
1 

 

Algorithms for Local Sensor Synchronization 
Lixing Wang, Yin Yang, Xin Miao, Dimitris Papadias, Yunhao Liu 

Department of Computer Science and Engineering, Hong Kong University of Science and Technology 

Clear Water Bay, Hong Kong 
{lxwang, yini, miao, dimitris, liu}@cse.ust.hk 

 
Abstract— In a wireless sensor network (WSN), each sensor 
monitors environmental parameters, and reports its readings to 
a base station, possibly through other nodes. A sensor works in 
cycles, in each of which it stays active for a fixed duration, and 
then sleeps until the next cycle. The frequency of such cycles 
determines the portion of time that a sensor is active, and is the 
dominant factor on its battery life. The majority of existing work 
assumes globally synchronized WSN where all sensors have the 
same frequency. This leads to waste of battery power for 
applications that entail different accuracy of measurements, or 
environments where sensor readings have large variability.  

To overcome this problem, we propose LS, a query processing 
framework for locally synchronized WSN. We consider that each 
sensor ni has a distinct sampling frequency fi, which is determined 
by the application or environment requirements. The 
complication of LS is that ni has to wake up with a network 
frequency Fifi, in order to forward messages of other sensors. 
Our goal is to minimize the sum of Fi without delaying packet 
transmissions. Specifically, given a routing tree, we first present 
a dynamic programming algorithm that computes the optimal 
network frequency of each sensor; then, we develop a heuristic 
for finding the best tree topology, if this is not fixed in advance. 

I. INTRODUCTION 

A sensor is a device with a radio and limited computation 
capabilities, which takes physical measurements such as 
temperature, light and humidity. A wireless sensor network 
(WSN) consists of a base station that collects measurements 
and/or aggregate information, and a set of sensor nodes, each 
of which is able to directly communicate with other sensors 
(or the base station) within the area of its radio coverage. 
Users register continuous queries at the base station, which are 
processed based on the sensor measurements. The 
transmission of sensor readings to the base station are 
performed according to the topology of the WSN, which can 
be either tree-based (e.g., [12]) or multi-path (e.g., [17]). This 
work follows the tree-based paradigm due to its simplicity and 
high energy efficiency. 

In most applications, especially WSN deployed in harsh or 
difficult to access environments, sensor battery power is the 
main bottleneck of the entire system. In order to minimize 
energy consumption, instead of sensors being on continuously, 
they operate in cycles. Specifically, within a cycle, each 
sensor is active for a fixed duration, during which it (i) 
collects measurements from the environment, (ii) receives 
data from other sensors in its network neighborhood, (iii) 
possibly performs computations1 on the received and collected 

                                                 
1 In case of in-network query processing, sensor nodes perform local 

computations instead of simply forwarding raw data; e.g., for a 

measurements, (iv) broadcasts data to the WSN, and then 
enters the sleep mode until it wakes up for the next cycle. 

The power consumption of a sensor is dominated by the 
time that its radio remains on [9][18][21]. Accordingly, since 
a sensor switches on its radio for a fixed duration in every 
cycle, its energy cost is proportional to the frequency of the 
cycles. Existing work has focused on query processing in 
globally synchronized WSN, where all sensors have the same 
frequency. This leads to waste of battery power for 
applications that entail different accuracy of measurements 
(depending on the sensor location), or environments where 
sensor readings have large variability. To overcome this 
problem, we propose LS (for local synchronization), a novel 
framework that permits sensors to have different frequencies. 
For instance, in a factory setting, temperature sensors in 
engine rooms, or other areas susceptible to fire, must sample 
much more frequently than sensors in warehouses. In other 
cases, the different frequencies may be imposed by the 
variability of measurements, e.g., a sensor that has stable 
readings for long periods should turn on less often than 
another whose readings change with a high rate. 

Let the sampling frequency fi of sensor node ni be the 
minimum frequency by which ni should turn on in order to 
take measurements. Given fi, the goal of LS is to determine a 
network frequency Fi of each sensor ni so that: (i) Fi is at least 
as high as fi in order to satisfy the accuracy requirements, (ii) 
ni is active when it needs to forward messages from other 
sensors to the base station, and (iii) the sum of network 
frequencies for all sensors in the WSN is minimized. Fig. 1a 
shows an example subtree of a WSN containing three sensors 
n1-n3 and their sampling frequencies f1-f3. Sensor n1 is in the 
path of n2 and n3; i.e., it must forward messages from these 
sensors to the base station, implying that n1 should be active 
whenever n2 and n3 are active. Fig. 1b and Fig. 1c illustrate 
two solutions towards this. In Fig. 1b, the network frequency 
F2 of n2 increases with respect to its sampling frequency 
(2=F2−f2=1), achieving synchronization of n1 and n2 (n1 and 
n3 are already synchronized). Consequently, n2 can sample 
with higher frequency (3 instead of 2) since its energy 
consumption is dominated by the radio. In Fig. 1c, the 
network frequencies F1 and F3 become 4, whereas F2=f2=2 
(i.e., n2 wakes up once for every two cycles of n1 and n3). The 
first solution is better because the total increase (i) of the 
network frequency compared to the sampling frequency is 

                                                                                     
max query, a sensor computes and transmits only the maximum 
among the received values and the local measurement (instead of 
all values). 
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smaller (1 versus 2). Since the sampling frequencies are fixed 
and given, minimizing i is equivalent to minimizing the 
total network frequencies. 
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Fig. 1 Subtree with three sensor nodes 

Searching for the optimal network frequencies in a WSN is a 
challenging task, for two reasons. First, there is an infinite 
search space for the network frequency Fi of a node ni, which 
can be any real number satisfying Fifi so that ni is 
synchronized with the sensors directly connected to it. Second, 
locally optimal solutions do not necessarily lead to globally 
optimal ones. Fig. 2a extends the subtree of Fig. 1a by adding 
two more sensors n4 and n5, with f4=2 and f5=4. Fig. 2b 
expands the solution of Fig. 1b to this setting. Given that F1=3, 
the best values for the network frequencies of n4 and n5 are 
F4=F5=6 (i.e., a multiple of F1=3), yielding i=7 
(2+4+5). On the other hand, by expanding the solution of 
Fig. 1c, we obtain the network frequencies of Fig. 2c, which 
are minimal (i=4) for this setting. 
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Fig. 2 Subtree with five sensor nodes 

The problem is more complex when the tree topology is not 
given, but it has to be computed so that it minimizes i. To 
our knowledge, the only previous work [11] on locally 
synchronized WSN requires proxies. On the other hand, LS 
achieves energy-efficient local synchronization without 
additional hardware. Specifically, (i) given a tree topology, we 
compute the optimal network frequencies through a 
polynomial-time dynamic programming algorithm; (ii) we 
employ effective heuristics to obtain a high-quality tree 
topology, if this is not fixed in advance. Extensive 
experiments demonstrate that LS leads to substantial energy 
savings compared to the globally synchronized framework. 

The rest of the paper is organized as follows. Section II 
surveys related work. Section III formally defines two key 
tasks in local synchronization: the computation of the optimal 
network frequencies and the tree topology. Section IV and V 
provides efficient algorithms for the above tasks, respectively. 
Section VI examines the effectiveness of the proposed 
algorithms using real and synthetic WSN data. Section VII 
concludes the paper. 

II. RELATED WORK 

Section II-A overviews data transmission in WSN. Section II-
B surveys WSN query processing methods that minimize 
energy consumption. 

A. Data Transmission in a WSN 

Due to their limited radio range, most sensors in the WSN 
cannot transmit directly to the base station, but must 
communicate with the latter through other sensors. These 
connections are represented by a connectivity graph G where: 
(i) every node niG corresponds to a sensor (we use the terms 
sensor and node interchangeably), and (ii) an edge (ni, nj)G 
denotes that sensors ni, nj are within the radio range of each 
other2. Fig. 3a shows a graph consisting of five sensors n1 to 
n5, and a base station n0; n1 and n2 can communicate directly 
with the base station n0. On the other hand, n3, n4 and n5 must 
relay their messages through n1 and n2. Since there are 
multiple choices for n3-n5 to reach the base station, the WSN 
must select a routing scheme that determines the routing path 
for each message. 
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Fig. 3 Tree topologies for WSN 

A large class of routing schemes organizes sensors in tree 
topologies [13]. Specifically, a spanning tree is built from the 
connectivity graph, with the base station acting as the root. 
Most approaches only consider min-hop trees, in order to 
minimize packet losses [8]. A spanning tree TG is min-hop, 
if and only if the number of edges between every node ni and 
n0 is the minimum among all possible paths in G. For example, 
the tree in Fig. 3b is min-hop, whereas that in Fig. 3c, is not 
because n5 needs 3 hops to reach n0 and there is a shorter path 
n5-n2-n0 in G. In multi-path routing schemes [2][17], a 
message may arrive at the base station through several paths. 
In the example of Fig. 3a, a data packet from n4 may be 
transmitted to both n1 and n2. Compared with routing trees, 
multi-path schemes are more robust, at the cost of higher 
energy consumption and duplicate packets received by the 
base station. Manjhi et al. [15] propose Tributaries-and-
Deltas, combining tree and multi-path routing. 

In our work we consider tree topologies. However, in our 
setting, conventional minimum spanning tree algorithms (i.e., 
Prim’s and Kruskal’s) do not necessarily minimize the 
network frequency. Fig. 3b illustrates a counter-example using 
Prim’s algorithm that starts with a single node and keeps 
adding the edge with the minimum cost, which is defined as 
the i incurred in the path from the new node to the sink. We 
begin with the base station n0 and insert all edges that connect 

                                                 
2 We assume that all edges in G are undirected, which holds in most 

practical WSNs [14]. 
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it with nodes (n1, n2) within its range. Assuming that n0 is 
always on, these edges have zero cost. Then, n3 is appended as 
a child of n1 also with zero cost. Subsequently, the algorithm 
adds node n5, which increases the frequency of n2 to 2 (2 = 1), 
and finally n4 with cost 1 = 2. The overhead of this tree 
measured by i is 3. On the other hand, the optimal spanning 
tree in Fig. 3c has cost 2. The complication is due to the fact 
that edge weights are not constant, but keep changing 
according to the nodes already inserted in the tree. 

B. Query Processing in WSN 

WSN query processing techniques can be classified into three 
categories, depending on their restrictions on the sensors’ 
sampling and network frequencies. Methods (e.g., [3], [19], 
[20], [22]) in the first category assume that all sensors have 
the same sampling frequency f. The second class consists of 
techniques (e.g., [12], [13]) that allow different sensors to 
have different sampling rates, but require that they use the 
same network frequency F=max{fi | ni}. Finally, the 
methods of [11] provide flexibility on frequency assignment 
using additional base-station-like devices called proxies that 
form the backbone of the WSN. Specifically, (i) each sensor is 
assigned to one proxy; (ii) all the sensors assigned to the same 
proxy have the same frequency; and (iii) sensors assigned to 
different proxies may have different frequencies. The use of 
proxies, however, limits the applicability of [11], since they 
increase the financial costs of the WSN system, as well as the 
difficulty for its deployment. 

Besides the above, the network community has proposed 
Low Power Listening (LPL) [7], a low-level protocol for 
unsynchronized WSNs that allows sensors to have arbitrary 
working cycles. Unlike synchronized WSNs, in LPL a sensor 
ni may be asleep when another node nj needs it to forward a 
message. When this happens, nj postpones the message, and 
keeps probing ni by continuously sending preamble signals, 
until ni wakes up and responds. The two sensors then perform 
the delayed data transmissions. Due to such delays, LPL may 
not be suitable for applications with strict responsiveness 
requirements. Furthermore, the sender of the preamble signals 
(i.e., nj) must stay active for long periods, which drains up its 
battery power. The above problems amplify as the height of 
the routing tree increases. In contrast, the proposed methods 
do not incur any result delays or prolonged transmissions of 
control signals. 

III. PROBLEM DEFINITION 

Let fi be the sampling frequency of sensor node ni; fi is a real 
number determined by the application requirements on 
accuracy, or the variability of measurements. The proposed 
LS (local synchronization) assigns to each ni an individual 
network frequency Fi, rather than a global one. In practice, 
since the work cycle of a sensor must be sufficiently long to 
complete the necessary sensing, computation and 
communication tasks, its network frequency must not exceed 
a constant Fmax. Let N be the total number of sensors 
excluding the base station. Our goal is to minimize the 
objective function =N

i=1 Fi, referred to as the cost of the 

WSN. This cost determines the total time that sensors are 
active, and therefore, it dominates the overall energy 
consumption. The proposed methods can be easily extended to 
other aggregates such as maximum and weighted sum. We 
assume that the WSN uses a tree topology T, which guides the 
routing of messages between sensors. Table I summarizes 
frequent symbols. 

TABLE I 
SUMMARY OF NOTATIONS 

Symbol Meaning 
G, T WSN connectivity graph and routing tree 

N Number of sensors in the WSN 
 Cost of the WSN 
ni i-th sensor (if 1iN), or the base station (if i=0) 

fi, Fi Sampling and network frequency of ni 
FLB

i   Lower bound of Fi defined in Lemma 2 
Fmax Maximum possible network frequency 
Ti Subtree of T rooted at ni 
Fi

i   Minimum cost of subtree Ti  for a given Fi 

Each sensor must be able to communicate with the base 
station, in order to report its measurements and / or in-network 
computation results. To model this, we first introduce the 
concept of local synchronization between two directly 
connected sensors. 

Definition 1 (Local Synchronization): Given a routing tree T, 
an internal node ni, and its child nj, ni and nj are locally 
synchronized (or simply synchronized when the context is 
clear), if and only if (i) ni and nj start one of their respective 
cycles at the same time, and (ii) there exists a positive integer 
k such that Fi=kFj. 

Intuitively, when a node ni is synchronized with its child nj, ni 
is able to process and / or forward every message from nj on 
time. Among the two conditions in the Definition 1, (i) is a 
low-level networking issue, e.g., the clocks of the two sensors 
need to be synchronized3, whereas (ii) restricts the sensors’ 
network frequencies in LS query processing. Hence, in the 
following we assume that (i) is always satisfied. We next 
model our main constraint. 

Lemma 1: Every sensor is able to communicate with the base 
station n0 in each cycle, if and only if every pair of parent-
child nodes in T are locally synchronized. 

Based on whether T is given, we distinguish two different 
versions of the problem. The first, referred to as Problem 1, 
takes T as an input (e.g., determined by an existing algorithm 
based on link quality considerations [6]), and computes the 
network frequencies of the sensors that minimize . In the 
second version (Problem 2), T is unknown; instead, given the 
WSN connectivity graph G, LS selects both the optimal 
topology TG and the network frequencies to minimize . 
Compared with Problem 1, the additional flexibility on T may 

                                                 
3 Small differences between ni’s and nj’s clocks are tolerable, as long 

as the two sensors can finish message transmissions in one 
common working cycle. Furthermore, LS requires only local clock 
synchronization (e.g., [4], [5]), which is less demanding than global 
clock synchronization of all sensors in the WSN (e.g., [10]). 
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lead to further reduction of , at the expense of an enlarged 
search space. Formally, we state the above two problems as 
follows. 

Problem 1: Given a routing tree T and the sampling frequency 
fi of each node ni, compute the network frequency Fi of each ni 
so that (i) FmaxFifi, (ii) every pair of parent-child sensors in 
T are locally synchronized and (iii) =N

i=1 Fi is minimized. 

Problem 2: Given the connectivity graph G and the sampling 
frequency fi of each node ni, find the best routing tree TG 
that minimizes =N

i=1 Fi, where the network frequency Fi of 
each sensor ni is computed according to Problem 1. 

Unfortunately, we have the following negative result. 

Theorem 1: Problem 2 is NP-hard. 

Proof: (by reduction to set cover) Given an instance of the set 
cover problem that involves a set E of elements and another S 
of subsets, construct a corresponding connectivity graph G as 
follows. G contains the base station n0, as well as two layers 
of sensors. For each subset sS (resp. element eE) in the set 
cover instance, we create a first-layer (resp. second-layer) 
node in G. Furthermore, whenever a subset s contains an 
element e in the set cover instance, we add an edge connecting 
ns and ne in G, where ns and ne are the corresponding nodes of 
s and e, respectively. Additionally, there is an edge in G 
between each node on the first layer and the base station n0. 
The sampling frequency of every first-layer (resp. second-
layer) node is 1 (resp. 2). Then, we solve Problem 2 with the 
above G to obtain the optimal routing tree T. The set of first-
layer nodes in T that are parent to at least one second-layer 
node correspond to the optimal solution of the set cover 
instance. Therefore, Problem 2 is at least as hard as set cover. 
Moreover, first-layer (resp. second-layer) nodes always 
require 1 (resp. 2) hops to the reach the base station in any 
spanning tree of G. Therefore, the routing tree TG is always 
min-hop, meaning that Problem 2 is still as hard as set cover 
under the min-hop limitation. � 

In the following, we describe solutions to both problems. In 
addition, we discuss their extensions to the case when the 
routing tree (in Problem 1) or the connectivity graph (in 
Problem 2) changes over time. 

IV. FINDING NETWORK FREQUENCIES 

This section focuses on Problem 1, i.e., optimal network 
frequency computation with a given routing tree T. Section 
IV-A lays down the theoretical foundation of the proposed 
solution. Section IV-B describes an efficient dynamic 
programming algorithm, and analyses its space and time 
complexity. Section IV-C provides further optimizations. 

A. Theoretical Foundation 

We first investigate the range of feasible values for the 
network frequency Fi of a node ni. Apart from fi, there is a 
tighter lower bound for Fi, as follows. 

Lemma 2: Given a node ni and the subtree TiT rooted at ni, a 
lower bound for the network frequency Fi of ni is 

max{ | }LB
i j j iF f n T    (1)

Proof: (by induction) For any node njTi, clearly Fjfj 
according to the problem definition. Suppose that a node nx is 
along the path from nj to ni whose network frequency Fx 
satisfies that Fxfj. Let ny be the parent node of nx. Since nx 
and ny are locally synchronized, we have FyFxfj. By 
induction, Fifj. � 

For instance, in Fig. 2a, the network frequency F4 of n4 must 
be no smaller than FLB

i  =max{f1, f2, f3, f4, f5}=4. Observe that 
f4=2<FLB

i  ; consequently, f4 in our example does not have any 
impact on the choice of F4. To avoid complicated notations, in 
the rest of Section IV-A we assume that for each sensor ni, 
fi=FLB

i  ; whenever this is not the case, FLB
i   is used in place of fi. 

However, besides Fmax, there is no obvious upper bound for 
Fi. Fig. 4a shows an example subtree rooted at sensor n1, 
which has two children n2 and n3. The sampling frequencies 
are f1=13, f2=5, and f3=11, respectively. Suppose that n2 (resp. 
n3) have Cl2 (resp. Cl3) child nodes, which all have identical 
sampling frequencies to their respective parent. The marginal 
cost of increasing F2 (resp. F3) is then multiplied by Cl2+1 
(resp. Cl3+1), as every child of n2 /n3 must also increase their 
network frequency by the same amount to synchronize with 
their respective parent. Fig. 4b lists several values for F1 and 
the corresponding F2 and F3 that minimizes the overall cost of 
T1, while satisfying the synchronization requirements. The 
best F1 depends on Cl2 and Cl3: when both n2 and n3 have 
numerous (e.g., >50) children, the best F1 is 55, which in our 
example is a common multiple of both f2 and f3, and thus, 
minimizes the cost of the subtrees T2 and T3. Observe that this 
is far larger than either one of f1-f3. In general, f2 and f3 can be 
non-integer values (e.g., 3.1 and 9.7), in which case the best 
F1 may exceed even the product of f2 and f3, depending on the 
number of children attached to n2 and n3. 
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(a) Subtree T1 (b) Network frequencies 
Fig. 4 Example of choosing network frequencies 

The above example also demonstrates that there is an 
infinite search space for a network frequency value (F1), 
rendering even a brute-force solution rather complicated. We 
tackle the problem using a top-down approach. Two key 
issues are (i) how to determine the network frequencies of top-
level nodes that are directly connected to the base station, and 
(ii) given the network frequency Fi of an internal node ni, how 
to choose the network frequencies of its children. We first 
focus on (ii). In particular, consider a child nj of ni; in order to 
synchronize ni and nj, their network frequencies must satisfy 
that Fi=kFj for a positive integer k, according to Definition 1. 
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Meanwhile, since Fjfj, we have kFi / fj. Hence, there is a 
finite number of possible Fj’s. 

Lemma 3: Let ni be an internal node of T, and nj be a child of 
ni. Given the network frequency Fi of ni, the network 
frequency Fj must take one of the following values 

 1, 2,3,...,j i i jF F k k F f      (2)

For example, in Fig. 4, when F1 is set to 13, according to 
Lemma 3, there are two possible values (13 and 13/2=6.5) for 
F2, and only one (13) for F3. The question now is how to 
select the best Fj for the child nj among the above possibilities. 
Intuitively, since Fi is already given, the choice of Fj only 
affects the descendents of nj. Accordingly, the best Fj is the 
one that minimizes the subtree Tj rooted at nj. 

Lemma 4: Given a node ni, suppose that its network 
frequency Fi is already determined. Let Fi

i   be the minimum 
cost of subtree TiT rooted ni with respect to Fi. Then, Fi

i   
can be computed recursively as follows: 

 /

child  of 
min 1, 2,...i i

j i

F F k
i i j i jn n

F k F f        (3)

where Fi/k
j   is the minimum cost of subtree Tj given Fj=Fi/k. 

Proof: Consider an arbitrary child node nj of ni. According to 
the definition of Problem 1, besides fj, the value of Fj only 
affects the network frequencies of nj’s parent (i.e., Fi of ni) 
and children (and, recursively, the descendents of nj). Since Fi 
is fixed and given, the choice of Fj has impact only on the cost 
of the subtree Tj. Therefore, the best Fj should minimize the 
cost of Tj, which, combined with Lemma 2, leads to Equation 
(3). � 

As a special case, when ni is a leaf node, Fi
i   is simply Fi. 

Based on Lemma 4, once Fi is determined, it is 
straightforward to compute Fi

i  , as well as the best network 
frequencies of all nodes in the subtree Ti, through exhaustive 
search. For instance, in Fig. 2, given F4=6, F5 must be 6, since 
f5=4>6/2. F1 can be either 3 or 6. In the former case, F2=F3=3, 
hence 3

1 =3+3+3=9. In case that F1=6, F2 can be 2, 3, or 6, F3 
can be 3 or 6, and the minimum possible cost for T1 is 6

1 
=6+2+3=11. Since 3

1 <6
1 , the best value for F1 is 3, and, 

thus, 6
4 =6+3

1 +6=21. 
However, the number of possible values for a network 

frequency increases exponentially with the depth of the node 
in the tree topology. To reduce the number of potential values, 
we now describe our most important theoretical result, which 
entails the recursive equation (3), only if Fi is a regular 
network frequency, defined as follows. 

Definition 2 (Regular Network Frequency): A network 
frequency Fi is regular, if and only if either (i) Fi=fi or (ii) 
there exists a node njni in the subtree Ti rooted at ni such that 
Fi=kfj for a positive integer k. 

For instance, among the values of F1 listed in Fig. 4b, only 13, 
15, 20, 22 and 55 are regular ones (shown in grey). In general, 
n1’s regular network frequencies are f1=13 and multiples of 
f2=5 (e.g., 15, 20, 55), or f3=11 (22, 55), since all children of 

n2 and n3 have the same sampling frequencies as their 
respective parent. 

Theorem 2: Given an internal node ni and a network 
frequency Fi, let F'i be the highest regular network frequency 
for ni satisfying F'iFi. Then: 

i iF F
i i i iF F      (4)

Furthermore, suppose that when F'i is assigned to ni, the best 
network frequency for each node njTi is F'j. Then, when Fi is 
assigned to ni, the optimal network frequencies for the nodes 
in Ti are: 

,j j i i j iF F F F n T      (5)

Proof: We first prove that Equation (5) gives a feasible 
solution for Ti that leads to a subtree cost of Fi

i   given in 
Equation (4). Because when F'i is assigned to ni, F'j is the 
optimal network frequency of any node nj in Ti, it must also be 
a feasible network frequency for ni. Hence, FjF'jfj. 
Meanwhile, consider any internal node nxTi and one of its 
children nyTi. Let F'x and F'y be the optimal network 
frequencies of nx and ny, respectively, when F'i is assigned to 
ni. Clearly, F'x is a multiple of F'y. Let integer kxy=F'x / F'y. 
According to Equation (5), Fx / Fy= F'x / F'y= kxy. Hence, Fx is 
a multiple of Fy, which enables the local synchronization of nx 
and ny. Additionally, we have 

i

i

j i j i j i

F
j iF i i i

i j jn T n T n T
i i i

F F F F
F F

F F F



  

        
     (6)

Next we prove by induction that Fi
i   given in Equation (4) is 

indeed the minimum cost when Fi is assigned to ni. In the base 
case, ni is a leaf node in T. The theorem holds trivially, since 
Fi

i  =Fi, and F'i
i  =F'i. In the induction step, suppose that each 

child node nj of ni satisfies the theorem. Specifically, given an 
arbitrary node nx, let the function CRx(Fx) that returns the 
highest regular network frequency for nx satisfying that 
CRx(Fx)Fx. As a special case, CRi(Fi)=F'i. The induction 
assumption is stated as follows. 

 

 
child  of , ,

j jj CR FF

j j
j i j

j j

n n F
F CR F

 
  

 

(7)

According to Lemma 2, when Fi is assigned to ni, Fj must be 
Fi/k for a positive integer kFi/fj. Similarly, when F'i is 
assigned to ni, Fj must be F'i/k for a positive integer kF'i/fj. 
We now prove that Fi/fj=F'i/fj by contradiction. Suppose 
that Fi/fjF'i/fj. Then, since F'iFi, we have F'i/fj<Fi/fj, 
and, thus, F'i<Fi/fjfjFi. However, Fi/fjfj a regular 
frequency for ni, as it is an integer multiple of fj. This 
contradicts with the fact that F'i is the largest regular network 
frequency for ni satisfying F'iFi. 

Substituting Fj with Fi/k and F'i/k in Equation (7), 
respectively, we obtain 

 

 
1, 2, ,

j ii
CR F kF k

j j
i j

i j i

k F f
F k CR F k

 
      (8)
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 

 
1,2, ,

j ii
CR F kF k

j j
i j

i j

k F f
F k CR F k

 
      

  (9)

Next we prove CRj(Fi/k)=CRj(F'i/k) by contradiction. Suppose 
that CRj(Fi/k)CRj(F'i/k). Because F'i<Fi, CRj(F'i/k)<CRj(Fi/k). 
Hence, F'i<CRj(Fi/k)kFi. Since CRj(Fi/k) is a multiple of fx of 
a node nx in TjTi, and k is a positive integer, CRj(Fi/k)k is 
also a multiple of fx, meaning that CRj(Fi/k)k is a regular 
network frequency for ni that is closer to Fi than F'i, which 
contradicts with the definition of F'i. Therefore, 
CRj(Fi/k)=CRj(F'i/k), and, consequently, the right hand side of 
Equation (8) equals that of Equation (9). Their respective left 
hand side must be equal as well: 

i iF k F k
j j

i iF F

 



 (10)

Let k*Fi/fj be the positive integer satisfying: 
*

1,2, , i iF k F k
i j j jk F f        

 
(11)

According to Lemma 3 and the fact that Fi/fj=F'i/fj, we have 
*

child 
i i

j

F F k
i i jn

F      (12)

Multiplying both sides of Inequality (11) by Fi/F'i, we obtain 
*

1,2, ,
i iF k F k

j i j i
i j

i i

F F
k F f

F F

    
      

  (13)

Combining Equation (10) and Inequality (13), we obtain 
*

1,2, , i iF k F k
i j j jk F f      

 
(14)

Therefore, according to Lemma 3, we have 

 

*

*

*

/

child 

/

child 

/

child 

i i

j

i

j

i

j

F F k
i i jn

F k
j i

i n
i

F ki
i jn

i
F
i i

F

F
F

F
F

F
F

F

F







   

 
 



  


 









 (15)

The second line in the above equation is based on Equation 
(10), whereas the last step is based on Equation (12). 
Therefore, the theorem also holds for ni. � 

In the example of Fig. 4, consider an irregular frequency 
F1=16. F'1=15 is the highest regular frequency satisfying 
F'1F1. According to Fig. 4b, when F1=16 is assigned to n1, 
the optimal values for F2 and F3 are 16/3 and 16 respectively. 
Meanwhile, when F'1= 15 is assigned to n1, the best network 
frequencies for n2 and n3 are F'2=5 and F'3=15 respectively. 
Clearly, 16

1  / 15
1  = F2/F'2= F3/F'3=16/15. 

Theorem 2 indicates that Fi
i   is a piece-wise linear function 

of Fi. Specifically, as Fi grows from one regular value to the 
next one, Fi

i   increases linearly with Fi; when Fi reaches the 
next regular value, Fi

i   suddenly drops. Subsequently, Fi
i   

again increases linearly with Fi until the next regular 
frequency, possibly with a different slope. Fig. 5 plots F1

1   
against F1 in the example of Fig. 4, assuming that n2 and n3 
have 2 and 3 child nodes respectively. Regular frequencies for 
n1 between 13 and 55 are shown on the x-axis. The piece-wise 
linear pattern, as well as the sudden drops in F1

1   at regular 
values for F1, can be clearly observed in the plot. 

 1

80

90

100

110

120

130

13 15 22 30 33 40 45 50 55

F1

F1

25 35 4420  
Fig. 5 Example plot of Fi

i   vs. Fi 

Another consequence of Theorem 2 is that an irregular Fi 
always leads to a higher subtree cost than the corresponding 
regular value F'i preceding Fi. Therefore, for each top-level 
node ni for which there is no restriction on its network 
frequency Fi, it suffices to consider only its regular values of 
Fi. 

Corollary 1: Given a node ni that is directly connected to the 
base station, the optimal network frequency of ni must be 
regular. 

For a node nj whose parent is another sensor ni, its network 
frequency is restricted to the values described in Lemma 3. 
Consequently, given a irregular frequency Fj of nj, the highest 
regular frequency F'j preceding Fj may not be able to 
synchronize with ni. Hence, the best frequency for Fj can be 
irregular. For such nodes, the following algorithm utilizes 
Theorem 2 to reduce the computation of Fj

j   to that of F'j
j  . 

B. Algorithm 

Given the routing tree T and the sampling frequencies f1, f2, …, 
fN, LS searches for the optimal network frequencies F*

1 -F*
N  in 

two steps. First, it computes the minimum cost * of the 
entire WSN and gradually completes a hash table H. Second, 
guided by H, LS finds the optimal values F*

1 -F*
N  that sum up 

to *. The hash table H contains entries of the form 
<ni,Fi> Fi

i  , where the key is a node ni and a regular 
frequency Fi for ni, and the value Fi

i   is the minimum cost of 
the subtree Ti rooted at ni, given Fi. 

The first step involves two functions, namely CTC (short 
for compute total cost) and CSC (for compute subtree cost). 
Fig. 6 illustrates CTC. The method initially computes the 
lower bound FLB

i   for the network frequency Fi of each node ni 
(lines 2-4). According to Lemma 2, FLB

i   is a tighter bound than 
fi; whenever fi<FLB

i  , the latter is used instead (specifically, in 
Equations (2), (3), and Definition 2). After that, the algorithm 
examines each top-level node ni, and computes the minimum 
cost  min

i   of the subtree Ti rooted at ni (lines 5-10). In 
particular, line 7 enumerates all regular values for Fi that may 
possibly lead to the min

i  , according to Corollary 1. Line 8 
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invokes the recursive procedure CSC (described below) to 
compute Fi

i  ; the smallest Fi
i   among all values of Fi becomes 

min
i  . Finally, line 10 sums up min

i   for all top-level nodes to 
obtain the minimum overall cost *. 

CTC(T, f1-fN): returns *  //CTC for compute total cost 
// Input: T: routing tree, f1-fN: sampling frequencies of the sensors 
// Output: *: optimal cost of the entire WSN 
1. Initialize * to 0, and H to an empty hash table 
2. For each node niT 
3.  Compute FLB

i   according to Equation (1) 

4.  If FLBi  >fi, use FLB
i   in place of fi in the rest of the algorithm 

5. For each ni that is directly connected to the base station in T 
6.  Initialize min

i   to + 
7.  For each regular Fi 
8.   Call Fi

i  =CSC(T, f1-fN, ni, Fi, H) 

9.   If Fii  <min
i  , set min

i   to Fi
i   

10.  Update * to *+min
i   

11. Return * 
Fig. 6 Algorithm CTC 

Fig. 7 shows CSC, which recursively computes the optimal 
cost Fi

i   of the subtree Ti rooted at node ni, given Fi. When Fi 
is irregular, the algorithm picks the highest regular frequency 
F'i satisfying F'iFi, calculates F'i

i  , and applies Theorem 2 to 
obtain Fi

i   (lines 1-4). On the other hand, when Fi is regular, 
Lemma 4 is used to compute Fi

i   recursively (lines 6-13). The 
result is stored in a new entry of the hash table H with key <ni, 
Fi>. When the same parameters ni, Fi are passed to CSC, the 
latter looks up H for the stored Fi

i   (line 5). 

CSC (T, f1-fN, ni, Fi, H): returns Fi
i   // CSC for compute subtree cost 

// Input:  T: routing tree 
// f1-fN: sampling frequencies of the sensors 
//  ni, Fi: root node of the subtree Ti, and its network 
frequency 
// H: hash table storing subtree costs 
// Output: Fi

i  : minimum subtree cost of Ti given Fi 
1. If Fi is irregular with respect to ni 
2.  Let F'i <Fi be the highest regular network frequency for ni 
3.  Call F'i

i  =CSC(T, f1-fN, ni, F'i, H) 
4.  Calculate Fi

i   according to Equation (4), and return Fi
i   

5. If H contains an entry with key <ni, Fi> and value Fi
i  , return Fi

i   
6. If ni is a leaf node, return Fi 
7. Initialize Fi

i   to Fi 
8. For each child nj of ni 
9.  Initialize min

j   to + 
10.  For each value of Fj described in Equation (2) 
11.   Call Fj

j  =CSC(T, f1-fN, nj, Fj, H) 

12.   If Fj
j  <min

j  , set min
j   to Fjj   

13.  Update Fi
i   to Fii   + min

j   

14. Add a new entry to H with key <ni, Fi> and value Fi
i   

15. Return Fi
i   

Fig. 7 Algorithm CSC 

Fig. 8 describes the function CNF (short for compute network 
frequencies), which implements the second step of the 

proposed solution, and computes the optimal frequencies top-
down. The method starts by examining each top-level node ni, 
testing regular network frequencies Fi of ni (lines 3-7). Since 
Fi is regular, and CTC has called CSC with parameters ni and 
Fi, the hash table H already contains an entry <ni,Fi>Fi

i  . 
The value of Fi that minimizes the subtree cost for Ti becomes 
the optimal frequency F*

i   of ni. After determining the optimal 
frequencies for all top-level nodes, the algorithm continues to 
calculate the frequencies of their descendents. Specifically, 
given a node ni with known F*

i   and one of its children nj, CNF 
enumerates all possible values for Fj, and computes the 
minimum cost for subtree Ti. For a regular Fj, Fj

j   is simply 
retrieved from H. When Fj is irregular, Fj

j   is obtained using 
Theorem 2 and H. In both cases, there is no need for recursive 
calls, since the computations have already been performed in 
CSC, and the results stored in H. 

CNF (T, f1-fN): returns F*
1 -F*

N   
// CNF for compute network frequencies 
// Input:  T: routing tree, f1-fN: sampling frequencies of the sensors 
// Output: F*

1 -F*
N : optimal network frequencies of the nodes in T 

1. Call * = CTC(T, f1-fN) 
2. Let H be the hash table used in CTC 
3. For each node ni that is directly connected to the base station n0 
4.  Initialize min

i   to +, F*
i   to NULL 

5.  For each regular Fi 
6.    Retrieve Fi

i   from H with key <ni, Fi> 
7.    If Fi

i  <min
i  , set min

i   to Fi
i  , and F*

i   to Fi 
8. Repeat 
9.  For each node nj satisfying (i) F*

j   has not been determined and 
(ii) F*

i   corresponding to the parent ni of nj has been determined 
10.   Initialize min

j   to +, F*
j   to NULL 

11.   For each value of Fj described in Equation (2) 
12.    Compute Fj

j   using H and Theorem 2 
13.    If Fj

j  <min
j  , set min

j   to Fj
j  , and F*

j   to Fj 
14. Until all optimal network frequencies are determined 
15. Return F*

1 -F*
N  

Fig. 8 Algorithm CNF 

Fig. 9 illustrates an example of the above algorithms. Assume 
that Fmax=100 according to the application requirements. The 
sampling frequencies are shown alongside their corresponding 
nodes. Among them, f3 is smaller than the lower bound FLB

3   
given by Lemma 2, which equals the maximum sampling 
frequency (i.e., f6=11) in the subtree rooted at n3. Therefore, in 
the computation of the optimal network frequencies, the 
algorithms simply discard the original value f3=2, and proceed 
as if f3 were FLB

3  =11. 

f2=5

f4=4

base station

n1

f5=4 f6 =11

f3=2

f1=13

n2 n3

n4 n5 n6

......

=11F 3
LB

...n0

 

ni Fi Fi

i   
n2 5 15 
n2 12 20 
n3 11 22 
n1 13 58.5 
n1 15 60 

… 

1 CSC(n1,13) 
2  CSC(n2, 6.5) 
3   CSC(n2, 5) 
4    CSC(n4, 5)
5    CSC(n5, 5)
6  CSC(n2, 13) 
7   CSC(n2, 12) 

… 
 

(a) Sampling frequencies (b) Hash table H (c) Calls of CSC 
Fig. 9 Example of network frequency computation 
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Next we elaborate the computation of the optimal F*
1 - F*

5  in 
the subtree T1 rooted at n1. Since n1 connects directly to n0, 
CTC enumerates all its regular frequencies, which include (i) 
f1=13 and (ii) all multiples of f2=5, f4=f5=4, and FLB

3  =f6=11 
below Fmax=100. Assume that CTC first assigns F1=13, and 
invokes CSC to compute 13

1  . Fig. 9c shows the 7 subsequent 
calls to CSC, listing only parameters ni and Fi since the others 
remain the same for all invocations of CSC. In the first call 
CSC(n1, 13), the hash table H does not have an entry with key 
<n1, 13>; thus, CSC computes 13

1   recursively by identifying 
the best value for the network frequencies F2 and F3 of n1’s 
child nodes n2 and n3, given that F1=13. We first focus on F2. 
According to Lemma 3, there are two possible values for F2: 
F1=13 and F1/2=6.5. Suppose that CSC first calculates 6.5

2   by 
recursively calling CSC(n2, F2=6.5). However, 6.5 is not a 
regular frequency for n2 because it is not equal to f2=5, or a 
multiple of f4=f5=4. Therefore, CSC finds the highest regular 
frequency F'2=5 below 6.5, and calls CSC(n2, 5). 

To compute 5
2 , which has no corresponding entry in H, 

CSC must determine the best F4 and F5 given F2=5. 
According to Lemma 3, there is only one possible value 5 for 
both F4 and F5. In the next two steps, CSC calls itself with 
parameters (n4, 5) and (n5, 5) respectively, which return 5

4 

=5
5 =5. With this information, the third call to CSC (i.e., with 

parameters n2 and 5) returns 5
2 =5+5

4 +5
5  =15, after adding 

a new entry <n2, 5>=15 to H. Subsequently, the second call to 
CSC with parameters n2 and 6.5 then returns  6.5

2  = 5
2 

6.5/5=19.5, according to Theorem 2. Next, the first call 
CSC(n1, 13) tests the other possible F2=13 for n2 by calling 
CSC(n2, 13), which leads to another invocation CSC(n2, 12) 
with the highest regular network frequency 12 below 13. The 
latter eventually returns 12

2  =20, and after CSC(n2, 13) we 
have 13

2  =12
2  13/12=65/3. Because 6.5

2  <13
2  , the minimum 

cost for subtree T2 given F1=13 is 6.5
2  =19.5. The first call 

CSC(n1, 13) then computes the minimum cost for subtree T3 
rooted at n3, which is 26 when F3=F6=13. Accordingly, 13

1  = 
13+19.5+26 = 58.5, concluding the computation of CSC(n1, 
13). 

The outer function CTC then computes minimum subtree 
costs of T1 with other regular values of F1, e.g., 15, 16, 20, 22, 
etc. Finally, CTC establishes that 13

1  =58.5 is the minimum 
cost for subtree T1 among all values of F1. After the 
termination of CTC, CNF computes the optimal network 
frequencies top-down. CNF enumerates all regular values of 
F1 and finds the one with the minimum F1

1   using the hash 
table H. Having determined that F*

1 =13, CNF continues to 
calculate F*

2 , F*
3 , and subsequently F*

4 -F*
6  based on the optimal 

subtrees stored in H. 

Theorem 3: The space and time complexity of the algorithmic 
framework is O(N2C) and O(N2C2), respectively, where 
C=Fmax/fmin, and fmin=min{fi|1iN}. 

Proof: We first prove that algorithm CTC takes O(N2C) space 
and O(N2C) time. Its space consumption is dominated by the 
storage of the hash table H, which consists of entries of the 

form <ni,Fi>Fi
i  , where ni is an arbitrary node, Fi is a 

regular network frequency for ni, and Fi
i   is the minimum cost 

of the subtree Ti rooted at ni, when Fi is assigned to ni. 
According to Definition 2, Fi must be a multiple of the 
sampling frequency fj of a node njTi. Since FiFmax and 
fjfmin, the number of possible regular network frequencies for 
ni contributed by nj is upper bounded by C=Fmax/fmin. Since nj 
can be any of the O(N) nodes in Ti, the total number of regular 
network frequencies for ni is O(NC). Considering that ni can 
be any node in the WSN, the number of entries in H is 
O(N2C). 

Regarding time complexity, the dominating factor is the 
time consumed by subroutine CSC, which computes the 
optimal subtree cost for a given node ni and its network 
frequency Fi. The cases when Fi is irregular, or when H 
contains an entry with key <ni,Fi> take negligible time to 
handle. Hence, it suffices to count the invocations of CSC 
with a regular Fi and a combination of <ni,Fi> not processed 
before. In each such invocation, CSC recursively calls itself to 
compute the minimum subtree cost corresponding to each 
child node nj of ni. Specifically, the algorithm considers all 
possible network frequencies for nj given Fi, which is bounded 
by C. Let Cli be the number of the children of ni, CSC finishes 
in O(CliC) time. Counting all calls to CSC with fresh and 
regular inputs, the total time complexity is ni

 
=O(CCliNC)=O(N2C2). 

Next we focus on CNF. Clearly, its space complexity is 
also dominated by the storage of H, which is bounded by 
O(N2C) as in CTC. Concerning time, after calling CTC, CNF 
enumerates all possible network frequencies of every node 
exactly once, which takes O(N2C) time. Hence, its time 
complexity is also O(N2C2). � 

C. Discussion 

The value of C in Theorem 3 grows with Fmax. Next we 
present optimizations to limit the impact of Fmax, and 
significantly speed up network frequency computation. In the 
example of Fig. 9, one feasible solution is to set the network 
frequency of each sensor in n1-n6 to the highest sampling 
frequency f1=13 among the 6 sensors, leading to a total cost of 
78 for subtree T1. Clearly, setting F1>78 will always result in a 
higher subtree cost for T1. Furthermore, since each sensor ni 
must have a network frequency FiFLB

i   according to Lemma 2, 
when F1>43, even when n2-n5 use their respective minimum 
possible network frequency, the total cost for T1 still exceeds 
that achieved with the above simple solution (i.e., 78). 
Therefore, it suffices to examine only regular frequencies for 
F1 not exceeding 43. Note that this is a much tighter bound 
than Fmax=100. In addition, after obtaining  13

1  =58.5, the 
upper bound for F1 can be further tightened to 23.5, since any 
higher value, plus the minimum possible network frequencies 
of n2-n5, would result in a subtree cost for T1 higher than the 
current best 58.5. 

Based on the above observations, we modify algorithm 
CTC as follows. In line 7 of Fig. 6, the regular frequencies are 
enumerated in increasing order. Let |Ti| be the number of 
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nodes in Ti; an upper bound F UB
i   for Fi is initialized to 

max{fj|njTi}|Ti|ji,njTi
 FLB

j  , and incrementally maintained 
as min

i  ji,njTi
 FLB

j   while the minimum subtree cost min
i   for 

Ti gets updated. The loop of lines 7-10 terminates as soon as 
Fi exceeds FUB

i  . Let FUB be the maximum value of FUB
i   for all 

nodes after CTC finishes. If Fmax>FUB, the latter replaces the 
former in the complexity analysis, since it is the actual upper 
bound of all network frequencies used in our algorithms. 

A similar optimization applies to algorithm CSC, when 
computing the minimum subtree cost min

j   (lines 10-12 in Fig. 
7). Specifically, an upper bound min

j  lj,nlTj
 FLB

l   for Fj is 
incrementally maintained, and the loop stops when Fj exceeds 
it. In our running example, the 6th call of CSC is eliminated, 
since F2=13 plus f4 and f5 already exceeds the previously 
computed subtree cost 6.5

2  =19.5, when F2 is set to 6.5. 
Finally, we discuss the adaptation of the above algorithms 

to changes of the routing tree T. A straightforward solution is 
to re-compute the network frequencies of all sensors whenever 
T is modified. The main challenge is to ensure that after the 
transition to the new network frequencies, all sensors remain 
locally synchronized, while satisfying their respective 
sampling frequency requirements. Specifically, immediately 
after the new tree is applied, all sensors in the WSN wake up 
simultaneously, start a new cycle, and switch to their new 
network frequencies thereafter. This method assigns the 
optimal network frequency to each sensor at all times, but 
incurs considerable cost during transitions. An alternative 
approach reduces the cost of transitions as follows. First, 
based on historical data, we partition the sensors into dynamic 
nodes, which change their respective parents frequently, and 
static ones with stable parent nodes. Then, for each minimal 
subtree Ti containing at least one dynamic node, we apply 
global synchronization to its corresponding subtree Ti, i.e., all 
nodes in Ti share the same network frequency. Ti is then 
treated as a single node in algorithms CTC, CSC and CNF, 
with a weight proportional to the number of nodes in Ti. 
Accordingly, network frequencies need to be re-computed 
only when at least one static node changes its parent in T, 
which happens infrequently. 

V. FINDING ROUTING TREES 

This section focuses on Problem 2, i.e., finding the best 
routing tree from a given connectivity graph. Following the 
common practice in the WSN literature, we restrict the search 
space for routing schemes to min-hop routing trees [1]. 
Unfortunately, even under this additional restriction, Problem 
2 is still intractable. Therefore, we resort to heuristic methods. 

Based on the min-hop property, LS partitions nodes into 
layers, so that the l-th layer contains nodes requiring at least l 
hops to reach n0. Clearly, in a min-hop tree, the parent of a 
layer-l node must reside at layer l1. LS starts from the layer 
lmax of nodes that need the most hops to reach n0 (i.e., the 
leaves of the routing tree T) and builds T bottom-up. 
Specifically, whenever LS examines a node nj at level l, the 
subtree Tj rooted at nj containing nodes from levels l+1 to lmax, 
has already been constructed. LS then extends Tj by adding an 

appropriate parent ni of nj. Let Pj denote the set of candidate 
parents of nj, which consists of layer l1 nodes that are 
connected to nj in G. The selection of ni is performed 
according to the following heuristics. 

Heuristic 1: Given a node nj, the parent niPj of nj should 
satisfy that fiFLB

j   (Equation 1). If no such node exists in Pj, 
the parent of nj is the node ni with the highest fi among all 
nodes in Pj. 

Heuristic 2: Given a node nj, if multiple nodes in Pj have 
sampling frequencies no less than FLB

j  , the parent of nj is the 
node niPj, that satisfies fiFLB

j   and minimizes fi / fi /FLB
j   . 

Intuitively, Heuristic 1 aims at minimizing the value i=Fi−fi 
for the parent node ni. In particular, in order to synchronize ni 
and nj, Fi must be no less than Fj, which, in turn, is lower 
bounded by FLB

j   according to Lemma 2. Hence, the heuristic 
tries to pick a node niPj satisfying fiFLB

j  , in which case it is 
possible that i=0. When there is no such node in Pj, i is 
lower bounded by FLB

j  fi. Thus, the node ni with the highest fi 
(i.e., minimal FLB

j  fi) is chosen as nj’s parent. Heuristic 2, on 
the other hand, tries to minimize the network frequency Fj for 
the child node nj. Specifically, since Fi must be a multiple of 
Fj, the lowest Fj is obtained, when Fi=fi, and Fj=Fi / fi /FLB

j   = 
fi / fi /F LB

j  . Thus, Heuristic 2 chooses the parent ni that 
minimizes this value. Fig. 10 shows an algorithm that applies 
the above heuristics. Find_Routing_Tree first partitions all 
nodes into layers (line 1), and builds T bottom-up. If a node ni 
is directly connected to the base station n0 in G, n0 becomes 
the parent of ni. Otherwise, the best parent Pi of ni is chosen 
according to Heuristic 1 (line 11) or 2 (line 12).  

Find_Routing_Tree(G, f1-fN): returns T 
// Input:  G: connectivity graph, f1-fN: sampling frequencies  
// Output: T: routing tree of the WSN 
1. Partition sensor nodes into layers 
2. Let layer lmax be the deepest layer 
3. Initialize T with nodes n1-nN, and no edges 
4. For l = lmax DownTo 1 
5.  For each node nj on layer l 
6.   If l=1, add edge <n0, nj> to T 
7.   Else 
8.    Compute FLB

j   according to Equation (1) 
9.    Let Pj be the set of candidate parents of nj 
10.    If there does not exist niPj such that fiFLB

j   
11.     Choose niPj according to Heuristic 1 
12.    Else, choose niPj according to Heuristic 2 
13.   Add edge <ni, nj> to T 
14. Return T 

Fig. 10 Algorithm Find_Routing_Tree 

The algorithm takes O(N2) time (for choosing the best parent 
for each node) and O(N2) space (for storing G), where N is the 
number of sensors. Since the network frequency assignment 
module has the same space and time complexities with respect 
to N according to Theorem 3, the proposed solution to 
Problem 2 takes O(N2) time and space overall, meaning that it 
easily scales to large WSNs. Furthermore, our experiments, 
shown next, demonstrate that Find_Routing_Tree usually 
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identifies high-quality trees that lead to significant energy 
savings. 

Finally, changes in the connectivity graphs are handled as 
follows.  Whenever at least one link in the current routing tree 
T is broken, we re-compute T using Find_Routing_Tree, as 
well as the network frequencies of the sensors. Otherwise, 
Find_Routing_Tree is invoked periodically, and the transition 
process starts when a better routing tree is detected. 

VI. EXPERIMENTAL EVALUATION 

We have implemented the proposed methods in C++, and 
carried out all experiments on a Core 2 Duo 2.6GHz PC with 
2GBytes of memory. We use two real datasets, Greenorbs (94 
sensors), Intel Lab (52 sensors), and a synthetic one. 

GreenOrbs : GreenOrbs  [16] is deployed by our group in a 
forest area in China. It contains 94 active sensors measuring 
temperature, humidity and light per minute. In our 
experiments, we use the temperature readings. The WSN 
follows the collection tree protocol (CTP) [6]. Specifically, 
sensors are organized into a routing tree, which is periodically 
adjusted based on the current link quality conditions. We 
observed that during a period of 12 hours, there is only a small 
number of timestamps when the tree changed. Furthermore, a 
large part of the tree, which forms the backbone of the 
network remained stable throughout the testing period. Fig. 
11a shows the geographic locations of the sensors and the 
base station, as well as the connectivity graph of the entire 
WSN. 

Base station

 

Base station

(a) GreenOrbs  (b) IntelLab 

Base station

  3

 
(c) Synthetic (N=100) 

Fig. 11 Connectivity graphs of the datasets used in the experiments 

We set the sampling frequency of each sensor ni based on the 
change rate of ni’s readings. The intuition is that a sensor with 
stable readings should sample less frequently than another 
whose readings change with a high rate. Specifically, suppose 
that node ni has collected m samples si,1, si,2, …, si,m at m 
timestamps ti,1, ti,2, …, ti,m. The change rate cri of ni is 
calculated by: 

1

, 1 ,
1

1

, 1 ,
1

m

i j i j
j

i m

i j i j
j

s s

cr
t t


















 (16)

Let fmax be the highest sampling frequency required by the 
application. The sampling frequency fi of a node ni is then: 

1max
i max

i N
j j

cr f
f

cr


  (17)

In our experiments, we use fmax=20. Note that the specific 
value of fmax does not affect the relative performance of the 
proposed methods. The maximum possible sampling 
frequency Fmax is set to 10fmax=200. In all experimental 
settings, during the search for the optimal network frequencies, 
the algorithms always terminate earlier (i.e., using the 
optimizations described in Section IV-C) without testing the 
last regular frequency before Fmax. 

IntelLab: IntelLab 4  includes data from 54 sensors that 
measure temperature, humidity, light and voltage every 31 
seconds for a month. Similarly to GreenOrbs, we use 
temperature readings in the experiments. The sampling 
frequencies of the sensors are computed using Equations (16) 
and (17). The dataset does not include the connectivity graph 
G; instead, it lists the probability for each sensor ni to 
successfully deliver a message directly to a surrounding node 
nj. Accordingly, we add an edge <ni, nj> to G, whenever the 
probability of successful packet delivery between ni and nj is 
above 20%. Except for one sensor (ID=5), all others are 
connected in G. Meanwhile, the dataset does not mention the 
location or the connectivity of the base station. Hence, we 
simply treat sensor with ID 1 as the base station. Fig. 11b 
shows the resulting connectivity graph. Finally, there is no 
information on the routing tree. 

Synthetic: We generate sensor locations uniformly within a 
[0,1][0,1] square. In the connectivity graph G, there is an 
edge <ni, nj>, if and only if, the distance between nodes ni and 
nj does not exceed 0.25. Fig. 11c displays the connectivity 
graph of 100 sensors. Additionally, the sampling frequencies 
are random numbers in the range [1, 100], which follow the 
Zipf distribution. Similar to the real datasets, the maximum 
possible network frequency Fmax is set to 10fmax=1000. 

We investigate the energy savings and computational cost 
of LS, under four parameters: (i) number of nodes, (ii) 
distribution of the sampling frequencies, (iii) shape of the 
routing tree, and (iv) the number of dynamic nodes (i.e., with 
frequently changing parents). Sections VI-A and VI-B present 
results on real and synthetic datasets, respectively. 

A. Results for GreenOrbs and IntelLab 

GreenOrbs and IntelLab, like most WSN currently under 
deployment, are restricted to relatively few nodes (under 100), 
for which the computational overhead of LS is negligible. 
Therefore, we defer the discussion on this cost for the 

                                                 
4 Available at http://db.csail.mit.edu/labdata/labdata.html 
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synthetic data, and focus on the energy overhead. Specifically, 
let tw be the number of time units that a sensor is active per 
cycle, and P be the energy consumed per time unit. Given the 
sum of network frequencies , the energy consumed by all 
sensors is Ptw, which is proportional to . Hence, in the 
following we simply report the value of  as the overall 
energy cost. We compare LS against the traditional globally 
synchronized (GS) approach, which sets the network 
frequency of each sensor to fmax=max{f1,f2,…,fN}. Clearly, the 
energy cost of GS is =Nfmax. We include two versions of LS: 
LS-Problem1 and LS-Problem2. The former considers a given 
routing tree T, whereas the latter computes T. 

We first evaluate the impact of the number of nodes N on 
the total energy cost , with a static tree T. Specifically, for 
GreenOrbs, LS-Problem1 uses a real routing tree Treal, taken 
at an arbitrary timestamp. To vary N, we randomly remove 
leaf nodes from Treal (and recursively, entire subtrees). 
IntelLab, on the other hand, does not include real routing trees. 
Hence, we evaluate only LS-Problem2, and vary N by 
removing random nodes. The sampling frequency of each 
node ni is fixed to the value computed based on the real 
change rate of ni’s readings, as described in the beginning of 
this section. Fig. 12 plots  as a function of N. Clearly,  
grows with N for both LS and GS, since more sensors 
naturally lead to higher energy consumption. Comparing GS 
with LS, the former consumes significantly more energy, and 
the difference increases with N (note the logarithmic scale on 
the vertical axis). This is because when a new node ni is added, 
GS always assigns Fi = fmax; LS, on the other hand, usually 
sets Fi to be far lower than fmax since ni only needs to locally 
synchronize with its adjacent nodes. LS-Problem2 
outperforms LS-Problem1, indicating that the proposed 
solution indeed generates better routing trees. 

GS
LS-Problem2

N

(x10  )

2

4

8

54 64 74 84 94

LS-Problem12

 

GS

2

4

8

32 37 42 47 52

LS-Problem2

N

(x10  )2

(a) GreenOrbs  (b) IntelLab 
Fig. 12 Energy cost  vs. number of nodes N 

Next, we fix N to its maximum value, and study the effect of 
the sampling frequencies in the range [1, 100], generated 
according to Zipf distribution with skewness factor . LS-
Problem1 (resp. LS-Problem2) uses the real routing tree (resp. 
tree computed by the proposed heuristics) as before. Fig. 13 
demonstrates the effect of  on . Given the small node 
cardinality, a growing value of a decreases the probability that 
fmax reaches its maximum value 100. Consequently, the cost of 
all methods drops. LS takes better advantage of this fact since 
it can isolate the effect of the high frequencies in their 
respective subtrees. 
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(x10  )2
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16

32

64
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LS-Problem2

α

(a) GreenOrbs  (b) IntelLab 
Fig. 13 Energy cost  vs. sampling frequency skewness  

Finally, we evaluate the impact of changing routing trees. Our 
implementation of LS is based on the second method 
discussed at the end of Section IV, which minimizes re-
computations of network frequencies. In the GreenOrbs 
dataset, we identified 41 dynamic nodes among the real 
routing trees, which reside at the lowest levels of the tree. On 
average, network frequency re-computations are performed 
once every 40 times when T changes, which itself happens 
infrequently. Overall, LS using real routing trees achieves 
34% energy savings compared to GS. To further investigate 
the effect of routing trees with different volatility, we 
randomly mark a number ND of nodes as dynamic in a bottom-
up fashion, and evaluate the energy efficiency of LS. The total 
number of nodes N is fixed to its maximum value, and the 
sampling rates are derived from real readings. Fig. 14 
demonstrates  against varying ND. The energy consumption 
of LS generally increases with ND, as more nodes are merged 
and share the same network frequencies. When the majority of 
sensors are dynamic, LS reduces to GS. Nevertheless, LS 
achieves considerable energy savings, even for relatively large 
values of ND (~50% of N). 

LS Problem1 GS(x10  )
2



0 20 40 8060
6
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10

ND  

LS Problem1 GS(x10  )
2



2

4

6

8

0 10 20 4030 ND

(a) GreenOrbs  (b) IntelLab 
Fig. 14 Energy cost  vs. number of dynamic nodes ND 

B. Results for Synthetic Datasets 

We repeat our experiments on a much larger synthetic dataset 
described in the beginning of this section. In addition to 
energy cost, we report the CPU time and the memory required 
by the proposed algorithms. We focus on static routing trees; 
the results for changing trees lead to similar conclusions as in 
GreenOrbs and IntelLab, and are omitted. Fig. 15 shows the 
effect of the number of nodes N, after fixing the skewness 
factor  of the sampling frequencies to 0.8. Similar to the real 
datasets, the energy overhead of all methods increases with N, 
and LS consistently outperforms GS. The CPU and memory 
overhead of LS grows quadratically with N, as predicted by 
Theorem 3. Nevertheless, even for N=10000, these costs are 
very low (i.e., less than 320 milliseconds and 7Mbytes), which 
confirms that the proposed algorithms could be utilized for 
WSN much larger than the ones currently deployed. 
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Fig. 15 Varying number of nodes 

Fig. 16 fixes N=5000, and varies the skewness factor  of the 
sampling frequencies. Observe that, unlike the case of real 
datasets, the energy consumption of GS remains the same for 
all values of  because, due to the large number of nodes, 
there is always one that has the maximum sampling frequency 
100. On the other hand, as  grows, the consumption of LS 
decreases for the reasons explained in the context of Fig. 13. 
The computational overhead of LS also drops because a lower 
 leads to a more restrictive upper bound on a node’s network 
frequency. Consequently, the optimization of Section IV-C 
becomes more effective, leading to an earlier termination of 
the algorithm. 
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Fig. 16 Varying the distribution of sampling frequencies 

Fig. 17 investigates the impact of the routing tree on LS-
Problem1. Specifically, we generate random trees with a given 
fanout fan for each internal node, and present the average of 
their results, after setting N=5000 and =0.8. Since fan has no 
effect on GS, we report the ratio between the energy cost of 
LS and that of GS. The energy savings of LS increase with fan 
due to the fact that the height of the tree decreases; thus, a 
node ni with high fi influences fewer ancestors. The 
computational overhead also increases with fan because a 
higher fanout leads to a larger subtree for each internal node, 
and, consequently, more regular network frequencies to 
examine. 

30

32

34

36

38

40

42

2 4 6 8 10 12 14 16 fan

Percentage (%) LS-Problem1 / GS

 16 fan5

15

25

35

45

55

65

2 4 6 8 10 12 14

Memory (MB)

0.5
1.0

1.5

2.0

2.5

3.0

3.5CPU (s)

CPU
Memory

(a) Energy cost (b) Computation cost 
Fig. 17 Varying the shape of the tree 

 
 

VII. CONCLUSION 

This paper presents a novel framework that allows sensors to 
sample at different rates, while ensuring timely routing of 
packets. We focus on two versions of the problem, depending 
on whether the WSN topology is fixed or not. Extensive 
experiments, using real and synthetic datasets, demonstrate 
the effectiveness of local synchronization in both versions. In 
the future we plan to investigate the computation of routing 
trees that minimize the network frequencies and at the same 
time minimize the packet losses. Finally, another interesting 
direction is the extension of the proposed techniques to multi-
path topologies. 
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