CSC, which computes the
optimal subtree cost for a given node ni and its network
frequency Fi. The cases when Fi is irregular, or when H
contains an entry with key <ni,Fi> take negligible time to
handle. Hence, it suffices to count the invocations of CSC
with a regular Fi and a combination of <ni,Fi> not processed
before. In each such invocation, CSC recursively calls itself to
compute the minimum subtree cost corresponding to each
child node nj of ni. Specifically, the algorithm considers all
possible network frequencies for nj given Fi, which is bounded
by C. Let Cli be the number of the children of ni, CSC finishes
in O(CliC) time. Counting all calls to CSC with fresh and
regular inputs, the total time complexity is ni

=O(CCliNC)=O(N2C2).

Next we focus on CNF. Clearly, its space complexity is
also dominated by the storage of H, which is bounded by
O(N2C) as in CTC. Concerning time, after calling CTC, CNF
enumerates all possible network frequencies of every node
exactly once, which takes O(N2C) time. Hence, its time
complexity is also O(N2C2). �

C. Discussion

The value of C in Theorem 3 grows with Fmax. Next we
present optimizations to limit the impact of Fmax, and
significantly speed up network frequency computation. In the
example of Fig. 9, one feasible solution is to set the network
frequency of each sensor in n1-n6 to the highest sampling
frequency f1=13 among the 6 sensors, leading to a total cost of
78 for subtree T1. Clearly, setting F1>78 will always result in a
higher subtree cost for T1. Furthermore, since each sensor ni
must have a network frequency FiFLB

i according to Lemma 2,
when F1>43, even when n2-n5 use their respective minimum
possible network frequency, the total cost for T1 still exceeds
that achieved with the above simple solution (i.e., 78).
Therefore, it suffices to examine only regular frequencies for
F1 not exceeding 43. Note that this is a much tighter bound
than Fmax=100. In addition, after obtaining  13

1 =58.5, the
upper bound for F1 can be further tightened to 23.5, since any
higher value, plus the minimum possible network frequencies
of n2-n5, would result in a subtree cost for T1 higher than the
current best 58.5.

Based on the above observations, we modify algorithm
CTC as follows. In line 7 of Fig. 6, the regular frequencies are
enumerated in increasing order. Let |Ti| be the number of

9

nodes in Ti; an upper bound F UB
i for Fi is initialized to

max{fj|njTi}|Ti|ji,njTi
 FLB

j , and incrementally maintained
as min

i ji,njTi
 FLB

j while the minimum subtree cost min
i for

Ti gets updated. The loop of lines 7-10 terminates as soon as
Fi exceeds FUB

i . Let FUB be the maximum value of FUB
i for all

nodes after CTC finishes. If Fmax>FUB, the latter replaces the
former in the complexity analysis, since it is the actual upper
bound of all network frequencies used in our algorithms.

A similar optimization applies to algorithm CSC, when
computing the minimum subtree cost min

j (lines 10-12 in Fig.
7). Specifically, an upper bound min

j lj,nlTj
 FLB

l for Fj is
incrementally maintained, and the loop stops when Fj exceeds
it. In our running example, the 6th call of CSC is eliminated,
since F2=13 plus f4 and f5 already exceeds the previously
computed subtree cost 6.5

2 =19.5, when F2 is set to 6.5.
Finally, we discuss the adaptation of the above algorithms

to changes of the routing tree T. A straightforward solution is
to re-compute the network frequencies of all sensors whenever
T is modified. The main challenge is to ensure that after the
transition to the new network frequencies, all sensors remain
locally synchronized, while satisfying their respective
sampling frequency requirements. Specifically, immediately
after the new tree is applied, all sensors in the WSN wake up
simultaneously, start a new cycle, and switch to their new
network frequencies thereafter. This method assigns the
optimal network frequency to each sensor at all times, but
incurs considerable cost during transitions. An alternative
approach reduces the cost of transitions as follows. First,
based on historical data, we partition the sensors into dynamic
nodes, which change their respective parents frequently, and
static ones with stable parent nodes. Then, for each minimal
subtree Ti containing at least one dynamic node, we apply
global synchronization to its corresponding subtree Ti, i.e., all
nodes in Ti share the same network frequency. Ti is then
treated as a single node in algorithms CTC, CSC and CNF,
with a weight proportional to the number of nodes in Ti.
Accordingly, network frequencies need to be re-computed
only when at least one static node changes its parent in T,
which happens infrequently.

V. FINDING ROUTING TREES

This section focuses on Problem 2, i.e., finding the best
routing tree from a given connectivity graph. Following the
common practice in the WSN literature, we restrict the search
space for routing schemes to min-hop routing trees [1].
Unfortunately, even under this additional restriction, Problem
2 is still intractable. Therefore, we resort to heuristic methods.

Based on the min-hop property, LS partitions nodes into
layers, so that the l-th layer contains nodes requiring at least l
hops to reach n0. Clearly, in a min-hop tree, the parent of a
layer-l node must reside at layer l1. LS starts from the layer
lmax of nodes that need the most hops to reach n0 (i.e., the
leaves of the routing tree T) and builds T bottom-up.
Specifically, whenever LS examines a node nj at level l, the
subtree Tj rooted at nj containing nodes from levels l+1 to lmax,
has already been constructed. LS then extends Tj by adding an

appropriate parent ni of nj. Let Pj denote the set of candidate
parents of nj, which consists of layer l1 nodes that are
connected to nj in G. The selection of ni is performed
according to the following heuristics.

Heuristic 1: Given a node nj, the parent niPj of nj should
satisfy that fiFLB

j (Equation 1). If no such node exists in Pj,
the parent of nj is the node ni with the highest fi among all
nodes in Pj.

Heuristic 2: Given a node nj, if multiple nodes in Pj have
sampling frequencies no less than FLB

j , the parent of nj is the
node niPj, that satisfies fiFLB

j and minimizes fi / fi /FLB
j  .

Intuitively, Heuristic 1 aims at minimizing the value i=Fi−fi
for the parent node ni. In particular, in order to synchronize ni
and nj, Fi must be no less than Fj, which, in turn, is lower
bounded by FLB

j according to Lemma 2. Hence, the heuristic
tries to pick a node niPj satisfying fiFLB

j , in which case it is
possible that i=0. When there is no such node in Pj, i is
lower bounded by FLB

j fi. Thus, the node ni with the highest fi
(i.e., minimal FLB

j fi) is chosen as nj’s parent. Heuristic 2, on
the other hand, tries to minimize the network frequency Fj for
the child node nj. Specifically, since Fi must be a multiple of
Fj, the lowest Fj is obtained, when Fi=fi, and Fj=Fi / fi /FLB

j  =
fi / fi /F LB

j . Thus, Heuristic 2 chooses the parent ni that
minimizes this value. Fig. 10 shows an algorithm that applies
the above heuristics. Find_Routing_Tree first partitions all
nodes into layers (line 1), and builds T bottom-up. If a node ni
is directly connected to the base station n0 in G, n0 becomes
the parent of ni. Otherwise, the best parent Pi of ni is chosen
according to Heuristic 1 (line 11) or 2 (line 12).

Find_Routing_Tree(G, f1-fN): returns T
// Input: G: connectivity graph, f1-fN: sampling frequencies
// Output: T: routing tree of the WSN
1. Partition sensor nodes into layers
2. Let layer lmax be the deepest layer
3. Initialize T with nodes n1-nN, and no edges
4. For l = lmax DownTo 1
5. For each node nj on layer l
6. If l=1, add edge <n0, nj> to T
7. Else
8. Compute FLB

j according to Equation (1)
9. Let Pj be the set of candidate parents of nj
10. If there does not exist niPj such that fiFLB

j
11. Choose niPj according to Heuristic 1
12. Else, choose niPj according to Heuristic 2
13. Add edge <ni, nj> to T
14. Return T

Fig. 10 Algorithm Find_Routing_Tree

The algorithm takes O(N2) time (for choosing the best parent
for each node) and O(N2) space (for storing G), where N is the
number of sensors. Since the network frequency assignment
module has the same space and time complexities with respect
to N according to Theorem 3, the proposed solution to
Problem 2 takes O(N2) time and space overall, meaning that it
easily scales to large WSNs. Furthermore, our experiments,
shown next, demonstrate that Find_Routing_Tree usually

10

identifies high-quality trees that lead to significant energy
savings.

Finally, changes in the connectivity graphs are handled as
follows. Whenever at least one link in the current routing tree
T is broken, we re-compute T using Find_Routing_Tree, as
well as the network frequencies of the sensors. Otherwise,
Find_Routing_Tree is invoked periodically, and the transition
process starts when a better routing tree is detected.

VI. EXPERIMENTAL EVALUATION

We have implemented the proposed methods in C++, and
carried out all experiments on a Core 2 Duo 2.6GHz PC with
2GBytes of memory. We use two real datasets, Greenorbs (94
sensors), Intel Lab (52 sensors), and a synthetic one.

GreenOrbs : GreenOrbs [16] is deployed by our group in a
forest area in China. It contains 94 active sensors measuring
temperature, humidity and light per minute. In our
experiments, we use the temperature readings. The WSN
follows the collection tree protocol (CTP) [6]. Specifically,
sensors are organized into a routing tree, which is periodically
adjusted based on the current link quality conditions. We
observed that during a period of 12 hours, there is only a small
number of timestamps when the tree changed. Furthermore, a
large part of the tree, which forms the backbone of the
network remained stable throughout the testing period. Fig.
11a shows the geographic locations of the sensors and the
base station, as well as the connectivity graph of the entire
WSN.

Base station

Base station

(a) GreenOrbs (b) IntelLab

Base station

 3

(c) Synthetic (N=100)

Fig. 11 Connectivity graphs of the datasets used in the experiments

We set the sampling frequency of each sensor ni based on the
change rate of ni’s readings. The intuition is that a sensor with
stable readings should sample less frequently than another
whose readings change with a high rate. Specifically, suppose
that node ni has collected m samples si,1, si,2, …, si,m at m
timestamps ti,1, ti,2, …, ti,m. The change rate cri of ni is
calculated by:

1

, 1 ,
1

1

, 1 ,
1

m

i j i j
j

i m

i j i j
j

s s

cr
t t


















 (16)

Let fmax be the highest sampling frequency required by the
application. The sampling frequency fi of a node ni is then:

1max
i max

i N
j j

cr f
f

cr


 (17)

In our experiments, we use fmax=20. Note that the specific
value of fmax does not affect the relative performance of the
proposed methods. The maximum possible sampling
frequency Fmax is set to 10fmax=200. In all experimental
settings, during the search for the optimal network frequencies,
the algorithms always terminate earlier (i.e., using the
optimizations described in Section IV-C) without testing the
last regular frequency before Fmax.

IntelLab: IntelLab 4 includes data from 54 sensors that
measure temperature, humidity, light and voltage every 31
seconds for a month. Similarly to GreenOrbs, we use
temperature readings in the experiments. The sampling
frequencies of the sensors are computed using Equations (16)
and (17). The dataset does not include the connectivity graph
G; instead, it lists the probability for each sensor ni to
successfully deliver a message directly to a surrounding node
nj. Accordingly, we add an edge <ni, nj> to G, whenever the
probability of successful packet delivery between ni and nj is
above 20%. Except for one sensor (ID=5), all others are
connected in G. Meanwhile, the dataset does not mention the
location or the connectivity of the base station. Hence, we
simply treat sensor with ID 1 as the base station. Fig. 11b
shows the resulting connectivity graph. Finally, there is no
information on the routing tree.

Synthetic: We generate sensor locations uniformly within a
[0,1][0,1] square. In the connectivity graph G, there is an
edge <ni, nj>, if and only if, the distance between nodes ni and
nj does not exceed 0.25. Fig. 11c displays the connectivity
graph of 100 sensors. Additionally, the sampling frequencies
are random numbers in the range [1, 100], which follow the
Zipf distribution. Similar to the real datasets, the maximum
possible network frequency Fmax is set to 10fmax=1000.

We investigate the energy savings and computational cost
of LS, under four parameters: (i) number of nodes, (ii)
distribution of the sampling frequencies, (iii) shape of the
routing tree, and (iv) the number of dynamic nodes (i.e., with
frequently changing parents). Sections VI-A and VI-B present
results on real and synthetic datasets, respectively.

A. Results for GreenOrbs and IntelLab

GreenOrbs and IntelLab, like most WSN currently under
deployment, are restricted to relatively few nodes (under 100),
for which the computational overhead of LS is negligible.
Therefore, we defer the discussion on this cost for the

4 Available at http://db.csail.mit.edu/labdata/labdata.html

11

synthetic data, and focus on the energy overhead. Specifically,
let tw be the number of time units that a sensor is active per
cycle, and P be the energy consumed per time unit. Given the
sum of network frequencies , the energy consumed by all
sensors is Ptw, which is proportional to . Hence, in the
following we simply report the value of  as the overall
energy cost. We compare LS against the traditional globally
synchronized (GS) approach, which sets the network
frequency of each sensor to fmax=max{f1,f2,…,fN}. Clearly, the
energy cost of GS is =Nfmax. We include two versions of LS:
LS-Problem1 and LS-Problem2. The former considers a given
routing tree T, whereas the latter computes T.

We first evaluate the impact of the number of nodes N on
the total energy cost , with a static tree T. Specifically, for
GreenOrbs, LS-Problem1 uses a real routing tree Treal, taken
at an arbitrary timestamp. To vary N, we randomly remove
leaf nodes from Treal (and recursively, entire subtrees).
IntelLab, on the other hand, does not include real routing trees.
Hence, we evaluate only LS-Problem2, and vary N by
removing random nodes. The sampling frequency of each
node ni is fixed to the value computed based on the real
change rate of ni’s readings, as described in the beginning of
this section. Fig. 12 plots  as a function of N. Clearly, 
grows with N for both LS and GS, since more sensors
naturally lead to higher energy consumption. Comparing GS
with LS, the former consumes significantly more energy, and
the difference increases with N (note the logarithmic scale on
the vertical axis). This is because when a new node ni is added,
GS always assigns Fi = fmax; LS, on the other hand, usually
sets Fi to be far lower than fmax since ni only needs to locally
synchronize with its adjacent nodes. LS-Problem2
outperforms LS-Problem1, indicating that the proposed
solution indeed generates better routing trees.

GS
LS-Problem2

N

(x10)

2

4

8

54 64 74 84 94

LS-Problem12

GS

2

4

8

32 37 42 47 52

LS-Problem2

N

(x10)2

(a) GreenOrbs (b) IntelLab
Fig. 12 Energy cost  vs. number of nodes N

Next, we fix N to its maximum value, and study the effect of
the sampling frequencies in the range [1, 100], generated
according to Zipf distribution with skewness factor . LS-
Problem1 (resp. LS-Problem2) uses the real routing tree (resp.
tree computed by the proposed heuristics) as before. Fig. 13
demonstrates the effect of  on . Given the small node
cardinality, a growing value of a decreases the probability that
fmax reaches its maximum value 100. Consequently, the cost of
all methods drops. LS takes better advantage of this fact since
it can isolate the effect of the high frequencies in their
respective subtrees.

GS

1.6

LS-Problem1(x10)2

8

16

32

64

128

0.8 1 1.2 1.4

LS-Problem2

α



GS
(x10)2

4

8

16

32

64

0.8 1 1.2 1.4 1.6

LS-Problem2

α

(a) GreenOrbs (b) IntelLab
Fig. 13 Energy cost  vs. sampling frequency skewness 

Finally, we evaluate the impact of changing routing trees. Our
implementation of LS is based on the second method
discussed at the end of Section IV, which minimizes re-
computations of network frequencies. In the GreenOrbs
dataset, we identified 41 dynamic nodes among the real
routing trees, which reside at the lowest levels of the tree. On
average, network frequency re-computations are performed
once every 40 times when T changes, which itself happens
infrequently. Overall, LS using real routing trees achieves
34% energy savings compared to GS. To further investigate
the effect of routing trees with different volatility, we
randomly mark a number ND of nodes as dynamic in a bottom-
up fashion, and evaluate the energy efficiency of LS. The total
number of nodes N is fixed to its maximum value, and the
sampling rates are derived from real readings. Fig. 14
demonstrates  against varying ND. The energy consumption
of LS generally increases with ND, as more nodes are merged
and share the same network frequencies. When the majority of
sensors are dynamic, LS reduces to GS. Nevertheless, LS
achieves considerable energy savings, even for relatively large
values of ND (~50% of N).

LS Problem1 GS(x10)
2



0 20 40 8060
6

8

10

ND

LS Problem1 GS(x10)
2



2

4

6

8

0 10 20 4030 ND

(a) GreenOrbs (b) IntelLab
Fig. 14 Energy cost  vs. number of dynamic nodes ND

B. Results for Synthetic Datasets

We repeat our experiments on a much larger synthetic dataset
described in the beginning of this section. In addition to
energy cost, we report the CPU time and the memory required
by the proposed algorithms. We focus on static routing trees;
the results for changing trees lead to similar conclusions as in
GreenOrbs and IntelLab, and are omitted. Fig. 15 shows the
effect of the number of nodes N, after fixing the skewness
factor  of the sampling frequencies to 0.8. Similar to the real
datasets, the energy overhead of all methods increases with N,
and LS consistently outperforms GS. The CPU and memory
overhead of LS grows quadratically with N, as predicted by
Theorem 3. Nevertheless, even for N=10000, these costs are
very low (i.e., less than 320 milliseconds and 7Mbytes), which
confirms that the proposed algorithms could be utilized for
WSN much larger than the ones currently deployed.

12

100 500 1000 5000 10000

LS Problem2
GS

(x10)
3



N
1

4

16

64

256

1024

 10000

Memory (MB)

CPUMemory

CPU (s)

N
10

40

160

640

2560

1

4

16

64

100 500 1000 5000

(a) Energy cost (b) Computational cost
Fig. 15 Varying number of nodes

Fig. 16 fixes N=5000, and varies the skewness factor  of the
sampling frequencies. Observe that, unlike the case of real
datasets, the energy consumption of GS remains the same for
all values of  because, due to the large number of nodes,
there is always one that has the maximum sampling frequency
100. On the other hand, as  grows, the consumption of LS
decreases for the reasons explained in the context of Fig. 13.
The computational overhead of LS also drops because a lower
 leads to a more restrictive upper bound on a node’s network
frequency. Consequently, the optimization of Section IV-C
becomes more effective, leading to an earlier termination of
the algorithm.

LS Problem2 (x10)4

0.8 0.9 1 1.1 1.2

GS


4

16

64

 40

44

48

52

56

0.8 0.9 1 1.1 1.2

Memory (MB)

1.7

1.8

1.9

2.0

2.1CPU (s)

CPU
Memory


(a) Energy cost (b) Computational cost

Fig. 16 Varying the distribution of sampling frequencies

Fig. 17 investigates the impact of the routing tree on LS-
Problem1. Specifically, we generate random trees with a given
fanout fan for each internal node, and present the average of
their results, after setting N=5000 and =0.8. Since fan has no
effect on GS, we report the ratio between the energy cost of
LS and that of GS. The energy savings of LS increase with fan
due to the fact that the height of the tree decreases; thus, a
node ni with high fi influences fewer ancestors. The
computational overhead also increases with fan because a
higher fanout leads to a larger subtree for each internal node,
and, consequently, more regular network frequencies to
examine.

30

32

34

36

38

40

42

2 4 6 8 10 12 14 16 fan

Percentage (%) LS-Problem1 / GS

 16 fan5

15

25

35

45

55

65

2 4 6 8 10 12 14

Memory (MB)

0.5
1.0

1.5

2.0

2.5

3.0

3.5CPU (s)

CPU
Memory

(a) Energy cost (b) Computation cost
Fig. 17 Varying the shape of the tree

VII. CONCLUSION

This paper presents a novel framework that allows sensors to
sample at different rates, while ensuring timely routing of
packets. We focus on two versions of the problem, depending
on whether the WSN topology is fixed or not. Extensive
experiments, using real and synthetic datasets, demonstrate
the effectiveness of local synchronization in both versions. In
the future we plan to investigate the computation of routing
trees that minimize the network frequencies and at the same
time minimize the packet losses. Finally, another interesting
direction is the extension of the proposed techniques to multi-
path topologies.

REFERENCES
[1] Akyildiz, I., Su, W., Sankarasubramaniam, Y., Cayirci, E. Wireless

Sensor Networks: a Survey. Computer Networks, 38(4):393-422, 2002.
[2] Considine, J., Li, F., Kollios, G., Byers, J. Approximate Aggregation

Techniques for Sensor Databases. ICDE, 2004.
[3] Deshpande, A., Guestrin, C., Madden, S., Hellerstein, J. M., Hong, W.

Model-Driven Data Acquisition in Sensor Networks. VLDB, 2004.
[4] Elson, J., Roemer, K. Wireless Sensor Networks: A New Regime for

Time Synchronization. Computer Communication Review, 33(1):149-
154, 2003.

[5] Ganeriwal, S., Kumar, R., Srivastava, M. Timing-Sync Protocol for
Sensor Networks. ACM SenSys, 2003.

[6] Gnawali, O., Fonseca, R., Jamieson, K., Moss, D., Levis, P. Collection
Tree Protocol. ACM SenSys, 2009.

[7] Jurdak, R., Baldi, P., Lopes, C. Adaptive Low Power Listening for
Wireless Sensor Networks. IEEE TMC, 6(8):988-1004, 2007.

[8] Kim, S., Fonseca, R. Reliable Transfer on Wireless Sensor Networks.
IEEE SECON, 2004.

[9] Levis, P., Gay, D. TinyOS Programming. Cambridge University Press,
2009.

[10] Li, Q., Rus, D., Global Synchronization in Sensor Networks. IEEE
Transactions on Computers, 55(2):214-226, 2006.

[11] Madden, S., Franklin, J. Fjording the Stream: An Architecture for
Queries over Streaming Sensor Data. ICDE, 2002.

[12] Madden, S., Franklin, M., Hellerstein, J. The Design of an
Acquisitional Query Processor for Sensor Networks. SIGMOD, 2003.

[13] Madden, S., Franklin, M., Hellerstein, J., Hong, W. TAG: a Tiny
AGgregation Service for Ad-Hoc Sensor Networks. OSDI, 2002.

[14] Madden, S., Szewczyk, R., Franklin, M., Culler, D. Supporting
Aggregate Queries Over Ad-Hoc Wireless Sensor Networks. IEEE
WMCSA, 2002.

[15] Manjhi, A., Nath, S., Gibbons, B. Tributaries and Deltas: Efficient and
Robust Aggregation in Sensor Network Streams. SIGMOD, 2005.

[16] Mo, L., He, Y., Liu, Y., Zhao, J., Tang, S., Li, X., Dai, G. Canopy
Closure Estimates with GreenOrbs: Sustainable Sensing in the Forest.
ACM SenSys, 2009.

[17] Nath, S., Gibbons, P., Seshan, S., Anderson, Z. Synopsis Diffusion for
Robust Aggregation in Sensor Networks. SenSys, 2004.

[18] Shnayder, V., Hempstead, M., Chen, B., Allen, G., Welsh, M.
Simulating the Power Consumption of LargeScale Sensor Network
Applications. ACM SenSys, 2004.

[19] Silberstein, A., Braynard, R., Yang, J. Constraint Chaining: On
Energy-Efficient Continuous Monitoring in Sensor Networks.
SIGMOD, 2006.

[20] Silberstein, A., Munagala, K., Yang, J. Energy-Efficient Monitoring of
Extreme Values in Sensor Networks. SIGMOD, 2006.

[21] Wu, Y., Li, X., Liu, Y., Lou, W. Energy-Efficient Wake-up Scheduling
for Data Collection and Aggregation. IEEE TPDS, 21(2):275-287,
2009.

[22] Yang, X., Lim, H., Özsu, M., Tan, K. In-Network Execution of
Monitoring Queries in Sensor Networks. SIGMOD, 2007.

