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Abstract—Since the inception of Bitcoin, the distributed sys-
tems community has shown interest in the design of efficient
blockchain systems. However, initial blockchain applications (like
Bitcoin) attain very low throughput, which has promoted the
design of permissioned blockchain systems. These permissioned
blockchain systems employ classical Byzantine-Fault Tolerant
(BFT) protocols to reach consensus. However, existing permis-
sioned blockchain systems still attain low throughputs (of the
order 10K txns/s). As a result, existing works blame this low
throughput on the associated BFT protocol and expend resources
in developing optimized protocols. We believe such blames only
depict a one-sided story. In specific, we raise a simple question:
can a well-crafted system based on a classical BFT protocol
outperform a modern protocol? We show that designing such a
well-crafted system is possible and illustrate that even if such
a system employs a three-phase protocol, it can outperform
another system utilizing a single-phase protocol. This endeavor
requires us to dissect a permissioned blockchain system and
highlight different factors that affect its performance. Based
on our insights, we present the design of our enterprise-grade,
high-throughput yielding permissioned blockchain system, Re-
silientDB, that employs multi-threaded deep pipelines, to balance
tasks at a replica, and provides guidelines for future designs.

I. INTRODUCTION

Since the inception of blockchain [1], [2], the distributed
systems community has renewed its interest in the age-old
design of Byzantine-Fault Tolerant (BFT) systems. At the
core of any blockchain applications is a BFT algorithm that
ensures all the replicas of this blockchain application reach a
consensus, that is, agree on the order for a given client request,
even if some of the replicas are byzantine [3[, [4], [S], [6], [7].

Surprisingly, even after a decade of its introduction and pub-
lication of several prominent research works, the major use-
case of blockchain technology remains as a crypto-currency.
This leads us to a key observation: Why have blockchain (or
BFT) applications seen such a slow adoption?

The low throughput and high latency are the key reasons
why BFT algorithms are often ignored. Prior works [8]], [9l,
[1O], [11] have shown that the traditional distributed systems
can achieve throughputs of the order 100K transactions per
second while the initial blockchain applications, such as Bit-
coin [12] and Ethereum [13]], have throughputs of at most
ten transactions per second. Such low throughputs do not
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affect the users of these applications, as the aim of these
applications is to promote an alternative currency, which is
unregulated by any large corporation, that is, anyone can join,
and the identities of the participants are kept hidden (open
membership). Evidently, this open-membership property has
also led to several attacks on these applications [2], [[14], [15].

This led to industry-grade permissioned blockchain systems,
where only a select group of users, some of which may be
untrusted, can participate [7]. However, the throughputs of
current permissioned blockchain applications are still of the
order 10K transactions per second [7], [16], [L7]. Several
prior works blame the low throughput and scalability of a
permissioned blockchain system on to its underlying BFT
consensus algorithm [2], [4]], [L8], [17]. Although these claims
are not false, we believe they only represent a one-sided story.

We claim that the low throughput of a blockchain system
is due to missed opportunities during its design and imple-
mentation. Hence, we want to raise a question: can a well-
crafted system-centric architecture based on a classical BFT
protocol outperform a protocol-centric architecture? Essen-
tially, we wish to show that even a slow-perceived classical
BFT protocol, such as PBFT [3], if implemented on skillfully-
optimized blockchain fabric, can outperform a fast niche-case
and optimized for fault-free consensus, BFT protocol, such as
Zyzzyva [4]. We use Figure |1 to illustrate such a possibility.
In this figure, we measure the throughput of an optimally
designed permissioned blockchain system (ResilientDB) and
intentionally make it employ the slow PBFT protocol. Next,
we compare the throughput of ResilientDB against a protocol-
centric permissioned blockchain system that adopts practices
suggested in BFTSmart [19] and employs the fast Zyzzyva
protocol. We observe that the system-centric design of Re-
silientDB, even after employing the three-phase PBFT protocol
(two of the three phases require quadratic communication
among the replicas) outperforms the system having a single-
phase linear protocol Zyzzyva. Further, ResilientDB achieves
a throughput of 175K transactions per second, scales up to 32
replicas, and attains up to 79% more throughput.

This paper is aimed at illustrating that the design and archi-
tecture of the underlying system are as important as optimizing
BFT consensus. Decades of academic research and industry
experience has helped the community in designing efficient
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Fig. 1: Two permissioned applications employing distinct BFT
consensus protocols (80K clients used for each experiment).

distributed applications [20], [21], [22], [23]. We use these
principles to illustrate the design of a high-throughput yielding
permissioned blockchain fabric, ResilientDB. In specific, we
dissect existing permissioned blockchain systems, identify
different performance bottlenecks, and illustrate mechanisms
to eliminate these bottlenecks from the design. For example,
we show that even for a blockchain system, ordering of trans-
actions can be easily relaxed without affecting the security.
Further, most of the tasks associated with transaction ordering
can be extensively parallelized and pipelined. A highlight of
our other observations:

« Optimal batching of transactions can help a system gain
up to 66x throughput.

e Clever use of cryptographic signature schemes can in-
crease throughput by 103 x.

« Employing in-memory storage with blockchains can yield
up to 18x throughput gains.

e Decoupling execution from the ordering of client trans-
actions can increase throughput by 10%.

o Out-of-order processing of client transactions can help
gain 60% more throughput.

o Protocols optimized for fault-free cases can result in a
loss of 39x throughput under failures.

These observations allow us to perceive ResilientDB as a
reliable test-bed to implement and evaluate enterprise-grade
blockchain applications. E] We now enlist our contributions:

« We dissect a permissioned blockchain system and enlist
different factors that affect its performance.

o« We carefully measure the impact of these factors and
present ways to mitigate the effects of these factors.

e We design a permissioned blockchain system, Re-
silientDB that yields high throughput, incurs low latency,
and scales even a slow protocol like PBFT. ResilientDB
includes an extensively parallelized and deeply pipelined
architecture that efficiently balances the load at a replica.

e We raise eleven questions and rigorously evaluate our
ResilientDB platform in light of these questions.

Note on this work: This paper is not aimed at designing
efficient BFT consensus protocols, for which there already
exists an extensive literature [3]], [4], [24], [25], [26]. Further,

I ResilientDB is available and open-sourced at https://resilientdb.com.
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Fig. 2: This diagram illustrates a set of replicas of which some
may be malicious or have crashed. One replica is designated as
the primary, which leads the consensus on the received client
request among the backup replicas.
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Fig. 3: The three-phase PBFT protocol.

this work does not aim at benchmarking open-membership and
permissioned blockchain systems, as done by Blockbench [2].
Moreover, we do not advocate the use of any specific BFT
protocol or permissioned blockchain system, but instead per-
form an in-depth analysis of a single permissioned blockchain
system, to uncover insights that can help both researchers and
practitioners to build next-generation blockchain fabrics.

II. BACKGROUND AND RELATED WORK

Before laying down the foundation for efficient design, we
first analyze existing literature and practices in the domain of
permissioned blockchain.

A. BFT Consensus

At the core of any blockchain application is a BFT consen-
sus protocol, which states that given a client request and a set
of replicas, some of which could be byzantine, the non-faulty
replicas would agree on the order for this client request. We
use Figure [2] to schematically represent consensus.

PBFT [3] is often described as the first BFT protocol
to allow consensus to be incorporated by practical systems.
PBFT follows the primary-backup model where one replica is
designated as the primary and other replicas act as the backup.
PBFT only guarantees a successful consensus among n repli-
cas if at most f of them are byzantine, where n > 3f + 1.

When the primary replica receives a client request, it assigns
it a sequence number and sends a PRE-PREPARE message
to all the backups to execute this request in the sequence
order (refer to Figure [3)). Each backup replica on receiving the
PRE-PREPARE message from the primary shows its agreement
to this order by broadcasting a PREPARE message. When a
replica receives PREPARE message from at least 2f distinct
backup replicas, then it achieves a guarantee that a majority



of the non-faulty replicas are aware of this request. Such a
replica marks itself as prepared and broadcasts a COMMIT
message. Next, when this replica receives COMMIT messages
from 2f 4 1 distinct replicas, then it achieves a guarantee for
the order of this request, as a majority of the replicas must
have also prepared this request. Finally, this replica executes
the request and sends a response to the client.

More Replicas. It is evident from the PBFT protocol that
any system relying on PBFT’s design for consensus would be
expensive. Hence, several other efficient BFT designs (each
with its limitation) have emerged lately [27]. For instance,
Q/U [28] attempts to reduce BFT consensus to a single-
phase through the use of 5f + 1 replicas, but cannot handle
concurrent requests. HQ [29]] builds on top of Q/U and permits
concurrency only if the transactions are non-conflicting.

Speculative Execution. Zyzzyva [4] introduces speculative
execution to the BFT protocols to yield a linear BFT protocol.
In Zyzzyva’s design, as soon as a backup replica receives a
request from the primary, it executes the request and sends
a response to the client. Hence, a replica does not even
wait to confirm that the order is the same across all the
replicas. Zyzzyva requires just one phase, so its design helps
to gauge the maximum throughput that can be attained by a
BFT protocol. However, if the primary is malicious, Zyzzyva
needs the help of its good clients to ensure a correct order.
If the clients are malicious, then Zyzzyva is unsafe until a
good client participates. Further, Zyzzyva’s fast case requires
a client to receive a response from all the 3f + 1 replicas
before it marks a request complete. Prior works [30] have
shown that just one failure is enough to lead Zyzzyva to very
low throughput. A recent protocol, Proof-of-Execution (PoE)
tries to remove the limitations of Zyzzyva and outperforms
PBFT [31]. However, PoE also requires one phase of quadratic
communication among its replicas.

Multiple Primaries: Several protocols [5], [L18], [32] sug-
gest dedicating multiple replicas as primaries to gain higher
throughput. Multiple primaries can boost the throughput when
the system is not limited by resources and network. Further,
multiple primary protocols require coordination for the execu-
tion of their requests in the correct order.

B. Chain Management

A blockchain is an immutable ledger that consists of a set of
blocks. Each block contains necessary information regarding
the executed transaction and the previous block in its chain.
The data about the previous block helps any blockchain
achieve immutability. The ¢-th block in the chain can be
represented as: B; := {k,d,v, H(B;_1)}

This block B; contains the sequence number (k) of the
client request, the digest (d) of the request, the identifier of
the primary v who initiated the consensus, and the hash of the
previous block, H(B;_1). In each blockchain application, ev-
ery replica independently maintains its copy of the blockchain.
Prior to the start of consensus, the blockchain of each replica
has no element. Hence, it is initialized with a genesis block [[L]].
The genesis block is marked as the first block in the chain
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Fig. 4: A formal representation of the blockchain.

and contains dummy data. For instance, a genesis block can
contain the hash of the identifier of the first primary, H(P).

C. Alternative Blockchain Architectures

To improve the throughput attained by a permissioned
blockchain application, researchers have also explored alter-
nate architectures and designs to manage the blockchain.

DAG. Since the common data-structure in any blockchain
application is the ledger, several systems incorporated a
directed-acyclic graph to record the client transactions [16],
[33], [34]. As a blockchain application expects a single order
for all the transactions across all the replicas, so a DAG-based
design allows replicas working on non-conflicting transactions
to simultaneously record multiple transactions. However, a
DAG-based design would require the merge of branches of
a DAG once there are conflicting transactions, which in turn
necessitates communication between all the replicas.

Sharding. Another approach to extract higher throughput
from a blockchain system is to employ sharding [16], [17],
[35]. Sharding splits the records accessed by the clients into
several distinct partitions, where each partition is maintained
by a set of replicas. Although sharding helps an application to
attain high throughput when client transactions require access
to only one partition, multi-partition transactions are expensive
as they can require up to two additional phases to ensure safety.

Geo-Scale Clustering. Several protocols have suggested
clustering replicas in the vicinity [36[], [37]. For exam-
ple, GeoBFT [37] facilitates running the PBFT protocol in
each cluster in parallel. Although this design yields high-
throughput, it reduces fault-tolerance as each cluster needs to
have 3f + 1 replicas.

Other Permissioned Systems. Several other permissioned
blockchain systems such as Hyperleder Fabric [7], Multi-
Chain [38], and Tendermint [39] have proposed high-level
system architecture to achieve high throughput. For instance,
Hyperledger Fabric presents a distinct paradigm of execut-
ing transactions first and then ensuring they have a valid
order, while Tendermint advocates reliance on a synchronous
setting to attain higher throughput. Despite these exciting
principles, these works miss the low-level system details,
which is the main focus of this work. Further, several existing
BFT protocols have employed BFTSmart [19] as a standard
implementation for PBFT. This is noteworthy as BFTSmart
associates a non-pipelined architecture with PBFT and avoids
other design optimizations for the sake of design simplicity.

III. DISSECTING PERMISSIONED BLOCKCHAIN

Most of the strategies we discussed in the previous section
focussed at: (i) optimizing the underlying BFT consensus
algorithm, and/or (ii) restructuring the way a blockchain is



maintained. We believe there is much more to render in the
design of a permissioned blockchain system beyond these
strategies. Hence, we identify several other key factors that
reduce the throughput and increase the latency of a permi-
sisoned blockchain system or database.

Single-threaded Monolithic Design. There are ample
opportunities available in the design of a permissioned
blockchain application to extract parallelism. Several exist-
ing permissioned systems provide minimal to no discussion
on how they can benefit from the underlying hardware or
cores [16], [17)], [25)]. Due to the sustained reduction in
hardware cost (as a consequence of Moore’s Law [40]), it
is easy for each replica to have at least eight cores. Hence,
by parallelizing the tasks across different threads and pipelin-
ing several transactions, a blockchain application can highly
benefit from the available computational power.

Successive Phases of Consensus. Several works advocate
the benefits of performing consensus on one request at a
time [16], [41], while others promote aggregating client re-
quests into large batches [7], [12]. We believe there is a
communication and computation trade-off that needs to be
analyzed before reaching such a decision. Hence, an optimal
batching limit needs to discovered.

Decoupling Ordering and Execution. On receiving a client
request, each replica of a permissioned blockchain application
has to order and execute that request. Although these tasks
share a dependency, it is a useful design practice to separate
them at the physical or logical level. At the physical level,
distinct replicas can be used for execution. However, such
an approach would incur additional communication costs. At
the logical level, distinct threads can be asked to process
requests in parallel, but additional hardware cores would be
needed to facilitate such parallelism. In specific, a single entity
performing both ordering and execution loses an opportunity
to gain from inherent parallelism.

Strict Ordering. Permissioned blockchain applications rely
on BFT protocols, which necessitate ordering of client requests
in accordance with linearizability [3]], [42]. Although lineariz-
ability helps in guaranteeing a safe state across all the replicas,
it is an expensive property to achieve. Hence, we need an
approach that can provide linearizability but is inexpensive. We
observe that permissioned blockchain applications can benefit
from delaying the ordering of client requests until execution.
This delay ensures that although several client requests are
processed in parallel, the result of their execution is in order.

Off-Memory Chain Management. Blockchain applica-
tions work on a large set of records or data. Hence, they
require access to databases to store these records. There is a
clear trade-off when applications store data in-memory or on
an off-the-shelf database. Off-memory storage requires several
CPU cycles to fetch data [43]. Hence, employing in-memory
storage can ensure faster access, which in turn can lead to high
system throughput.

Expensive Cryptographic Practices. Blockchain applica-
tions expect the exchange of several messages among the
participating replicas and the clients, of which some may be
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Fig. 5: ResilientDB Architecture.

byzantine. Hence, each blockchain application requires strong
cryptographic constructs that allow a client or a replica to
validate any message. These cryptographic constructs find a
variety of uses in a blockchain application: (i) To sign a
message. (ii) To verify an incoming message. (iii) To generate
the digest of a client request. (iv) To hash a record or data.

To sign and verify a message, a blockchain application can
employ either symmetric-key cryptography or asymmetric-key
cryptography [44]]. Although symmetric-key signatures, such
as Message Authentication Code (MAC), are faster to generate
than asymmetric-key signatures, such as Digital Signature
(DS), DSs offer the key property of non-repudiation, which is
not guaranteed by MACs [44]. Hence, several works suggest
using DSs [7], [16], [L7], [25]. However, a cleverly designed
permissioned blockchain system can skip using DSs for a
majority of its communication, which in turn will help increase
its throughput. For generating digests or hash, a blockchain
application needs to employ standard Hash functions, such as
SHA256 or SHA3, which are secure.

IV. RESILIENTDB PERMISSIONED BLOCKCHAIN FABRIC

We now present our ResilientDB fabric, which incorpo-
rates our insights and fulfills the promise of an efficient
permissioned blockchain system. In Figure [5] we illustrate
the overall architecture of ResilientDB, which lays down an
efficient client-server architecture. At the application layer,
we allow multiple clients to co-exist, each of which creates
its own requests. For this purpose, they can either employ an
existing benchmark suite or design a Smart Contract suiting
to the active application. Next, clients and replicas use the
transport layer to exchange messages across the network.
ResilientDB also provides a storage layer where all the
metadata corresponding to a request and the blockchain is
stored. At each replica, there is an execution layer where the
underlying consensus protocol is run on the client request,
and the request is ordered and executed. During ordering, the
secure layer provides cryptographic support.

Since our aim is to present the design of a high-throughput
permissioned blockchain system, for the rest of the discussion
we use the simple yet robust PBFT protocol (explained in
Section for reaching consensus among the replicas. Note
that succeeding insights also apply to other BFT protocols.
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A. Multi-Threaded Deep Pipeline

For implementing PBFT, we require ResilientDB to follow
the primary-backup model. On receiving a client request, the
primary replica must initiate PBFT consensus among all the
backup replicas and ensure all the replicas execute this client
request in the same order. Note that depending on the choice of
BFT protocol, ResilientDB can be molded to adopt a different
model (e.g. leaderless architecture).

In Figure [6] we illustrate the threaded-pipelined architecture
of ResilientDB replicas. We permit increasing (or decreasing)
the number of threads of each type. In fact one of the key
goals of this paper is to study the effect of varying these
threads on a permissioned blockchain. With each replica, we
associate multiple input and output threads. In specific, we
balance the tasks assigned to the input-threads, by requiring
one input-thread to solely receive client requests, while two
other input-threads to collect messages sent by other replicas.
ResilientDB also balances the task of transmitting messages
between the two output-threads by assigning equal clients and
replicas to each output-thread. To facilitate this division, we
need to associate a distinct gueue with each output-thread.

B. Transaction Batching

ResilientDB allows both clients and replicas to batch their
transactions. Using an optimal batching policy can help mask
communication and consensus costs. A client can send a burst
of transactions as a single request to the primary. Examples
of applications where a client may batch multiple transac-
tions are stock-trading, monetary-exchanges, and service level-
agreements. The primary replica can also aggregate client
requests together to significantly reduce the number of times
a consensus protocol needs to be run among the replicas.

C. Modeling a Primary Replica

To facilitate efficient batching of requests, ResilientDB
associates multiple batch-threads with the primary replica.
When the primary replica receives a batch of requests from
the client, it treats it as a single request. The input-thread
at the primary assigns a monotonically increasing sequence
number to each incoming client request and enqueues it into
the common queue for the batch-threads. To prevent contention
among the batch-threads, we design the common queue as
lock-free. But why have a common queue? This allows us to

ensure that any enqueued request is consumed as soon as any
batch-thread is available.

Each batch-thread also performs the task of verifying the
signature of the client request. If the verification is successful,
then it creates a batch and names it as the PRE-PREPARE
message. PBFT also requires the primary to generate the
digest of the client request and send this digest as part of the
PRE-PREPARE message. This digest helps in identifying the
client request in future communication. Hence, each batch-
thread also hashes a batch and marks this hash as a digest.
Finally, the batch-thread signs and enqueues the corresponding
PRE-PREPARE message into the queue for an output-thread.

Apart from the client requests, the primary replica receives
PREPARE and COMMIT messages from backup replicas. As
the system is partially asynchronous, so the primary may
receive both the PREPARE and COMMIT messages from a
backup replica X before the PREPARE message from a backup
Y. How is this possible? The replica X could have received
sufficient number of PREPARE messages (that is 2f) before
the primary receives PREPARE from replica Y (total number
of replicas are n = 3f + 1). In such a case, X would proceed
to the next phase and broadcast its COMMIT message. Hence,
to prevent any resource contention, we designate only one
worker-thread the task of processing all these messages.

When the input-thread receives a PREPARE message, it
enqueues that message in the work-queue. The worker-thread
dequeues a message and verifies the signature on this message.
If the verification is successful, then it records this message
and continues collecting PREPARE messages corresponding to
a PRE-PREPARE message until its count reaches 2f. Once
it reaches this count, then it creates a COMMIT message,
signs and broadcasts this message. The worker-thread follows
similar steps for a COMMIT message, except that it needs a
total of 2f + 1 messages, and once it reaches this count, it
informs the execute-thread to execute the client requests.

D. Modeling a Backup Replica

As a backup replica does not create batches of client
requests, ResilientDB assigns it fewer threads. When the input-
thread at a backup replica receives a PRE-PREPARE message
from the primary, then it enqueues it in the work-queue.
The worker-thread at a backup dequeues a PRE-PREPARE
message and checks if the message has a valid signature of
the primary. If this is the case, then the worker-thread creates
a PREPARE message, signs this message, and enqueues it in
the queue for output-thread. Note that this PREPARE message
includes the digest from the PRE-PREPARE message and the
sequence number suggested by the primary. The output-thread
broadcasts this PREPARE message on the network. Similar to
the primary, each backup replica also collects 2f PREPARE
messages, creates and broadcasts a COMMIT message, collects
2f + 1 COMMIT messages, and informs the execute-thread.

E. Out-of-Order Message Processing

The key to the fast ordering of client requests is to allow
ordering of multiple client requests to happen in parallel.



ResilientDB supports parallel ordering of client requests, while
ensuring a single common order across all the replicas.

Example 1: Say a client C' sends the primary replica P
first request my and then request ms. The input-thread at the
primary P would assign a sequence number k to request 1
and k + 1 to request mo. However, as the batch-threads can
work at varying speeds, so it is possible that the consensuses
for requests m; and mo may either overlap, or some replica
R may receive 2f + 1 COMMIT messages for mqy before m;.

In principle, Example [I] seems like a challenge for a
blockchain application, as a replica may receive requests at
sequence number k + 1,k + 2, ... before it commits request
at number k. However, the property of out-of-order message
processing is inherent in the design of most BFT protocols and
is often overlooked.

Existing BFT protocols expect all the non-faulty replicas to
act deterministic, that is, on identical inputs present identical
outputs [3l], [4]], [18]]. Further, they only accept a request after
they have a guarantee that a majority of other replicas have
also accepted the same request. For example, in the PBFT
protocol, say a backup replica R receives a PRE-PREPARE
message for client request m; with sequence number k. This
replica R will not send a COMMIT message in support of the
request my until it receives 2f identical PREPARE messages
from distinct replicas in support of m;. Further, the replica R
will only execute request m; when it receives 2 f+1 COMMIT
messages from distinct replicas.

In the case of out-of-order message processing, if a replica
gets 2f + 1 COMMIT messages for a request with sequence
number k + 1 before the request with number k, it will not
execute (k + 1)-th request before k-th request. Hence, the
execution of all the succeeding requests has to be kept on hold.
This ensures that the order of execution is identical across all
the non-faulty replicas.

Of course, the primary P could act malicious and could send
all but the k-th request. To tackle such a scenario, BFT proto-
cols already provide a primary-replacement (or view-change)
algorithm [3]], [4]]. The aim of the view-change algorithm is to
deterministically replace the malicious primary P with a new
primary P’. It is the duty of this new primary P’ to ensure
all the replicas reach the common state otherwise it will also
be replaced. As ResilientDB uses existing BFT protocols, we
skip presenting the details of existing view-change algorithm.

F. Efficient Ordered Execution

Although we parallelize consensus, we ensure execution
happens in order. For instance, the requests m; and mo
from Example are executed in sequence order, that is,
mq is executed before meo, irrespective of the order their
consensuses completed. At each replica, we dedicate a separate
execution-thread to execute the requests. But, the key question
remains: how can we reduce the execution-thread’s overhead
of ordering.

It is evident that the execution-thread has to wait for a
notification from the worker-thread. In specific, we require the
worker-thread to create an EXECUTE message and place this

message in the appropriate queue for the execution-thread.
This EXECUTE message contains the identifier for the starting
and ending transactions of a batch, which need to be executed.
Note that we associate a large set of queues with the execution-
thread. To determine the number of required queues for the
execution-thread, we use the parameter QC'.

QC =2 x Num_Clients x Num_Req

Here, Num_Clients represent the total number of clients in
the system, while Num_Req represents the maximum number
of requests a client can send without waiting for any response.
We assume both of these parameters to be finite. Although
QC can be very large, the queues are logical. So, the space
complexity remains almost the same as for a single queue. But
why is this practice advantageous?

Using this design the execute-thread can deterministically
select the queue to dequeue. If k£ was the sequence number
for last executed request, the execute-thread calculates r =
(k+1) mod QC and waits for an EXECUTE message to be
enqueued in its r-th queue. This design is more efficient than
having a single queue, as a single queue would have forced
several dequeues and enqueues until finding the next request
in order to execute. Alternatively, we could have employed
hash-maps but collision resistant hash functions are expensive
to compute and verify [44].

Once the execution is complete, the execution-thread creates
a RESPONSE message and enqueues it in the queue for output-
threads, to send to the client. Note that ensuring execution
happens in order provides a guarantee that a single common
order is established across all the non-faulty replicas.

Block Generation. 1t is at this stage where we require the
execution thread to create a block representing this batch of
requests. As the execute-thread has access to the previous
block in the chain, so it can easily hash this previous block and
store this hash in the new block. Note that this step provides
another opportunity for parallelism where the execute-thread
can delegate the task of creating a new block to another thread.

G. Checkpointing

We also require replicas to periodically generate and ex-
change checkpoints. These checkpoints serve fwo purposes:
(1) Help a failed replica to update itself to the current
state. (2) Facilitate cleaning of old requests, messages and
blocks. However, as checkpointing requires exchange of large
messages, so we ensure it does not impact the throughput of
the system. ResilientDB deploys a separate checkpoint-thread
at each replica to collect and process incoming CHECKPOINT
messages. These checkpoint messages simply include all the
blocks generated since the last checkpoint. In specific, a
CHECKPOINT message is sent only after a replica has executed
A requests. Once execute-thread completes executing a batch,
it checks if the sequence number of the batch is a multiple
of A. If such is the case, it sends a CHECKPOINT message
to all the replicas. When a replica receives 2f + 1 identical
CHECKPOINT messages from distinct replicas, then it marks



the checkpoint and clears all the data before the previous
checkpoint [3], [4].

H. Buffer Pool Management

Until now, our description revolved around how a replica
uses messages and transactions. In ResilientDB, we designed
a base class that represents all the messages. To create a new
message type, one has to simply inherit this base class and
add required properties. Although on delivery to the network,
each message is simply a buffer of characters, this typed
representation helps us to easily manipulate the required prop-
erties. Similarly, we have designed a base class to represent all
client transactions. An object of this transaction class includes:
transaction identifier, client identifier, and transaction data,
among many other properties.

When a message arrives in the system, a replica needs to
allocate (malloc) space for that messages. Similarly, when
a replica receives a client request, it needs to allocate corre-
sponding transaction objects. When the lifetime of a message
ends (or a new checkpoint is established), then the memory
occupied by that message (or transactions object) needs to be
released (free). To avoid such frequent allocations and de-
allocations, we adopt the standard practice of maintaining a set
of buffer pools. At the system initialization stage, we create a
large number of empty objects representing the messages and
transactions. So instead of doing a malloc, these objects are
extracted from their respective pools and are placed back in
the pool during the free operation.

V. EXPERIMENTAL ANALYSIS

We now analyze how various parameters affect the through-
put and latency of a Permissioned Blockchain (henceforth
abbreviated as PBC) system. For the purpose of this study
we use our ResilientDB fabric. Although ResilientDB can
employ any BFT consensus protocol, we use the simple PBFT
protocol to ensure the system design remains as our key focus.
To ensure a holistic evaluation, we attempt to answer the
following questions:

(Q1) Can a well-crafted system based on a classical BFT
protocol outperform a modern protocol?

How much gains in throughput (and latency) can a PBC
achieve from pipelining and threading?

Can pipelining help a PBC become more scalable?
What impact does batching of requests has on a PBC?
Do multi-operation requests impact the throughput and
latency of a PBC?

How increasing the message size impacts a PBC?

What effect do different types of cryptographic signature
schemes have on the throughput of a PBC?

How does a PBC fare with in-memory storage versus a
storage provided by a standard database?

Can an increased number of clients impact the latency of
a PBC, while its throughput remains unaffected?

Can a PBC sustain high throughput on a setup having
fewer number of cores?

How impactful are replica failures for a PBC?

(Q2)
(Q3)
(Q4)
(Q5)

(Q6)
Q7)

(Q8)
Q9
(Q10)
QL)
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Fig. 7: Upper bound measurements: (i) Primary responds back
to the client without Execution, and (ii) Primary executes the
request and replies to the client.

A. Evaluation Setup

We employ Google Cloud infrastructure at Iowa region to
deploy our ResilientDB. For replicas, we use c2 machines
with an 8-core Intel Xeon Cascade Lake CPU running at
3.8GHz and having 16GB memory, while for clients we use
c2 4-core machines. We run each experiment for 180 seconds,
and collect results over three runs to average out any noise.

We use YCSB [2], [45] for generating workload for client
requests. For creating a request, each client indexes a YCSB
table with an active set of 600K records. In our evaluation,
we require client requests to contain only write accesses, as
a majority of blockchain requests are updates to the existing
data. During the initialization phase, we ensure each replica
has an identical copy of the table. Each client YCSB request
is generated from a uniform Zipfian distribution.

Unless explicitly stated otherwise, we use the following
setup: We invoke up to 80K clients on 4 machines and run
consensus among 16 replicas. We employ batching to create
batches of 100 requests. For communication among replicas
and clients we employ digital signatures based on ED25519,
and for communication among replicas we use a combination
of CMAC and AES [44]. At each replica, we permit one
worker-thread, one execute-thread and two batch-threads

B. Effect of Threading and Pipelining

In this section, we analyze and answer questions [QT] to [Q3]
For this study, we vary the system parameters in two dimen-
sions: (i) We increase the number of replicas participating in
the consensus from 4 to 32. (ii)) We expand the pipeline and
gradually balance the load among parallel threads.

We first try to gauge the upper bound performance of our
system. In Figures and we measure the maximum
throughput and latency a system can achieve, when there is no
communication among the replicas or any consensus protocol.
We use the term No Execution to refer to the case where
all the clients send their requests to the primary replica and
primary simply responds back to the client. We count every
query responded back in the system throughput. We use the
term Execution to refer to the case where the primary replica
executes each query before responding back to the client. In
both of these experiments, we allowed two threads to work
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Fig. 8: System throughput and latency, on varying the number
of replicas participating in the consensus. Here, E denotes
number of execution-threads, while B denotes batch-threads.

independently at the primary replica, that is, no ordering is
maintained. Clearly, the system can attain high throughputs
(up to 500K txns/s) and has low latency (up to 0.25s).

Next, we take two consensus protocols: PBFT and Zyzzyva,
and we ensure that at least 3f + 1 replicas are participating
in the consensus. We gradually move our system towards
the architecture of Figure [6] In Figures [8a] and we show
the effects of this gradual increase. We denote the number
of execution-threads with symbol E, and batch-threads with
symbol B. For all these experiments, we used only one worker-
thread. The key intuition behind these plots is to continue
expanding the stages of pipeline and the number of threads,
until system can no longer increase its throughput. In this
manner, it would be easy to observe design choices that could
make even PBFT outperform Zyzzyva, that is, benefits of a
well-crafted implementation.

On close observation of Figure [8a] we can trivially highlight
the benefits of a good implementation. Further, these plots
help to confirm our intuition that a multi-threaded pipelined
architecture for a PBC outperforms a single-threaded design.

This is the key reason why our design of ResilientDB employs
one execution-thread and two batch-threads apart from a single
worker-thread.

Next, we explain our methodology for gradual changes. We
first modified ResilientDB to ensure there are no additional
threads for execution and batching, that is, all tasks are done by
one worker-thread (OE OB). On scaling this system we realized
that this worker-thread was getting fully utilized. Hence, we
partially divide the load by having an execute-thread (1E
0B). However, we again observed that the worker-thread at
the primary was getting completely utilized. So we had an
opportunity to introduce a separate thread to create batches
(1E 1B). Although worker-thread was no longer saturating, the
batch-thread was overloaded with the task of creating batches.
Hence, we further divided the task of batching among multiple
batch-threads (1E 2B) and ensured none of the batch-threads
were fully utilized. Figures and [Ob] show the utilization
level for different threads at a replica. In this figure, we mark
100% as the maximum utilization for any thread. Using the
bar for cumulative utilization, we show a summation of the
utilization for all the threads, for any experiment. Note that for
PBFT 1E 2B, the worker-thread at the backup replicas have
started to saturate. But, as the architecture at the non-primary
is following our design, so we split no further.

It can be observed that if PBFT is given benefit of Re-
silientDB’s standard pipeline (1E 2B), then it can attain higher
throughput than all but one Zyzzyva implementations. The
only Zyzzyva implementation (1E 2B) that outperforms PBFT
is the one that employs ResilientDB’s standard threaded-
pipeline. Further, even the simpler implementation for PBFT
(1E 1B) attains higher throughput than Zyzzyva’s OE OB and
1E 0B implementations.

We have always stated that the design of ResilientDB
is independent of the underlying consensus protocol. This
can be observed from the fact that when Zyzzyva is given
ResilientDB’s standard pipeline, then it can achieve throughput
of 200K txns/s. Note that in majority of the settings PBFT
incurs less latency than Zyzzyva. This is an effect of Zyzzyva’s
algorithm, which requires the client to wait for replies from
all the n replicas, where for PBFT the client only needs f+ 1
responses. To summarize: (i) PBFT’s throughput (latency)
increases (reduces) by 1.39x (58.4%) on moving from OE 0B
setup to 1E 2B. (ii) Zyzzyva’s throughput (latency) increases
(reduces) by 1.72x (63.19%) on moving from OE OB setup
to 1E 2B. (iii) Throughput gains up to 1.07x are possible on
running PBFT on an efficient setup, in comparison to basic
setups for Zyzzyva.

C. Effect of Transaction Batching

We now try to answer question [Q4] by studying how
batching the client transactions impacts the throughput and
latency of a PBC. For this study, we increase the size of a
batch from 1 to 5000.

Using Figures [I0a) and [T0b] we observe that as the number
of transactions in a batch increases, the throughput increases
until a limit (at 1000) and then starts decreasing (at 3000).
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Fig. 9: Utilization level of different threads at a replica. The mean is at 100%, which implies the thread is completely utilized.

At smaller batches, more consensuses are taking place, and
hence communication impacts the system throughput. Hence,
larger batches help reduce the consensuses. However, when
the transactions in a batch are increased further, then the size
of the resulting message and the time taken to create a batch
by a batch-thread, reduces the system throughput. Hence, any
PBC needs to find an optimal number of client transactions that
it can batch. To summarize: batching can increase throughput
by up to 66x and reduce latency by up to 98.4%.

D. Effect of Multi-Operation Transactions

We now answer question @ that is, understand how multi-
operation transactions affect the throughput of a system? In
Figures [TTa] and [TTb] we increase the number of operations
per transaction from 1 to 50. Further, we increase the number
of batch-threads from 2 to 5, while having one worker-thread
and one execute-thread. Although multi-operation transactions
are common, prior works do not provide any discussion on
such transactions. Notice that these experiments are orthogonal
counterparts of the experiments in the previous section.

It is evident from these figures that on increasing the number
of operations per transaction, the system throughput decreases.
This decrease is a consequence of batch-threads getting satu-
rated as they perform task of batching and allocating resources

for transaction. Hence, we ran several experiments with dis-
tinct counts for batch-threads. An increase in the number of
batch-threads helps the system to increase its throughput, but
the gap reduces significantly after the transaction becomes too
large (at 50 operations). Similarly, more batch-threads help to
decrease the latency incurred by the system.

Alternatively, we also measure the total number of opera-
tions completed in each experiment. Notice that if we base the
throughput on the number of operations executed per second,
then the trend has completely reversed. Indeed, this makes
sense as in fewer rounds of consensus, more operations have
been executed. To summarize: multi-operation transactions
can cause a decrease of 93% in throughput and an increase of
13.29x in latency, on the two batch-threads setup. An increase
in batch-threads from two to five increases throughputs up to
66% and reduces latencies up to 39%.

E. Effect of Message Size

We now try to answer question by increasing the size
of the PRE-PREPARE message in each consensus. The key
intuition behind this experiment is to gauge how well a PBC
system performs when the requests sent by a client are large.
Although each batch includes only 100 client transactions,
individually, these requests can be large. Hence, these exper-
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Fig. 10: System throughput and latency on varying the number
of transactions per batch. In this experiment, 16 replicas
participate in consensus.

iments are aimed at exploiting a different system parameter
than the plots of Figure [T0]

In Figures[I2a]and [T2b] we study the variation in throughput
and latency by increasing the size of a PRE-PREPARE message.
We do this by adding a payload to each message, which
includes a set of integers (8byte each). The cardinality of this
set is kept equal to the desired message size.

It is evident from these plots that as the message size
increases, there is a decrease in the system throughput and an
increase in the latency incurred by the client. This is a result
of network bandwidth becoming a limitation, due to which it
takes extra time to push more data onto the network. Hence,
in this experiment, the system reaches a network bound before
any thread can hit its computational bound. This leads to all
the threads being idle. To summarize: On moving from S8KB
to 64KB messages, there is a 52% decrease in throughput and
1.09x increase in latency.

E. Effect of Cryptographic Signatures

In this section, we answer question by studying the
impact of different cryptographic signature schemes. The key
intuition behind these experiments is to determine which sign-
ing scheme helps a PBC achieve the highest throughput while
preventing byzantine attacks. For this purpose, we run four
different experiments to measure the system throughput and
latency when: (i) no signature scheme is used, (ii) everyone
uses digital signatures based on ED25519, (iii) everyone uses
digital signatures based on RSA, and (iv) all replicas use
CMAC+AES for signing, while clients sign their message
using ED25519.
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Fig. 11: System throughput and latency on varying the number
of operations per transaction. Here, B denotes the number of
batch-threads used in the experiment.

Figures [13a] and [I3b] help us to illustrate the throughput
attained and latency incurred by ResilientDB for different
configurations. It is evident that ResilientDB attains maximum
throughput when no signatures are employed. However, such
a system does not fulfill the minimal requirements of a
permissioned blockchain system. Further, using just digital
signatures for signing messages is not exactly the best practice.
An optimal configuration can require clients to sign their mes-
sages using digital signatures, while replicas can communicate
using MACs. To summarize: (i) use of cryptography reduces
throughput by at least 49% and increases latency by 33%.
(ii) choosing RSA over CMAC, ED25519 combination would
increase latency by 125x.

G. Effect of Memory Storage

We now try to answer question [Q8| by studying the trade-off
of having in-memory storage versus off-memory storage in a
PBcC. For testing off-memory storage, we integrate SQLite [46]
with our ResilientDB architecture. We use SQLite to store and
access the transactional records. As SQLite is external to our
ResilientDB fabric, so we developed API calls to read and
write its tables. Note that until now, for all the experiments,
we assumed in-memory storage, that is, records are written
and accessed in an in-memory key-value data-structure.

In Figures [[4a] and [[4b] we illustrate the impact on system
throughput and latency in the two cases. For the in-memory
storage, we require the execute-thread to read/write the key-
value data-structure. For SQLite, execute-thread initiates an
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Fig. 13: System throughput and latency with different signa-
ture schemes. Here, 16 replicas participate in consensus.

API call and waits for the results. It is evident from these
plots that access to off-memory storage (SQLite) is quite
expensive. Further, as execute-thread is busy-waiting for a
reply, it performs no useful task. To summarize:, choosing
SQLite over in-memory storage reduces throughput by 94%
and increase latency by 24 x.
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Fig. 14: System throughput and latency for in-memory storage
vs. off-memory storage. Here, 16 replicas used for consensus.
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Fig. 15: System throughput and latency on varying the number of
clients. Here, 16 replicas participate in consensus.

H. Effect of Clients

We now study the impact of clients on a PBC system, and as
a result, work towards answering question We observe the
changes in throughput and latency on increasing the number
of clients sending requests to a PBC from 4K to 80K.

Through Figure [T5a] we conclude that on increasing the
number of clients, the throughput for the system increases
to some extent (up to 32K), and then it becomes constant.
This is a result of all the threads processing at their maxi-
mum capacities, that is, the system is unable to handle any
more client requests. As the number of clients increases, an
increased set of requests have to wait in the queue before they
can be processed. This wait can even cause a slight dip in
throughput (on moving from 64K to 80K clients). This delay
in processing causes a linear increase in the latency incurred
by the clients (as shown in Figure [I3b). To summarize: we
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Fig. 16: System throughput and latency on varying the number
of hardware cores. Here, 16 replicas participate in consensus.

observe that an increase in the number of clients from 16K to
80K helps the system to gain an additional 1.44% throughput
but incurs 5x more latency.

L. Effect of Hardware Cores

We now answer question [QI0] by analyzing the effects
of a deployed hardware on a PBC application. In specific,
we want to deploy our replicas on different Google Cloud
machines having 1, 2, 4 and 8 cores. We use Figures @
and [I6D] to illustrate the throughput and latency attained by
our ResilientDB system on different machines. For all these
experiments, we require 16 replicas to participate in the con-
sensus. These figures affirm our claim that if replicas run on a
machine with fewer cores, then the overall system throughput
will be reduced (and higher latency will be incurred). As our
architecture (refer to Figure[6) requires several threads, so on a
machine with fewer cores our threads face resource contention.
Hence, ResilientDB attains maximum throughput on the 8-
core machines. To summarize: deploying ResilientDB replicas
on an 8-core machine, in comparison to the 1-core machines,
leads to an 8.92x increase in throughput.

J. Effect of Replica Failures

We now try to answer question [QI1] by analyzing whether
a fast BFT consensus protocol can withstand replica failures.
This experiment also illustrates the impact of failures on a
PBC. In specific, we perform a head-on comparison of Zyzzyva
against PBFT, while allowing some backup replicas to fail.

In Figures [I7a and [T7b} we illustrate the impact of failure
of one replica and five replicas on the two protocols. For this
experiment we require at most 16 replicas to participate in
consensus. Note that for n = 16, the maximum number of
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Fig. 17: System throughput and latency on failing non-primary
replicas. Here, 16 replicas participate in consensus.

failures a BFT system can handle are f = 5. Hence, we
evaluate both the protocols under minimum and maximum
simultaneous failures.

On increasing the number of failures from one to five, there
is a small dip in the throughput for both the protocols. This dip
is not visible due to the high scaling of the graph. For PBFT,
in comparison to the failure-free case, there is not a significant
decrease in throughput as none of its phases require more than
2f 4+ 1 messages.

In case of Zyzzyva, the system faces a pronounced reduction
in its throughput with just one failure. The key issue with
Zyzzyva is that its clients need responses from all the replicas.
So even one failure makes a client wait until it timeouts. This
wait causes a significant reduction in its throughput. Note that
finding an optimal amount of time a client should wait is a hard
problem [30], [47]. Hence, we approximate this by requiring
clients to wait for only a small time.

Protocols like Zyzzyva advocate for a twin path model [4],
[48]]. In these protocols, each replica achieves consensus by
following a fast path until the system faces a failure. Once a
failure happens, these protocols decide to switch to a slower
path. Such a design heavily relies on the value of timeout. If
the timeout is large, then these protocols face a large reduction
in throughput. For example, in Zyzzyva, a larger timeout
implies clients have to wait for a larger amount of time before
initiating the next phase. If the network is dynamic, then the
value of timeout can continuously change. Thus, finding the
optimal value of timeout is hard. Another way to boost the
throughput of these protocols is to assume there are a sufficient
number of clients that can help offset the effects of timeout.



VI. OBSERVATION

Based on the results presented in the previous section, we
make two high-level conclusions:

o A slow classical BFT protocol running on a well-crafted
implementation (like ResilientDB), can outperform a fast
BFT protocol implemented on a protocol-centric design.

o No single parameter can alone substantially improve the
throughput (or reduce latency) of the underlying PBC.
The key reason our ResilientDB framework can attain
high throughputs and incurs low latency is that it attempts
at optimally utilizing several parameters.

Threading and Pipelining. In Section we discussed
several works that either present new protocols to improve
the performance of a PBC or illustrate novel use-cases for
blockchain. These works rarely focus on the implementation
of a replica itself and can significantly gain throughput by
adopting an architecture similar to our ResilientDB. Further,
caution needs to be taken while introducing parallelism as un-
necessary threads can cause resource contention or deadlocks
(e.g., multiple execution-threads can cause data-conflicts).

Batching and Multiple Operations. Several works suggest
batching client requests, while others have vetoed against such
a choice. Our results show that the optimal use of batching
can help to reduce the cost of consensus by merging multiple
consensuses into one. However, over-batching does introduce a
communication trade-off. Hence, each PBC application should
determine the optimal set of client requests to batch. Clients
can also employ multi-operation transactions. In practice, such
a transaction includes at most ten operations. Hence, employ-
ing operations per second as a metric to measure throughput
may be a good idea.

Message Size and Payload. Depending on the application
targeted by a PBC, the clients can send requests that have a
large size. For example, a client can require the execution of a
specific code. If multiple large requests are batched together,
then the network may consume resources in splitting a mes-
sage into packets, transmitting these packets, and aggregating
these packets at the destination. Hence, depending on the
application, batching just ten large requests may allow the
system to return high throughput.

Cryptographic Signatures. Although the use of crypto-
graphic signatures bottlenecks the system throughput, their use
is essential for safety. We observe that a combination of MACs
and DSs can help guarantee both safety and high throughput.
For instance, digital signatures are only necessary for messages
that need to be forwarded. Hence, in a PBC, only clients need
to digitally sign their requests. For communication among the
replicas, MACs suffice, as in most of the BFT protocols, no
replica forwards messages of any other replica. Hence, the
property of non-repudiation is implicitly satisfied.

Chain Storage. PBC applications need to store client
records and other metadata. We observed that the use of in-
memory data-structures is better than off-memory storage,
such as SQLite. The key reason a PBC system can avoid
frequent access to off-memory storage is that at all times,

at most f replicas can fail. Hence, if persistent storage is
required, then it can be performed asynchronously or delayed
until periods of low contention.

Replica Failures. We know that failures are common. Either
a replica may fail, or messages may get lost. A PBC system
needs to be ready to face these situations. Hence, the system
design must not rely on a BFT protocol that works well in
non-failure cases but attains low throughput under simple
failures. We observed that designs employing protocols like
Zyzzyva can have negligible throughput with just one failure.
Further, some protocols suggest the use of two modes, fast
path and slow path [48]]. Although such protocols attain high
throughputs in the fast path, they switch to the slow path on
failures. Note that this switch happens when some replica or
client timeouts. Determining the optimal value for timeouts is
hard [30], [47]. Thus, twin path protocols may not be suitable
if the network is dynamic.

VII. CONCLUSIONS

In this paper, we present a high-throughput yielding per-
missioned blockchain framework, ResilientDB. By dissecting
ResilientDB, we analyze several factors that affect the perfor-
mance of a permissioned blockchain system. This allows us
to raise a simple question: can a well-crafted system based
on a classical BFT protocol outperform a modern protocol?
We show that the extensively parallel and pipelined design
of our ResilientDB fabric does allow even PBFT to gain high
throughputs (up to 175K) and outperform common implemen-
tations of Zyzzyva. Further, we perform a rigorous evaluation
of ResilientDB and illustrate the impact of different factors
such as cryptography, chain management, monolithic design,
and so on. We envision the practices adopted in ResilientDB
to be included in designing and testing newer BFT protocols
and permissioned blockchain applications.
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