
SSS: Scalable Key-Value Store with External
Consistent and Abort-free Read-only Transactions

Masoomeh Javidi Kishi, Sebastiano Peluso§, Hank Korth, Roberto Palmieri
Lehigh University, Virginia Tech§

Bethlehem, PA, USA
{maj717;hfk2;palmieri}@lehigh.edu; §peluso@vt.edu

Abstract—We present SSS, a scalable transactional key-value
store deploying a novel distributed concurrency control that
provides external consistency for all transactions, never aborts
read-only transactions due to concurrency, all without special-
ized hardware. SSS ensures the above properties without any
centralized source of synchronization. SSS’s concurrency control
uses a combination of vector clocks and a new technique, called
snapshot-queuing, to establish a single transaction serialization
order that matches the order of transaction completion observed
by clients. We compare SSS against high performance key-value
stores, Walter, ROCOCO, and a two-phase commit baseline. SSS
outperforms 2PC-baseline by as much as 7x using 20 nodes; and
ROCOCO by as much as 2.2x with long read-only transactions
using 15 nodes.

Index Terms—Transactions, Distributed Database, Consistency

I. INTRODUCTION

A distributed transactional system that ensures a strong level
of consistency greatly simplifies programmer responsibility
while developing applications. A strong level of consistency
that clients interacting with a transactional system often desire
is referred to external consistency [7], [11], [17].

Roughly, under external consistency a distributed system
behaves as if all transactions were executed sequentially, all
clients observed the same unique order of transactions com-
pletion (also named external schedule in [17]), in which every
read operation returns the value written by the previous write
operation. By relying on the definition of external consistency,
a transaction terminates when its execution is returned to its
client; therefore the order defined by transaction client returns
matches the transaction serialization order.

The latter property carries one great advantage: if clients
communicate with each other outside the system, they cannot
be confused about the possible mismatch between transaction
order they observe and the transaction serialization order
provided by the concurrency control inside the system. Simply,
if a transaction is returned to its client, the serialization
order of that transaction will be after any other transaction
returned earlier, and before any transaction that will return
subsequently. Importantly, this property holds regardless of
when transactions start their execution.

To picture the value of external consistency, consider an on-
line document sharing service and two clients, C1 connected to
server N1 and C2 connected to another server N2, whose goal
is to synchronize the same document D. C1 modifies D and

starts its synchronization concurrently with C2. Because the
underlying distributed system that implements the service is
asynchronous, it is plausible for C1 to observe the completion
of the synchronization before C2 (e.g., C1 and C2 are handled
by two different nodes with different speed). As soon as C1

received the notification, it informs C2 that its modifications
are permanent. At this point C2 observes the completion of
its synchronization operation and its expectation is to observe
C1’s modification on D since C1 completed before C2.

Only if the service is external consistent, then the ex-
pectation is met (i.e., C2 observes the modification of C1);
otherwise the possible outcomes include the case where C2

does not observe C1, which might confuse C2. Note that if
the service provides Serializable [6] operations, C2 will not
be guaranteed to observe the outcome of C1.

In this paper we present SSS, a key-value store that im-
plements a novel distributed concurrency control providing
external consistency and assuming off-the-shelf hardware. Two
features enable high performance and scalability in SSS,
especially in read-dominated workloads:
• SSS supports read-only transactions that never abort due

to concurrency, therefore the return value of all their
read operations should be consistent at the time the
operation is issued. We name them as abort-free hereafter.
This property is very appealing because many real-world
applications produce significant read-only workload [4].

• SSS is designed to support a general (partial) replication
scheme where keys are allowed to be maintained by
any node of the system without predefined partitioning
schemes (e.g., sharding [18], [32]). To favor scalability,
SSS does not rely on ordering communication primitives,
such as Total Order Broadcast or Multicast [14].

The core components that make the above properties pos-
sible in SSS are the following:
• SSS uses a vector clock-based technique to track depen-

dent events originated on different nodes. This technique
is similar to the one used by existing distributed transac-
tional systems, such as Walter [27] and GMU [25], and
allows SSS to track events without a global source of
synchronization.

• SSS uses a new technique, which we name snapshot-
queuing, that works as follows. Each key is associated
with a snapshot-queue. Only transaction that will surely
commit are inserted into the snapshot-queues of the their

ar
X

iv
:1

90
1.

03
77

2v
1

 [
cs

.D
C

]
 1

1
Ja

n
20

19

accessed keys in order to leave a trace of their existence
to other concurrent transactions. Read-only transactions
are inserted into their read keys’ snapshot-queues at read
time, while update transactions into their modified keys’
snapshot-queues after the commit decision is reached.
A transaction in a snapshot-queue is inserted along with a
scalar value, called insertion-snapshot. This value repre-
sents the latest snapshot visible by the transaction on the
node storing the accessed key, at the time the transaction
is added to the snapshot queue. SSS concurrency control
orders transactions with lesser insertion-snapshot before
conflicting transactions with higher insertion-snapshot in
the external schedule.

SSS uses snapshot-queues to propagate established serializa-
tion orders among concurrent transactions as follows.

If a read-only transaction TR reads a key x subsequently
modified by a concurrent committed transaction TW , x’s
snapshot-queue is the medium to record the existence of an
established serialization order between TR and TW . With that,
any other concurrent transaction accessing x can see this
established order and define its serialization accordingly.

In addition, TW ’s client response is delayed until TR
completes its execution. This delay is needed so that update
transactions can be serialized along with read-only transactions
in a unique order where reads always return values written by
the last update transaction returned to its client.

Failing in delaying TW ’s response would result in a dis-
crepancy between the external order and the transaction se-
rialization order. In fact, the external order would show TW
returning earlier than TR but TR is serialized before TW .

For non-conflicting update transactions that have dependen-
cies with concurrent read-only transactions accessing common
keys, since these transactions are aware of each other through
the snapshot-queues of accessed keys, SSS prevents read-only
transactions to observe those update transactions in different
orders.

On the flip side, delaying update transactions might have
a domino effect on limiting the level of concurrency in the
system, which might lead to poor performance. The snapshot-
queue technique prevents that: it permits a transaction that
is in a snapshot-queue to expose its written keys to other
transactions while it is waiting for the completion of the
concurrent read-only transaction(s) holding it. This feature
enables progress of subsequent conflicting transactions, hence
retaining the high throughput of the system.

Update transactions in SSS are serialized along with read-
only transactions. They always read the latest version of a
key and buffer write operations. Validation is performed at
commit time to abort if some read key has been overwritten
meanwhile. The Two-Phase Commit protocol (2PC) [7], [8],
[25], [27], [31] is used to atomically lock and install written
keys. These keys are externally visible when no concurrent
read-only transactions caused the update transaction to wait
due to snapshot-queuing, if any.

We implement SSS in Java and compared against two recent
key-value stores, Walter [27] and ROCOCO [23], and one

baseline where all transactions, including read-only, validate
read keys and use 2PC to commit [6]. We name this competitor
2PC-baseline. Overall, SSS is up to 7× faster than 2PC-
baseline and up to 2.2× faster than ROCOCO under read-
dominated workloads and long (i.e., 16 read keys) read-only
transactions. Also, when the percentage of read-only transac-
tions is dominant and the node count is high, SSS is only
18% slower than Walter, which provides a weaker isolation
level than external consistency and even serializability. When
compared to the overall update transaction latency, in our
experiments we assessed in less than 28% the average waiting
time introduced by SSS due to the snapshot-queuing.

II. SYSTEM MODEL & ASSUMPTIONS

SSS assumes a system as a set of nodes that do not share
either memory or a global clock. Nodes communicate through
message passing and reliable asynchronous channels, meaning
messages are guaranteed to be eventually delivered unless a
crash happens at the sender or receiver node. There is no
assumption on the speed and on the level of synchrony among
nodes. We consider the classic crash-stop failure model: sites
may fail by crashing, but do not behave maliciously. A site
that never crashes is correct; otherwise it is faulty. Clients are
assumed to be colocated with nodes in the system; this way
a client is immediately notified of a transaction’s commit or
abort outcome, without additional delay. Clients are allowed to
interact with each other through channels that are not provided
by the system’s APIs.

Data Organization. Every node Ni maintains shared objects
(or keys) adhering to the key-value model [25]. Multiple
versions are kept for each key. Each version stores the value
and the commit vector clock of the transaction that produced
the version. SSS does not make any assumption on the data
clustering policy; simply every shared key can be stored in
one or more nodes, depending upon the chosen replication
degree. For object reachability, we assume the existence of a
local look-up function that matches keys with nodes.

Transaction execution. We model transactions as a sequence
of read and write operations on shared keys, preceded by
a begin, and followed by a commit or abort operation. A
client begins a transaction on the colocated node and the
transactions can read/write data belonging to any node; no
a-priori knowledge on the accessed keys is assumed. SSS’s
concurrency control ensures the ACID properties and targets
applications with a degree of data replication.

Every transaction starts with a client submitting it to the
system, and finishes its execution informing the client about
its final outcome: commit or abort. Transactions that do not
execute any write operation are called read-only, otherwise
they are update transactions. SSS requires programmer to
identify whether a transaction is update or read-only.

III. SSS CONCURRENCY CONTROL

In this section we describe the SSS concurrency control,
followed by two execution examples.

A. Metadata

Transaction vector clocks. In SSS a transaction T holds two
vector clocks, whose size is equal to the number of nodes
in the system. One represents its actual dependencies with
transactions on other nodes, called T.VC; the other records the
nodes where the transaction read from, called T.hasRead.
T.VC represents a version visibility bound for T . Once a

transaction begins in node Ni, it assigns the vector clock of
the latest committed transaction in Ni to its own T.VC. Every
time T reads from a node Nj for the first time during its
execution, T.VC is modified based on the latest committed
vector clock visible by T on Nj . After that, T.hasRead[j]
is set to true (>).

Transaction read-set and write-set. Every transaction holds
two private buffers. One is rs (or read-set), which stores
the keys read by the transaction during its execution, along
with their value. The other buffer is ws (or write-set), which
contains the keys the transaction wrote, along with their value.

Snapshot-queue. A fundamental component allowing SSS to
establish a unique external schedule is the snapshot-queuing
technique. With that, each key is associated with an ordered
queue (SQueue) containing: read-only transactions that read
that key; and update transactions that wrote that key while a
read-only transaction was reading it.

Entries in a snapshot-queue (SQueue) are in the form of
tuples. Each tuple contains: transaction identifier T.id, the
insertion-snapshot, and transaction type (read-only or update).
The insertion-snapshot for a transaction T enqueued on some
node Ni’s snapshot-queue is the value of T ’s vector clock in
position ith at the time T is inserted in the snapshot-queue.
Transactions in a snapshot-queue are ordered according to their
insertion-snapshot.

A snapshot-queue contains only transactions that will com-
mit; in fact, besides read-only transactions that are abort-free,
update transactions are inserted in the snapshot-queue only
after their commit decision has been reached.

Transaction transitive anti-dependencies set. An update
transaction maintains a list of snapshot-queue entries,
named T.PropagatedSet, which is populated during the
transaction’s read operations. This set serves the purpose
of propagating anti-dependencies previously observed by
conflicting update transactions.

Node’s vector clock. Each node Ni is associated with a
vector clock, called NodeVC. The ith entry of NodeVC is
incremented when Ni is involved in the commit phase of a
transaction that writes some key replicated by Ni. The value
of jth entry of NodeVC in Ni is the value of the jth entry
of NodeVC in Nj at the latest time Ni and Nj cooperated in
the commit phase of a transaction.

Commit repositories. CommitQ is an ordered queue, one
per node, which is used by SSS to ensure that non-conflicting
transactions are ordered in the same way on the nodes where
they commit. CommitQ stores tuples <T , vc, s> with the
following semantics. When an update transaction T , with
commit vector clock vc, enters its commit phase, it is firstly

added to the CommitQ of the nodes participating in its commit
phase with its status s set as pending.

When the outcome of the transaction commit phase is
decided, the status of the transaction is changed to ready. A
ready transaction inside the CommitQ is assigned with a final
vector clock produced during the commit phase. In each node
Ni, transactions are ordered in the CommitQ according to the
ith entry of the vector clock (V C[i]). This allows them to be
committed in Ni with the order given by V C[i].

When T commits, it is deleted from CommitQ and its vc
is added to a per node repository, named NLog. We identify
the most recent vc in the NLog as NLog.mostRecentVC.

Overall, the presence of additional metadata to be trans-
ferred over the network might appear as a barrier to achieve
high performance. To alleviate these costs we adopt metadata
compression. In addition, while acknowledging that the size
of vector clocks grows linearly with the system size, there
are existing orthogonal solutions to increase the granularity of
such a synchronization to retain efficiency [21], [30]

B. Execution of Update transactions

Update transactions in SSS implements lazy update [29],
meaning their written keys are not immediately visible and
accessible at the time of the write operation, but they are
logged into the transactions write-set and become visible
only at commit time. In addition, transactions record the
information associated with each read key into their read-set.

Read operations of update transactions in SSS simply return
the most recent version of their requested keys (Lines 24-27
of Algorithm 6). At commit time, validation is used to verify
that all the read versions have not been overwritten.

An update transaction that completes all its operations and
commits cannot inform its client if it observes anti-dependency
with one or more read-only transactions. In order to capture
this waiting stage, we introduce the following phases to
finalize an update transaction (Figure 1 pictures them in a
running example).

Internal Commit. When an update transaction successfully
completes its commit phase, we say that it commits internally.
In this stage, the keys written by the transactions are visible
to other transactions, but its client has not been informed yet
about the transaction completion. Algorithms 1 and 2 show
the steps taken by SSS to commit a transaction internally.

SSS relies on the Two-Phase Commit protocol (2PC) to
internally commit update transactions. The node that carries
the execution of a transaction T , known as its coordinator,
initiates 2PC issuing the prepare phase, in which it contacts
all nodes storing keys in the read-set and write-set. When a
participant node Ni receives a prepare message for T , all keys
read/written by T and stored by Ni are locked. If the locking
acquisition succeeds, all keys read by T and stored by Ni are
validated by checking if the latest version of a key matches
the read one (Lines 27-33 Algorithm 1). If successful, Ni

replies to T ’s coordinator with a Vote message, along with
a proposed commit vector clock. This vector clock is equal

to Ni’s NodeV C where NodeV C[i] has been incremented.
Finally, T is inserted into Ni’s CommitQ with its T.V C.

Algorithm 1 Internal Commit by Transaction T in node Ni

1: upon boolean Commit(Transaction T) do
2: if (T.ws=φ) then
3: for (k ∈ T.rs) do
4: Send Remove[T] to all replicas(k)
5: end for
6: T.outcome← true
7: return T.outcome
8: end if
9: commitV C ← T.V C

10: T.outcome← true
11: send Prepare[T] to all Nj ∈ replicas(T.rs ∪ T.ws) ∪Ni

12: for all (Nj ∈ replicas(T.rs ∪ T.ws) ∪Ni) do
13: wait receive Vote[T.id, V Cj , res] from Nj or timeout
14: if (res = false ∨ timeout) then
15: T.outcome← false
16: break;
17: else
18: commitV C ← max(commitV C, V Cj)
19: end if
20: end for
21: xactV N ← max{commitV C[w] : Nw ∈ replicas(T.ws)}
22: for all (Nj ∈ replicas(T.ws)) do
23: commitV C[j]← xactV N
24: end for
25: send Decide[T, commitV C, outcome] to all Nj ∈ replicas(

T.rs ∪ T.ws) ∪Ni

26: end

27: boolean validate(Set rs, VC T.VC)
28: for all (k ∈ rs) do
29: if (k.last.vid[i] > T.V C[i]) then
30: return false
31: end if
32: end for
33: return true

After receiving each successful Vote, T ’s coordinator
updates T.V C by computing the maximum per entry (Line 18
of Algorithm 1). This update makes T able to include the
causal dependencies of the latest committed transactions in
all 2PC participants. After receiving all Vote messages, the
coordinator determines the final commit vector clock for T as
in (Lines 18-24 of Algorithm 1), and sends it along with the
2PC Decide message.

Lines 16-28 of Algorithm 2 shows how 2PC participants
handle the Decide message. When Ni receives Decide for
transaction T , Ni’s NodeV C is updated by computing the
maximum with T.V C. Importantly, at this stage the order of
T in the CommitQ of Ni might change because the final
commit vector clock of T has been just defined, and it might
be different from the one used during the 2PC prepare phase
when T has been added to CommitQ.

In Algorithm 2 Lines 29-36, when transaction T becomes
the top standing of Ni’s CommitQ, the internal commit of
T is completed by inserting its commit vector clock into the
NLog and removing T from CommitQ. When transaction’s
vector clock is inserted into the node’s NLog, its written keys
become accessible by other transactions. At this stage, T ’s
client has not been informed yet about T ’s internal commit.

Pre-Commit. An internally committed transaction sponta-
neously enters the Pre-Commit phase after that. Algorithm 3
shows detail of Pre-commit phase. At this stage, T evaluates
if it should hold the reply to its client depending upon the

content of the snapshot-queues of its written keys. If so, T
will be inserted into the snapshot-queue of its written keys in
Ni with T.V C[i] as insertion-snapshot.

If at least one read-only transaction (Tro) with a lesser
insertion-snapshot is found in any snapshot-queue SQueue
of T ’s written keys, it means that Tro read that key before
Tw internally committed, therefore a write-after-read depen-
dency between Tro and Tw is established. In this case, T
is inserted into SQueue until Tro returns to its client. With
the anti-dependency, the transaction serialization order has
been established with Tro preceding Tw, therefore informing
immediately Tw’s client about Tw’s completion would expose
an external order where Tw is before Tro, which violates
external consistency (and therefore clients expectations).

Algorithm 2 Internal Commit by Transaction T in node Ni

1: upon receive Prepare[TransactionT] from Nj do
2: boolean outcome← getExclusiveLocks(T.id, T.ws)

∧getSharedLocks(T.id, T.rs) ∧validate(T.rs, T.V C)
3: if (¬outcome) then
4: releaseLocks(T.id, T.rs, T, ws)
5: send Vote[T.id, T.V C, outcome] to Nj

6: else
7: prepV C ← NLog.mostRecentV C
8: if (Ni ∈ replicas(T.ws)) then
9: NodeV C[i] + +

10: prepV C ← NodeV C
11: CommitQ.put(< T, prepV C, pending >)
12: end if
13: send Vote[T.id, prepV C, outcome] to Nj

14: end if
15: end
16: upon receive Decide[T, commitV C, outcome] from Nj atomically do
17: if (outcome) then
18: NodeV C ← max(NodeV C, commitV C)
19: if (Ni ∈ replicas(T.ws)) then
20: CommitQ.update(< T, commitV C, ready >)
21: else
22: releaseSharedLocks(T.id, T.rs)
23: end if
24: else
25: CommitQ.remove(T)
26: releaseLocks(T.id, T.ws, T.rs)
27: end if
28: end
29: upon ∃ < T, vc, s >:< T, vc, s >= commitQ.head ∧ s = ready do
30: for all (k ∈ T.ws : Ni ∈ replicas(k)) do
31: apply(k,val,vc)
32: end for
33: NLog.add(< T, vc, T.ws >)
34: CommitQ.remove(T)
35: releaseLocks(T.id, T.ws, T.rs)
36: end

Algorithm 3 Start Pre-commit by Transaction T in node Ni

1: for all (k ∈ T.ws) do
2: if (Ni ∈ replicas(k)) then
3: k.SQueue.insert(< T.id, vc[i], “W” >)

4: for all (T
′
∈ T.PropagatedSet) do

5: k.SQueue.insert(< T
′
.id, T

′
.sid, “R” >)

6: end for
7: end if
8: end for

Tracking only non-transitive anti-dependencies is not
enough to preserve correctness. If T reads the update done
by Tw′ and Tw′ is still in its Pre-commit phase, then T has a
transitive anti-dependency with Tro′ (i.e., Tro′

rw−→ Tw′
wr−→ T).

SSS records the existence of transactions like Tro′ during T ’s

execution by looking into the snapshot-queues of T ’s read
keys and logging them into a private buffer of T , called
T.PropagatedSet. The propagation of anti-dependency hap-
pens during T ’s Pre-commit phase by inserting transactions in
T.PropagatedSet into the snapshot-queues of all T ’s written
keys (Lines 4-6 of Algorithm 3).

Algorithm 4 End Pre-commit of Transaction T in node Ni

1: for all (k ∈ T.ws) do
2: if Ni ∈ replicas(k) then
3: wait until (∃ < T

′
.id, T

′
.sid,− >:

k.SQueue.contains(< T
′
.id, T

′
.sid,− >)∧

T
′
.sid < T.commitV C[i])

4: k.SQueue.remove(< T.id, vc[i], “W” >)
5: send Ack [T, vc[i]] to T.coordinator
6: end if
7: end for

External Commit. Transaction T remains in its Pre-commit
phase until there is no read-only transaction with lesser
insertion-snapshot in the snapshot-queues of T ’s written keys.
After that, T is removed from these snapshot-queues and
an Ack message to the transaction 2PC coordinator is sent
(Lines 1-7 of Algorithm 4).

The coordinator can inform its client after receiving Ack
from all 2PC participants. At this stage, update transaction’s
external schedule is established, therefore we say that SSS
commits the update transaction externally.

C. Execution of Read-Only Transactions

In its first read operation (Algorithm 5 Lines 5-7), a read-
only transaction T on Ni assigns NLog.mostRecentVC to
its vector clock (T.V C). This way, T will be able to see the
latest updated versions committed on Ni. Read operations
are implemented by contacting all nodes that replicate the
requested key and waiting for the fastest to answer.

When a read request of T returns from node Nj , T sets
T.hasRead[j] to true. With that, we set the visibility upper
bound for T from Nj (i.e., T.V C[j]). Hence, subsequent read
operations by T contacting a node Nk should only consider
versions with a vector clock vck such that vck[j] < T.V C[j].

After a read operation returns, the transaction vector clock
is updated by applying an entry-wise maximum operation
between the current T.V C and the vector clock associated
with the read version (i.e., V C∗) from Nj . Finally, the read
value is added to T.rs and returned.

Algorithm 6 shows SSS rules to select the version to be
returned upon a read operation that contacts node Ni.

The first time Ni receives a read from T , this request should
wait until the value of Ni’s NLog.mostRecentVC[i] is
equal to T.V C[i] (Line 5 Algorithm 6). This means that all
transactions that are already included in the current visibility
bound of T.V C[i] must perform their internal commit before
T ’s read request can be handled.

After that, a correct version of the requested key should be
selected for reading. This process starts by identifying the set
of versions that are within the visibility bound of T , called
V isibleSet. This means that, given a version v with commit

vector clock vc, v is visible by T if, for each entry k such
that T.hasRead[k] = true, we have that vc[k] ≤ T.V C[k]
(Algorithm 6 Line 6).

Algorithm 5 Read Operation by Transaction T in node Ni

1: upon Value Read(Transaction T, Key k) do
2: if (∃ < k, val >∈ T.ws) then
3: return val
4: end if
5: if (is first read of T) then
6: T.V C ← NLog.mostRecentV C
7: end if
8: target← {replicas(k)}
9: send READREQUEST[k, T.V C, T.hasRead, T.isUpdate]

to all Nj ∈ target
10: wait Receive READRETURN [val, V C∗, PropagatedSet]

from Nh ∈ target
11: T.hasRead[h]← true
12: T.V C ← max(T.V C, V C∗)
13: T.rs← T.rs ∪ {< k, val >}
14: T.PropagatedSet← T.PropagatedSet ∪ PropagatedSet
15: return val
16: end

Algorithm 6 Version Selection Logic in node Ni

1: upon Receive READREQUEST[T, k, T.V C, hasRead, isUpdate] from Nj

do
2: PropagatedSet← φ
3: if (¬isUpdate) then
4: if (¬hasRead[i]) then
5: wait until NLog.mostRecentVC[i] ≥ T.VC[i]
6: V isibleSet← {vc : vc ∈ NLog∧

∀w(hasRead[w] = true ⇒ vc[w] ≤ T.VC[w])}
7: ExcludedSet← {T

′
:< T

′
.id, T

′
.cid, “W” >∈

k.SQueue⇒ vc[i] > T.V C[i])}
8: V isibleSet← V isibleSet\ExcludedSet
9: maxV C ← vc : ∀w, vc[w] = max{v[w] : v ∈ V isibleSet}

10: k.SQueue.insert(< T.id,maxV C[i], “R” >)
11: ver ← k.last
12: while (∃w : hasRead[w] = true ∧ ver.vc[w] >

maxV C[w] ∨ ∃vc ∈ ExcludedSet : ver.vc = vc
∧vc[i] > maxV C[i]) do

13: ver ← ver.prev
14: end while
15: else
16: maxV C ← T.V C
17: k.SQueue.insert(< T.id,maxV C[i], “R” >)
18: ver ← k.last
19: while (∃w : (hasRead[w] =true ∧ ver.vc[w] > maxV C[w]))

do
20: ver ← ver.prev
21: end while
22: end if
23: else
24: maxV C ← NLog.mostRecentV C

25: PropagatedSet={T
′
:< T

′
.id, readSid, “R” >∈ k.SQueue}

26: ver ← k.last
27: end if
28: Send READRETURN[ver.val, maxVC,PropagatedSet] to Nj

29: end

It is possible that transactions associated with some of these
vector clocks are still in their Pre-Commit phase, meaning they
exist in the snapshot-queues of T ’s requested key. If so, they
should be excluded from V isibleSet in case their insertion-
snapshot is higher than T.V C[i]. The last step is needed to
serialize read-only transactions with anti-dependency relations
before conflicting update transactions.

This condition is particularly important to prevent a well-
known anomaly, firstly observed by Adya in [2], in which read-
only transactions executing on different nodes can observe two
non-conflicting update transactions in different serialization

order [25]. Consider a distributed system where nodes do
not have access to a single point of synchronization (or an
ordering component), concurrent non-conflicting transactions
executing on different nodes cannot be aware of each other’s
execution. Because of that, different read-only transactions
might order these non-conflicting transactions in a different
way, therefore breaking the client’s perceived order. SSS
prevents that by serializing both these read-only transactions
before those update transactions.

At this stage, if multiple versions are still included in
V isibleSet, the version with the maximum V C[i] should be
selected to ensure external consistency.

Once the version to be returned is selected, T is inserted
in the snapshot-queue of the read key using maxV C[i] as
insertion-snapshot (Line 16 of Algorithm 6). Finally, when
the read response is received, the maximum per entry between
maxV C (i.e., V C∗ in Algorithm 5) and the T.V C is com-
puted along with the result of the read operation.

When a read-only transaction T commits, it immediately
replies to its client. After that, it sends a message to the nodes
storing only the read keys in order to notify its completion.
We name this message Remove. Upon receiving Remove, the
read-only transaction is deleted from all the snapshot-queues
associated with the read keys. Deleting a read-only transaction
from a snapshot-queue enables conflicting update transactions
to be externally committed and their responses to be released
to their clients.

Because of transitive anti-dependency relations, a node
might need to forward the Remove message to other nodes
as follows. Let us assume T has an anti-dependency with a
transaction Tw, and another transaction Tw′ reads from Tw.
Because anti-dependency relations are propagated along the
chain of conflicting transactions, T exists in the snapshot-
queues of Tw′ ’s written keys. Therefore, upon Remove of T ,
the node executing Tw is responsible to forward the Remove
message to the node where Tw′ executes for updating the
affected snapshot-queues.

When a read operation is handled by a node that already
responded to a previous read operation from the same transac-
tion, the latest version according to maxV C is returned, and T
can be inserted into the snapshot-queue with its corresponding
identifier and maxV C[i] as insertion-snapshot.

D. Examples

External Consistency & Anti-dependency. Figure 1 shows
an example of how SSS serializes an update transaction T1 in
the presence of a concurrent read-only transaction T2. Two
nodes are deployed, N1 and N2, and no replication is used
for simplicity. T1 executes on N1 and T2 on N2. Key y is
stored in N2’s repository. The NLog.mostRecentVC for
Node 1 is [5,4] and for Node 2 is [3,7].

T1 performs a read operation on key y by sending a remote
read request to N2. At this point, T1 is inserted in the snapshot-
queue of y (Q(y)) with 7 as insertion-snapshot. This value
is the second entry of N2’s NLog.mostRecentVC. Then
the update transaction T2 begins with vector clock [3,7],

buffers its write on key y in its write-set, and performs its
internal commit by making the new version of y available,
and by inserting the produced commit vector clock (i.e.,
T2.commitV C=[3,8]) in N2’s NLog. As a consequence of
that, NLog.mostRecentV C is equal to T2.commitV C.

Now T2 is evaluated to decide whether it should be inserted
into Q(y). The insertion-snapshot of T2 is equal to 8, which is
higher than T1’s insertion-snapshot in Q(y). For this reason,
T2 is inserted in Q(y) and its Pre-commit phase starts.

T1:
R(y==y0)

Read

T2:
W(y,y1)

Pre-Commit
Phase

Commit T1

Remove

Node 1 Node 2

Read
Answer

Submit T
2

internal-
commit

external
commit

R
es

po
ns

e
T2

key=y, versions={y0}

key=y, versions={y0,y1}

3 75 4

3 7VC

3 8

Q(y)={<T1,7,”R”>,
<T2,8,”W”>}

CommitVC

Q(y)={<T1,7,”R”>,
<T2,8,”W”>}

Q(y)={<T1,7,”R”>}

Ti
m
e

Fig. 1. SSS execution in the presence of an anti-dependency. Orange boxes
show the content of the data store. Gray boxes show transaction execution.
Dashed line represents the waiting time for T2. The red crossed entries of
Q(y) represent their elimination upon Remove.

At this stage, T2 is still not externally visible. Hence T2 re-
mains in its Pre-Commit phase until T1 is removed from Q(y),
which happens when T1 commits and sends the Remove
message to N2. After that, T2’s client is informed about
T2’s completion. Delaying the external commit of T2 shows
clients a sequence of transactions completion that matches
their serialization order.

External Consistency & Non-conflicting transactions.
Figure 2 shows how SSS builds the external schedule in the
presence of read-only transactions and non-conflicting update
transactions. There are four nodes, N1, N2, N3, N4, and four
concurrent transactions, T1, T2, T3, T4, each executes on the
respective node. By assumption, T2 and T3 are non-conflicting
update transactions, while T1 and T4 are read-only.

SSS ensures that T1 and T4 do not serialize T2 and T3 in
different orders and they return to their clients in the same
way they are serialized by relying on snapshot-queuing. T1

is inserted into Q(x) with insertion-snapshot equals to 7.
Concurrently, T4 is added to the snapshot-queue of y with
insertion-snapshot equals to 10. The next read operation by
T1 on y has two versions evaluated to be returned: y0 and
y1. Although y1 is the most recent, since T4 returned y0
previously (in fact T4 is in Q(y)), y1 is excluded and y0 is
returned. Similar arguments apply to T4’s read operation on x.
The established external schedule serializes T1 and T4 before
both T2 and T3.

E. Additional Considerations of SSS

Garbage Collection. A positive side effect of the Remove
message is the implicit garbage collection of entries in the

T1:
R(x==x0)

R(y==y0)

Read
T4:

R(y==y0)

R(x==x0)

T2:
W(x,x1)

Read

Q(x)={<T1, 7, “R”>}

Node 1
Node 2 Node 3

3 4 10 2 2 7 6 13 1 3 10 5

Node 4
1 3 2 13

ReadQ(y)={<T4, 10, “R”>}

Node 1

Read Answer

Read
Answer Read

Answer

key=x,
versions={x0}

key x,
versions={x0,x1}

13682 51131

T3:
W(y,y1)

key y,
versions={y0,y1}

Q(x)={<T1, 7, “R”>
<T2, 8, “W”>}

Q(x)={<T4, 10, “R”>
<T3, 11, “W”>}

Q(x)={<T1, 7, “R”>
<T4, 7, “R”>

<T2, 8, “W”>}

Q(x)={<T4, 10, “R”>
<T1, 10, “R”>

<T3, 11, “W”>}

Read

Read Answer

Commit T1 Commit T4Remove
Remove

External Commit T2 External Commit T3

key=y,
versions={y0}

Ti
m
e

Fig. 2. Handling read-only transactions along with non-conflicting update
transactions. We omitted snapshot-queue entries elimination upon Remove to
improve readability.

snapshot-queues. In fact, SSS removes any entry representing
transactions waiting for a read-only transaction to finish upon
receiving Remove, which cleans up the snapshot-queues.

Starvation. Another important aspect of SSS is the chance
to slow down update transactions, possibly forever, due to
an infinite chain of conflicting read-only transactions issued
concurrently. We handle this corner case by applying admis-
sion control to read operations of read-only transactions in
case they access a key written by a transaction that is in
a snapshot-queue for a pre-determined time. In practice, if
such a case happens, we apply an artificial delay to the read
operation (exponential back-off) to give additional time to
update transaction to be removed from the snapshot-queue.
In the experiments we never experienced starvation scenarios,
even with long read-only transactions.

Deadlock-Freedom. SSS uses timeout to prevent deadlock
during the commit phase’s lock acquisition. Also, the wait-
ing condition applied to update transactions cannot generate
deadlock. This is because read-only transactions never wait
for each other, and there is no condition in the protocol
where an update transaction blocks a read-only transaction.
The only wait condition occurs when read-only transactions
force update transactions to hold their client response due to
snapshot-queuing. As a result, no circular dependency can be
formed, thus SSS cannot encounter deadlock.

Fault-Tolerance. SSS deploys a protocol that tolerates fail-
ures in the system using replication. In the presented version
of the SSS protocol, we did not include either logging of
messages to recover update transactions’ 2PC upon faults,
or a consensus-based approach (e.g., Paxos-Commit [19]) to
distribute and order 2PC messages. Solutions to make 2PC
recoverable are well-studied. To focus on the performance
implications of the distributed concurrency control of SSS and
all its competitors, operations to recover upon a crash of a node
involved in a 2PC have been disabled. This decision has no
correctness implication.

IV. CORRECTNESS

Our target is proving that every history H executed by SSS,
which includes committed update transactions and read-only
transactions (committed or not), is external consistent.

We adopt the classical definition of history [2]. For under-
standing correctness, it is sufficient to know that a history is
external consistent if the transactions in the history return the
same values and leave the data store in the same state as they
were executed in a sequential order (one after the other), and
that order does not contradict the order in which transactions
return to their clients.

We decompose SSS’s correctness in three statements, each
highlighting a property guaranteed by SSS. Each statement
claims that a specific history H ′, which is derived from H ,
is external consistent. In order to prove that, we rely on the
characteristics of the Direct Serialization Graph (DSG) [2]
which is derived from H ′. Note that DSG also includes order
relations between transactions’ completion.

Every transaction in H ′ is a node of the DSG graph, and
every dependency of a transaction Tj on a transaction Ti in
H ′ is an edge from Ti to Tj in the graph. The concept of
dependency is the one that is widely adopted in the literature:
i) Tj read-depends on Ti if a read of Tj returns a value written
by Ti, ii) Tj write-depends on Ti if a write of Tj overwrites
a value written by Ti; iii) Tj anti-depends on Ti if a write of
Tj overwrites a value previously read by Ti. We also map the
completion order relations to edges in the graph: if Ti commits
externally before Tj does, then the graph has an edge from Ti
to Tj . A history H ′ is external consistent iff the DSG does
not have any cycle [2], [6].

In our proofs we use the binary relation ≤ to define an
ordering on pair of vector clocks v1 and v2 as follows: v1 ≤ v2
if ∀i, v1[i] ≤ v2[i]. Furthermore, if there also exists at least
one index j such that v1[j] < v2[j], then v1 < v2 holds.

Statement 1. For each history H executed by SSS, the his-
tory H ′, which is derived from H by only including committed
update transactions in H , is external consistent.

In the proof we show that if there is an edge from
transaction Ti to transaction Tj in DSG, then Ti.commitV C
< Tj .commitV C. This statement implies that transactions
modify the state of the data store as they were executed
in a specific sequential order, which does not contradict the
transaction external commit order. Because no read-only trans-
actions is included in H ′, the internal commit is equivalent
to the external commit (i.e., no transaction is delayed). The
formal proof is included in the technical report [?].

Statement 2. For each history H executed by SSS, the his-
tory H ′, which is derived from H by only including committed
update transactions and one read-only transaction in H , is
external consistent.

The proof shows that read-only transactions always observe
a consistent state by showing that in both the case of a direct
dependency or anti-dependency, the vector clock of the read-
only transactions is comparable with the vector clocks of
conflicting update transactions. This statement implies that

read operations of a read-only transaction always return values
from a state of the data store as the transaction was executed
atomically in a point in time that is not concurrent with
any update transaction. The formal proof is included in the
technical report [?].

Statement 3. For each history H executed by SSS, the his-
tory H ′, which is derived from H by only including committed
update transactions and two or more read-only transactions
in H , is external consistent.

Since Statement 2 holds, SSS guarantees that each read-only
transaction appears as it were executed atomically in a point
in time that is not concurrent with any update. Furthermore,
since Statement 1 holds, the read operations of that transaction
return values of a state that is the result of a sequence of
committed update transactions. Therefore, Statement 3 implies
that, given such a sequence S1 for a read-only transaction Tr1,
and S2 for a read-only transaction Tr2, either S1 is a prefix
of S2, or S2 is a prefix of S1. In practice, this means that all
read-only transactions have a coherent view of all transactions
executed on the system. The formal proof is included in the
technical report [?].

V. EVALUATION

We implemented SSS in Java from the ground up and
performed a comprehensive evaluation study. In the software
architecture of SSS there is an optimized network component
where multiple network queues, each for a different message
type, are deployed. This way, we can assign priorities to
different messages and avoid protocol slow down in some
critical steps due to network congestion caused by lower
priority messages (e.g., the Remove message has a very
high priority because it enables external commits). Another
important implementation aspect is related to snapshot-queues.
Each snapshot-queue is divided into two: one for read-only
transactions and one for update transactions. This way, when
the percentage of read-only transactions is higher than update
transactions, a read operation should traverse few entries in
order to establish its visible-set.

We compare SSS against the following competitors: 2PC-
baseline (shortly 2PC in the plots), ROCOCO [23], and
Walter [27]. All these competitors offer transactional semantics
over key-value APIs. With 2PC-baseline we mean the follow-
ing implementation: all transactions execute as SSS’s update
transactions; read-only transactions validate their execution,
therefore they can abort; and no multi-version data repository
is deployed. As SSS, 2PC-baseline guarantees external con-
sistency.

ROCOCO is an external consistent two-round protocol
where transactions are divided into pieces and dependencies
are collected to establish the execution order. ROCOCO
classifies pieces of update transactions into immediate and
deferrable. The latter are more efficient because they can be
reordered. Read-only transactions can be aborted, and they
are implemented by waiting for conflicting transactions to
complete. Our benchmark is configured in a way all pieces
are deferrable. ROCOCO uses preferred nodes to process

transactions and consensus to implement replication. Such
a scheme is different from SSS where multiple nodes are
involved in the transaction commit process. To address this
discrepancy, in the experiments where we compare SSS and
ROCOCO, we disable replication for a fair comparison. The
third competitor is Walter, which provides PSI a weaker
isolation level than SSS. Walter has been included because
it synchronizes nodes using vector clocks, as done by SSS.

All competitors have been re-implemented using the same
software infrastructure of SSS because we want to provide
all competitors with the same underlying code structure and
optimization (e.g., optimized network). For fairness, we made
sure that the performance obtained by our re-implementation
of competitors matches the trends reported in [27] and [23],
when similar configurations were used.

In our evaluation we use YCSB [10] benchmark ported
to key-value store. We configure the benchmark to explore
multiple scenarios. We have two transaction profiles: update,
where two keys are read and written, and read-only trans-
actions, where two or more keys are accessed. In all the
experiments we co-locate application clients with processing
nodes, therefore increasing the number of nodes in the system
also increases the amount of issued requests. There are 10
application threads (i.e., clients) per node injecting transactions
in the system in a closed-loop (i.e., a client issues a new
request only when the previous one has returned). All the
showed results are the average of 5 trials.

We selected two configurations for the total number of
shared keys: 5k and 10k. With the former, the observed average
transaction abort rate is in the range of 6% to 28% moving
from 5 nodes to 20 nodes when 20% read-only transactions are
deployed. In the latter, the abort rate was from 4% to 14%.
Unless otherwise stated, transactions select accessed objects
randomly with uniform distribution.

As test-bed, we used CloudLab [26], a cloud infrastructure
available to researchers. We selected 20 nodes of type c6320
available in the Clemson cluster [1]. This type is a physical
machine with 28 Intel Haswell CPU-cores and 256GB of
RAM. Nodes are interconnected using 40Gb/s Infiniband HPC
cards. In such a cluster, a network message is delivered in
around 20 microseconds (without network saturation), there-
fore we set timeout on lock acquisition to 1ms.

In Figure 3 we compare the throughput of SSS against 2PC-
baseline and Walter in the case where each object is replicated
in two nodes of the system. We also varied the percentage of
read-only transactions in the range of 20%, 50%, and 80%. As
expected, Walter is the leading competitor in all the scenarios
because its consistency guarantee is much weaker than external
consistency; however, the gap between SSS and Walter reduces
from 2× to 1.1× when read-only transactions become predom-
inant (moving from Figure 3(a) to 3(c)). This is reasonable
because in Walter, update transactions do not have the same
impact in read-only transactions’ performance as in SSS due
to the presence of the snapshot-queues. Therefore, when the
percentage of update transactions reduces, SSS reduces the
gap. Considering the significant correctness level between PSI

0

25

50

75

100

5 10 15 20

Th
ro
ug
hp

ut
(K
Tx
s/
se
c)

2PC-5K 2PC-10K Walter-5k Walter-10k SSS-5K SSS-10K

0

25

50

75

100

5 10 15 20

Th
ro
ug
hp

ut
	(K
Tx
s/
se
c)

(a) 20%

0
25
50
75
100
125
150

5 10 15 20

Th
ro
ug
hp

ut
	(K
Tx
s/
se
c
)

(b) 50%

0

50

100

150

200

250

5 10 15 20

Th
ro
ug
hp

ut
	(K
Tx
s/
se
c	
)

(c) 80%

Fig. 3. Throughput varying % of read-only transactions. Number of nodes in X-axes.

0

20

40

60

80

5 10 15 20

Th
ro
ug
hp

ut
	(K
Tx
s/
se
c	
) SSS 2PC

(a) Maximum attainable
throughput. Number of
nodes in X-axis.

0

0.5

1

1.5

2

1 3 5 10

Ti
m
e	
(m

s)

SSS 2PC

(b) External Commit la-
tency. Clients per node in
X-axis.

Fig. 4. Performance of SSS against 2PC-baseline using
5k objects and 50% read-only transactions.

(in Walter) and external consistency, we consider the results
of the comparison between SSS and Walter remarkable.

Performance of 2PC-baseline is competitive when compared
with SSS only at the case of 20% read-only. In the other
cases, although SSS requires a more complex logic to execute
its read operations, the capability of being abort-free allows
SSS to outperform 2PC-baseline by as much as 7× with
50% read-only and 20 nodes. 2PC-baseline’s performance
in both the tested contention levels become similar at the
80% read-only case because, although lock-based, read-only
transaction’s validation will likely succeed since few update
transactions execute in the system.

Figure 3 also shows the scalability of all competitors. 2PC-
baseline suffers from higher abort rate than others, which ham-
pers its scalability. This is because its read-only transactions
are not abort-free. The scalability trend of SSS and Walter is
similar, although Walter stops scaling at 15 nodes using 80%
of read-only transactions while SSS proceeds. This is mostly
related with network congestion, which is reached by Walter
earlier than SSS since Walter’s transaction processing time is
lower than SSS, thus messages are sent with a higher rate.

In Figure 4 we compare 2PC-baseline and SSS in terms
of maximum attainable throughput and transaction latency.
Figure 4(a) shows 2PC-baseline and SSS configured in a way
they can reach their maximum throughput with 50% read-only
workload and 5k objects, meaning the number of clients per
nodes differs per reported datapoint. Performance trends are
similar to those in Figure 3(b), but 2PC-baseline here is faster
than before. This is related with the CPU utilization of the
nodes’ test-bed. In fact, 2PC-baseline requires less threads to
execute, meaning it leaves more unused CPU-cores than SSS,
and those CPU-cores can be leveraged to host more clients.

0

0.5

1

1.5

2

1 3 5 10

Ti
m
e	
(m

s)

Internal	Commit
Pre-commit	

Fig. 5. Breakdown of SSS transaction latency.

The second plot (Figure 4(b)) shows transaction latency
from its begin to its external commit when 20 nodes, 50%

read-only transactions, and 5k objects are deployed. In the
experiments we varied the number of clients per node from
1 to 10. When the system is far from reaching saturation
(i.e., from 1 to 5 clients), SSS’s latency does not vary, and
it is on average 2× lower than 2PC-baseline’s latency. At
10 clients, SSS’s latency is still lower than 2PC-baseline but
by a lesser percentage. This confirms one of our claim about
SSS capability of retaining high-throughput even when update
transactions are held in snapshot-queues. In fact, Figure 3(b)
shows the throughput measurement in the same configuration:
SSS is almost 7× faster than 2PC-baseline.

Figure 5 shows the relation between the internal commit
latency and the external commit latency of SSS update trans-
actions. The configuration is the one in Figure 4(b). Each
bar represents the latency between a transaction begin and its
external commit. The internal red bar shows the time interval
between the transaction’s insertion in a snapshot-queue and
its removal (i.e., from internal to external commit). This latter
time is on average 30% of the total transaction latency.

In Figure 6 we compare SSS against ROCOCO and 2PC-
baseline. To be compliant with ROCOCO, we disable repli-
cation for all competitors and we select 5k as total number
of shared keys because ROCOCO finds its sweet spot in the
presence of contention. Accesses are not local.

0

20

40

60

80

100

5 10 15 20

Th
ro
ug
hp

ut
	(K
Tx
s/
se
c	
)

SSS-5K

2PC-5K
ROCOCO-5K

(a) 20%.

0

50

100

150

200

250

300

5 10 15 20

Th
ro
ug
hp

ut
	(K
Tx
s/
se
c)

(b) 80%.

Fig. 6. SSS, 2PC-baseline, ROCOCO varying % of read-only transactions.
Legend in (a) applies to (b).

Figures 6(a) and 6(b) show the results with 20% and
80% read-only transactions respectively. In write intensive
workload, ROCOCO slightly outperforms SSS due to its lock-
free executions and its capability of re-ordering deferrable
transaction pieces. However, even in this configuration, which
matches a favorable scenario for ROCOCO, SSS is only 13%
slower than ROCOCO and 70% faster than 2PC-baseline. In
read-intensive workload, SSS outperforms ROCOCO by 40%

and by almost 3× 2PC-baseline at 20 nodes. This gain is
because ROCOCO is not optimized for read-only transactions;
in fact, its read-only are not abort-free and they need to wait
for all conflicting update transactions in order to execute.

We also configured the benchmark to produce 50% of keys
access locality, meaning the probability that a key is stored
by the node where the transaction is executing (local node),
and 50% of uniform access. Increasing local accesses has a
direct impact on the application contention level. In fact, since
each key is replicated on two nodes, remote communication
is still needed by update transactions, while the number of
objects accessible by a client reduces when the number of
nodes increases (e.g., with 20 nodes and 5k keys, a client on
a node can select its accessed keys among 250 keys rather
than 5k). Read-only transactions are the ones that benefit the
most from local accesses because they can leverage the local
copy of each accessed key.

0
100
200
300
400
500
600
700

5 10 15 20

Th
ro
ug
hp

ut
	(K
Tx
s/
se
c	
)

2PC-5K 2PC-10K Walter-5k
Walter-10k SSS-5K SSS-10K

Fig. 7. Throughput 80% read-only
and 50% locality.

1

1.5

2

2.5

3

3.5

2 4 8 16

Sp
ee
du

p

SSS/ROCOCO-5K
SSS/ROCOCO-10K
SSS/2PC-5K

SSS/2PC-10K

Fig. 8. Speedup of SSS over RO-
COCO and 2PC-baseline increasing
the size of read-only transactions.

We report the results (in Figure 7) using the same configu-
ration in Figure 3(c) because that is the most relevant to SSS
and Walter. Results confirm similar trend. SSS is more than
3.5× faster than 2PC-baseline but, as opposed to the non-local
case, here it cannot close the gap with Walter due to the high
contention around snapshot-queues.

In Figure 8 we show the impact of increasing the number
of read operations inside read-only transactions from 2 to 16.
For this experiment we used 15 nodes and 80% of read-only
workload. Results report the ratio between the throughput of
SSS and both ROCOCO and 2PC-baseline. When compared
to ROCOCO, SSS shows a growing speedup, moving from
1.2× with 2 read operations to 2.2× with 16 read operations.
This is because, as stated previously, ROCOCO encounters
a growing number of aborts for read-only transactions while
increasing accessed objects. 2PC-baseline degrades less than
ROCOCO when operations increases because it needs less
network communications for read-only transactions.

VI. RELATED WORK

Many distributed transactional repositories have been pro-
posed in literature, examples include [3], [5], [8], [9], [11]–
[13], [16], [20]. Among them, Spanner [11], Scatter [18], and
ROCOCO [23] guarantee the same level of consistency as SSS.

Google Spanner [11] is a high performance solution that
leverages a global source of synchronization to timestamp
transactions so that a total order among them can always be

determined, including when nodes are in different geographic
locations. This form of synchronization is materialized by
the TrueTime API. This API uses a combination of a very
fast dedicated network, GPS, and atomic clocks to provide
accuracy of the assigned timestamps. Although outstanding,
Spanner’s architecture needs special-purpose hardware and
therefore it cannot be easily adopted and extended.

Scatter provides external consistency on top of a Paxos-
replicated log. The major difference with SSS is that Scatter
only supports single key transactions while SSS provides a
more general semantics. ROCOCO uses a two-round protocol
to establish an external schedule in the system, but it does not
support abort-free read-only transactions.

Replicated Commit [22] provides serializability by repli-
cating the commit operation using 2PC in every data center
and Paxos to establish consensus among data centers. As
opposed to SSS, in Replicated Commit read operations require
contacting all data centers and collect replies from a majority
of them in order to proceed. SSS’s read operations are handled
by the fastest replying server.

Granola [12] ensures serializability using a timestamp-based
approach with a loosely synchronized clock per node. Granola
provides its best performance when transactions can be defined
as independent, meaning they can entirely execute on a single
server. SSS has no restriction on transaction accesses.

CockroachDB [8] uses a serializable optimistic concurrency
control, which processes transactions by relying on multi-
versioning and timestamp-ordering. The main difference with
SSS is the way consistent reads are implemented. Cock-
roachDB relies on consensus while SSS needs only to contact
the fastest replica of an object.

Calvin [28] uses a deterministic locking protocol supported
by a sequencer layer that orders transactions. In order to do
that, Calvin requires a priori knowledge on accessed read and
written objects. Although the sequencer can potentially be able
to assign transaction timestamp to meet external consistency
requirements, SSS does that without assuming knowledge of
read-set and write-set prior transaction execution and without
the need of such a global source of synchronization.

SCORe [24], guarantees similar properties as SSS, but
it fails to ensure external consistency since it relies on a
single non-synchronized scalar timestamp per node to order
transactions, and therefore its abort-free read-only transactions
might be forced to read old version of shared objects.

Other protocols, such as GMU [25], Walter [27], Clock-
SI [15] and Dynamo [13], provide scalability by supporting
weaker levels of consistency. GMU [25] provides transactions
with the possibility to read the latest version of an object by
using vector clocks; however it cannot guarantee serializable
transactions. Walter use a non-monotonic version of Snapshot
Isolation (SI) that allows long state fork. Clock-SI provides SI
using a loosely synchronized clock scheme.

VII. CONCLUSIONS

In this paper we presented SSS, a transactional repository
that implements a novel distributed concurrency control pro-

viding external consistency without a global synchronization
service. SSS is unique because it preserves the above prop-
erties while guaranteeing abort-free read-only transactions.
The combination of snapshot-queuing and vector clock is the
key technique that makes SSS possible. Results confirmed
significant speedup over state-of-the-art competitors in read-
dominated workloads.

REFERENCES

[1] CloudLab Clemson, 2017. http://docs.cloudlab.us/hardware.html.
[2] A. Adya. Weak Consistency: A Generalized Theory and Optimistic

Implementations for Distributed Transactions. PhD thesis, 1999.
AAI0800775.

[3] D. D. Akkoorath, A. Z. Tomsic, M. Bravo, Z. Li, T. Crain, A. Bieniusa,
N. Preguiça, and M. Shapiro. Cure: Strong semantics meets high
availability and low latency. In Distributed Computing Systems (ICDCS),
2016 IEEE 36th International Conference on, pages 405–414. IEEE,
2016.

[4] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny. Work-
load analysis of a large-scale key-value store. In P. G. Harrison, M. F. Ar-
litt, and G. Casale, editors, ACM SIGMETRICS/PERFORMANCE Joint
International Conference on Measurement and Modeling of Computer
Systems, SIGMETRICS ’12, London, United Kingdom, June 11-15, 2012,
pages 53–64. ACM, 2012.

[5] P. A. Bernstein and S. Das. Rethinking eventual consistency. In
Proceedings of the 2013 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’13, pages 923–928, New York, NY,
USA, 2013. ACM.

[6] P. A. Bernstein and N. Goodman. Concurrency control in distributed
database systems. ACM Computing Surveys (CSUR), 13(2):185–221,
1981.

[7] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency control
and recovery in database systems. 1987.

[8] Cockroach Labs. CockroachDB , 2017. https://github.com/cockroachdb/
cockroach.

[9] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, P. Bohan-
non, H.-A. Jacobsen, N. Puz, D. Weaver, and R. Yerneni. Pnuts: Yahoo!’s
hosted data serving platform. Proceedings of the VLDB Endowment,
1(2):1277–1288, 2008.

[10] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears.
Benchmarking cloud serving systems with YCSB. In J. M. Hellerstein,
S. Chaudhuri, and M. Rosenblum, editors, Proceedings of the 1st ACM
Symposium on Cloud Computing, SoCC 2010, Indianapolis, Indiana,
USA, June 10-11, 2010, pages 143–154. ACM, 2010.

[11] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman,
S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild, W. Hsieh, S. Kan-
thak, E. Kogan, H. Li, A. Lloyd, S. Melnik, D. Mwaura, D. Nagle,
S. Quinlan, R. Rao, L. Rolig, Y. Saito, M. Szymaniak, C. Taylor,
R. Wang, and D. Woodford. Spanner: Google’s Globally Distributed
Database. ACM Trans. Comput. Syst., 31(3):8:1–8:22, Aug. 2013.

[12] J. A. Cowling and B. Liskov. Granola: Low-overhead distributed
transaction coordination. In USENIX Annual Technical Conference,
volume 12, 2012.

[13] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo:
amazon’s highly available key-value store. In ACM SIGOPS operating
systems review, volume 41, pages 205–220. ACM, 2007.

[14] X. Défago, A. Schiper, and P. Urbán. Total order broadcast and multicast
algorithms: Taxonomy and survey. ACM Comput. Surv., 36(4):372–421,
2004.

[15] J. Du, S. Elnikety, and W. Zwaenepoel. Clock-si: Snapshot isolation for
partitioned data stores using loosely synchronized clocks. In Reliable
Distributed Systems (SRDS), 2013 IEEE 32nd International Symposium
on, pages 173–184. IEEE, 2013.

[16] J. Du, C. Iorgulescu, A. Roy, and W. Zwaenepoel. Gentlerain: Cheap
and scalable causal consistency with physical clocks. In Proceedings of
the ACM Symposium on Cloud Computing, pages 1–13. ACM, 2014.

[17] D. K. Gifford. Information storage in a decentralized computer system.
PhD thesis, Stanford University, 1981.

[18] L. Glendenning, I. Beschastnikh, A. Krishnamurthy, and T. Anderson.
Scalable consistency in scatter. In Proceedings of the Twenty-Third ACM
Symposium on Operating Systems Principles, pages 15–28. ACM, 2011.

[19] J. Gray and L. Lamport. Consensus on transaction commit. ACM
Transactions on Database Systems (TODS), 31(1):133–160, 2006.

[20] R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin, S. Zdonik, E. P.
Jones, S. Madden, M. Stonebraker, Y. Zhang, et al. H-store: a high-
performance, distributed main memory transaction processing system.
Proceedings of the VLDB Endowment, 1(2):1496–1499, 2008.

[21] T. Landes. Dynamic vector clocks for consistent ordering of events in
dynamic distributed applications. In PDPTA, pages 31–37, 2006.

http://docs.cloudlab.us/hardware.html
https://github.com/cockroachdb/cockroach
https://github.com/cockroachdb/cockroach

[22] H. Mahmoud, F. Nawab, A. Pucher, D. Agrawal, and A. El Abbadi. Low-
latency multi-datacenter databases using replicated commit. Proceedings
of the VLDB Endowment, 6(9):661–672, 2013.

[23] S. Mu, Y. Cui, Y. Zhang, W. Lloyd, and J. Li. Extracting more
concurrency from distributed transactions. In OSDI, volume 14, pages
479–494, 2014.

[24] S. Peluso, P. Romano, and F. Quaglia. SCORe: A scalable one-copy
serializable partial replication protocol. In Middleware 2012, pages 456–
475, 2012.

[25] S. Peluso, P. Ruivo, P. Romano, F. Quaglia, and L. Rodrigues. Gmu:
Genuine multiversion update-serializable partial data replication. IEEE
Transactions on Parallel and Distributed Systems, 27(10):2911–2925,
2016.

[26] R. Ricci, E. Eide, and C. Team. Introducing cloudlab: Scientific
infrastructure for advancing cloud architectures and applications. ;
login:: the magazine of USENIX & SAGE, 39(6):36–38, 2014.

[27] Y. Sovran, R. Power, M. K. Aguilera, and J. Li. Transactional storage
for geo-replicated systems. In Proceedings of the Twenty-Third ACM
Symposium on Operating Systems Principles, pages 385–400. ACM,
2011.

[28] A. Thomson, T. Diamond, S.-C. Weng, K. Ren, P. Shao, and D. J. Abadi.
Calvin: fast distributed transactions for partitioned database systems. In
Proceedings of the 2012 ACM SIGMOD International Conference on
Management of Data, pages 1–12. ACM, 2012.

[29] S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden. Speedy
transactions in multicore in-memory databases. In M. Kaminsky
and M. Dahlin, editors, ACM SIGOPS 24th Symposium on Operating
Systems Principles, SOSP ’13, Farmington, PA, USA, November 3-6,
2013, pages 18–32. ACM, 2013.

[30] X. Wang, J. Mayo, W. Gao, and J. Slusser. An efficient implementation
of vector clocks in dynamic systems. In PDPTA, pages 593–599, 2006.

[31] X. Yan, L. Yang, H. Zhang, X. C. Lin, B. Wong, K. Salem, and
T. Brecht. Carousel: Low-latency transaction processing for globally-
distributed data. In Proceedings of the 2018 International Conference
on Management of Data, pages 231–243. ACM, 2018.

[32] I. Zhang, N. K. Sharma, A. Szekeres, A. Krishnamurthy, and D. R.
Ports. Building consistent transactions with inconsistent replication. In
Proceedings of the 25th Symposium on Operating Systems Principles,
pages 263–278. ACM, 2015.

	I Introduction
	II System Model & Assumptions
	III SSS Concurrency Control
	III-A Metadata
	III-B Execution of Update transactions
	III-C Execution of Read-Only Transactions
	III-D Examples
	III-E Additional Considerations of SSS

	IV Correctness
	V Evaluation
	VI Related Work
	VII Conclusions
	References

