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Abstract

Recent peer-to-peer (P2P) systems are characterized by decentralized control, large scale and extreme
dynamism of their operating environment. As such, they can be seen as instances of complex adaptive
systems (CAS) typically found in biological and social sciences. In this paper we describe Anthill, a frame-
work to support the design, implementation and evaluation of P2P applications based on ideas such as
multi-agent and evolutionary programming borrowed from CAS. An Anthill system consists of a dynamic
network of peer nodes; societies of adaptive agents travel through this network, interacting with nodes and
cooperating with other agents in order to solve complex problems. Anthill can be used to construct different
classes of P2P services that exhibit resilience, adaptation and self-organization properties. We also describe
preliminary experiences with Anthill in implementing a file sharing application.
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1 Introduction

1 Introduction

Informally, peer-to-peer (P2P) systems are distributed systems based on the concept of resource
sharing by direct exchange between peer nodes (i.e., nodes having the same role and responsibil-
ity). Exchanged resources include content, as in popular P2P file sharing applications [17, 8, 10],
and storage capacity or CPU cycles, as in computational and storage grid systems [1, 16, 9].

Distributed computing was intended to be synonymous with P2P computing long before the
term was invented, but this initial desire was subverted by the advent of client-server computing
popularized by the World Wide Web. The modern use of the term P2P and distributed computing
as intended by its pioneers, however, differs in several important aspects. First, P2P applications
reach out to harness the outer edges of the Internet and consequently involve scales that were
previously unimaginable. Second, P2P by definition, excludes any form of centralized structure,
requiring control to be completely decentralized. Finally, and most importantly, the environ-
ments in which P2P applications are deployed exhibit extreme dynamism in structure, content
and load. The topology of the system typically changes rapidly due to nodes voluntarily coming
and going or due to involuntary events such as crashes and partitions. The load in the system
may also shift rapidly from one region to another, for example, as certain files become “hot” in
a file sharing system; or the computing needs of a node suddenly increase in a grid computing
system.

Traditional techniques for building distributed applications are not satisfactory for dealing
with the scale and dynamism that characterize modern P2P systems. For example, certain file-
sharing applications [8] rely on flooding-style communication, severely limiting their scalability.
Other systems require manual intervention for their configuration or tuning as their environment
changes. We argue that satisfying the needs of P2P application development requires a paradigm
shift that includes adaptation, resilience and self-organization as primary concerns.

In this paper, we suggest that complex adaptive systems (CAS) commonly used to explain the
behavior of certain biological and social systems can be the basis of a programming paradigm for
P2P applications. In the CAS framework, a system consists of a large number of relatively simple
autonomous computing units, or agents. CAS typically exhibit what is called emergent behavior:
the behavior of the agents, taken individually, may be easily understood, while the behavior of
the system as a whole defies simple explanation. In other words, the interactions among agents,
in spite of their simplicity, can give rise to richer and more complex patterns than those generated
by single agents viewed in isolation. Examples of CAS include multicellular organisms, social
insect colonies, and living ecosystems.

From a P2P perspective, CAS offer several attractive properties, including total lack of cen-
tralized control. Furthermore, the emergent behavior of CAS is highly adaptive to changing
environmental conditions or unforeseen scenarios, is resilient to deviant behavior (failures) and
is self-organizing towards desirable global configurations. Most importantly, these global prop-
erties are obtained without explicitly “programming” them into the individual agents.

In order to pursue these ideas, we are developing Anthill, a novel framework for P2P appli-
cation development, based on ideas such as multi-agent systems (MAS) and evolutionary pro-
gramming borrowed from CAS [18, 12]. The goals of Anthill are to provide an environment that
simplifies the design and deployment of P2P systems based on these paradigms, and to provide
a “testbed” for studying and experimenting with CAS-based P2P systems in order to understand
their properties and evaluate their performance.

Anthill uses terminology derived from the ant colony metaphor. An Anthill distributed sys-
tem is composed of a network of interconnected nests. Each nest is a peer entity sharing its
computational and storage resources. Nests handle requests originated by local users, by gener-
ating one or more ants — autonomous agents that travel across the nest network trying to satisfy
the request. Ants can observe their environment and perform simple local computations leading
to actions based on these observations. The actions of an ant may modify the environment, as
well as the ant’s location within the environment. In Anthill, emergent behavior manifests it-
self as swarm intelligence whereby the collection of simple ants of limited individual capabilities
achieves “intelligent” collective behavior [2].
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The multi-agent paradigm promoted by Anthill is particularly suited for applications that
are to be deployed in highly dynamic environments, subject to incomplete and imprecise infor-
mation [2]. Artificial ant colonies, which mimic real ant colonies that are natural instances of
MAS, are known to be capable to solve complex optimization problems including those arising
in communication networks [3].

The Anthill API supports P2P application development and deployment through the provi-
sion of a set of services offered by nests, such as storage management, communication and topol-
ogy management, and ant scheduling. Developers can build P2P applications simply by defining
the structure of the P2P system and designing appropriate ant algorithms using the Anthill API
for solving the application problem. The services provided by Anthill free the developer from
considering low-level details such as communication, security and scheduling strategies.

Anthill includes a simulation environment to aid developers analyze and evaluate the be-
havior of P2P systems prior to deployment. Simulation parameters, such as the structure of the
network, the ant algorithms to be deployed, characteristics of the workload presented to the sys-
tem, are all defined using XML files, providing a flexible configuration mechanism. Unlike other
toolkits for MAS simulation [11, 6], Anthill uses a single ant implementation in both the simu-
lation and the runtime environments, thus avoiding the cost of re-implementing ant algorithms
before deploying them. This important feature has been obtained through careful design of the
Anthill API and by providing distinct implementations for simulation and deployment.

In addition to the adaptation properties derived from its multi-agent structure, Anthill pushes
the analogy with natural systems even further by enabling developers to “evolve” ant algorithms
to better adapt to certain tasks. This is accomplished through evolutionary computing techniques
such as genetic algorithms [12] within the simulation environment. The set of parameters that
define the behavior of an ant algorithm are considered its “genetic code” and the system auto-
matically evolves ant populations so that successive generations improve upon an appropriate
fitness measure.

In order to test our ideas regarding P2P as CAS, we have used Anthill to build a simple
file sharing application called Gnutant. There is no doubt that building on top of Anthill has
simplified the implementation. But more importantly, the resulting system indeed exhibits adap-
tiveness with respect to a variety of conditions and continues to improve its performance as time
goes on, despite starting from a state of total ignorance. Gnutant itself is of interest as it combines
the best characteristics of the two popular file sharing systems, Gnutella and Freenet [8, 10].

2  The Anthill Model

In this section, a description of the Anthill model is provided. The basic elements composing
the model are defined, while the details of the prototype implementations of the model are post-
poned to Section 4.

An Anthill system is composed of a self-organizing overlay network of interconnected nests,
as illustrated in Figure 1. Each nest is a middleware layer capable of performing computations
and hosting resources. Any machine connected to the Internet and running Anthill can act as a
nest. The network is characterized by the absence of any fixed structure, as nests come and go
and discover each other on top of a communication substrate.

Each nest interacts with local instances of one or more applications and provides them with a
set of services. Applications provide the interface between the user and the P2P network, while
services have a distributed nature and are based on the collaboration among nests. An example
application may be a file-sharing application, while a service could be a distributed indexing
service used by the file-sharing application to locate files.

An applications performs requests and listens for replies through its local nest. Requests and
replies constitute the interface between applications and services. For example, in a scientific
document-sharing network, a request would be a query for a particular set of keywords, and the
reply would contain a set of URLs to documents containing those keywords.

When a nest receives a request from the local application, an appropriate service for handling
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Figure 1. Overview of a nest network.

the request is selected from the set of available services. Services are implemented by ants, au-
tonomous agents capable to travel across the nest network. In response to a request, one or more
ants are generated and assigned to a particular task. While exploring the network, ants interact
with the nests that they visit in order to accomplish their goal.

Anthill does not specify which services a nest should provide, nor impose any particular
format on requests and replies. The provision of services and the interpretation of requests are
delegated to ants. The set of available services is dynamic, as new services may be installed by
the user.

2.1 The Nest

Figure 2 illustrates the architecture of a nest that is composed of three logical modules: ant sched-
uler, communication layer and resource managers. The ant scheduler module multiplexes the nest

File Manager NeSt
URL Manager
Routing Storage Fl|e - Ant
Shar_mg Scheduler
Service
Grid Communication
Service Layer
=/
"Network i

Figure 2. The architecture of a nest.
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public interface Nest {
voi d request (Request request,
Repl yLi stener |istener);
voi d addServi ce( Ant Factory factory);
voi d addNei ghbor (Nest1d nid);
voi d renpveNei ghbor (Nestld nid);
Nest | d[] get Neighbors();

Figure 3. The Nest interface.

computation resource among visiting ants. It is also responsible for enforcing nest security by
providing a “sandbox” for ants in order to limit the resources available to ants and prohibit ants
from performing potentially dangerous actions (e.g., local file access).

The communication layer is responsible for discovery of new nests, for network topology man-
agement and for ant movement between nests. In the network, each node has a unique identifier.
In order to communicate with a remote node, its identifier must be known. The set of nests
known to a node are called neighbors of that node. Note that the concept of neighborhood does
not involve any distance metrics, since such metrics are application dependent and can more ap-
propriately selected by developers. The collection of neighbor sets defines the nest network that
might be highly dynamic. For example, the communication layer may discover a new neighbor,
or it may forget about a known nest if it is considered unreachable. Both the discovery and the
removal processes may be either mediated by ants, or performed directly by the communication
layer. In the former case, ants may report about new remote nodes they visited, or may fail to
move to a neighbor because of a communication problem. In the latter case, the exact imple-
mentation of discovery and removal depends on the underlying communication substrate, and
is discussed in the next section.

Nests offer their resources to visiting ants through one or more resource managers. Example
resources could be files in a file-sharing system or CPU cycles in a computational GRID, while
the respective resource managers could be a disk-based storage manager and a task scheduler.
Each resource manager is associated with a set of policies for managing the (inherently limited)
resource. For example, a least-recently-used (LRU) policy may be used to discard items managed
by a file manager when space is needed for new files. Each service installed by a nest is associated
with a set of resource manager modules. For example, the nest in Figure 2 provides two distinct
services: a file-sharing service based on a distributed index for file retrieval, in which a routing
storage is used by ants in making routing decisions, a file manager is used for maintaining shared
files and a URL manager is used to maintain the distributed index; and a computational grid
application, in which a task manager executes tasks assigned to it.

The details of the Nest interface are shown in Figure 3. It contains the methods that may
be invoked by the P2P application to interact with a nest. The main method of this interface is
request(), that is used to perform new requests and to register a listener for replies. Furthermore,
the interface also provides methods for nest administration, such as addition and removal of
neighbors and registration of new services.

2.2 Ants

Ants are generated by nests in response to user requests; each ant tries to satisfy the request
for which it has been generated. An ant will move from nest to nest until it fulfills its task, after
which (if the task requires this) it may return back to the originating nest. Ants that cannot satisfy
their task within a time-to-live (TTL) parameter are terminated. When moving, the ant carries its
state, that may contain the request, results or other ant specific data. The ant algorithm may be
transmitted together with the ant state, if the destination nest does not know it; appropriate code
transfer mechanisms are used to avoid to download the same algorithm more than once, and to
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Figure 4. The Anthill interaction model.

update it when a new version of the same algorithm is available.

Ants do not communicate directly with each other; instead, they communicate indirectly by
leaving information related to the service they are implementing in the appropriate resource man-
ager found in the visited nests. For example, an ant implementing a distributed lookup service
may leave routing information that helps subsequent ants to direct themselves toward the region
of the network that more likely contains the searched key. This form of indirect communication,
used also by real ants, is known as stigmergy [5].

The behavior of an ant is determined by its current state, its interaction with resource man-
agers and its algorithm, that may be non-deterministic. For example, an ant may probabilistically
decide not to follow what is believed to be the best route for accomplishing a task, and choose
to explore alternative regions of the network. Ants must implement the Ant interface shown in
Figure 4. The run() method contains the ant algorithm and is executed at each nest visited during
the ant’s trip.

The set of actions available to ants are limited to those included in the AntView interface, shown
in Figure 4. Among these actions, ants are allowed to move to other nests, access local resource
managers, obtain identifiers for the local nest and its neighbors, augment the list of neighbor
nests, and finally notify the nest of a reply for a request originated in this nest.

Figure 4 gives a structural overview of the interactions between the various Anthill compo-
nents. In addition to building a P2P application using the nest interface and the reply listener,
the developer must also implement a set of ant algorithms facilitating services needed by that
particular P2P application.

3  The Evolutionary Framework

In Anthill, we further exploit the “nature” metaphor by using evolutionary techniques for im-
proving various characteristics of a P2P system. In particular, we make use of genetic algorithms
[12] in tuning the ant algorithms used by the P2P system. An Anthill system is the composition
of the operating environment and the collective behavior of ants, whose algorithms can be pa-
rameterized in various ways. The operating environment describes limiting factors such as disk
capacities, connectivity degree, join and leave frequency of nodes, etc. A typical parameter for an
ant algorithm is exploration probability, that will allow an ant to either deterministically follow
what is reputed to be the best path towards a resource, or non-deterministically select one of the
neighbors of the current nest, thus adding some degree of randomness to the exploration.
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Using genetic algorithms, we can specify optimization criteria and constraints for the param-
eters of the operating environment and ant algorithms. A typical optimization criterion could
be the minimization of the total path length traversed by ants (thus reducing the imposed net-
work load), constrained by the connectivity degree, leave frequency and some threshold on the
percentage of ants that succeed. Such optimization problems involve too many parameters and
constraints to be solvable with traditional techniques, thus the need for genetic algorithms. We
are currently extending the Anthill simulation environment to include optimization criteria def-
initions so as to allow automatic selection of parameters based on a fitness function (specific for
each application).

In addition to the off-line use of genetic techniques, we are investigating whether genetic
techniques can also be applied at run-time. For example, in order to satisfy a request, a nest could
launch several ants, each characterized by a different set of parameters, and then rate them using
a local fitness criterion. Subsequent requests could be delegated to ants derived genetically from
those that were deemed fittest in previous requests. Nests could also “steal” the algorithms and
parameters of visiting ants and use them in crossover and mutation techniques for generating
new ants. It is interesting to note that the on-line evolutionary selection mechanism itself can be
viewed as a P2P system whose task is to tune the ants of the original P2P application.

4 The Anthill Framework

In this section, we discuss the characteristics of the runtime and the simulation environments.
These two distinct implementations of the Anthill model are used for real network deployment
and for evaluation purposes, respectively. Unlike other toolkits for multi-agent simulation [11, 6],
Anthill uses a single ant implementation in both the simulation and real network environments,
thus avoiding the cost of re-implementing ant algorithms when deploying them and promoting
the rapid deployment of prototype ant algorithms in the Internet.

41 The Runtime Environment

A prototype of the runtime environment, which is the distributed implementation of the Anthill
model, is currently under development. The prototype is written in Java and is based on JXTA [7],
which is an open-source P2P project promoted by Sun Microsystems. JXTA aims at establishing
a network programming platform for P2P systems by identifying a small set of basic facilities
necessary to support P2P applications and providing them as building blocks for higher-level
functions. Although we are interested only in the Java version of JXTA, there are other imple-
mentations (“bindings”) for different programming languages. Interoperability between the dif-
ferent implementations are guaranteed by the use of XML as the low-level formatting systems
for messages exchanged between JXTA peers.

The benefits of basing our implementation on JXTA are several. For example, JXTA pro-
vides the possibility of using different transport layers for communication, including TCP/IP
and HTTP, and is capable of handling firewall and NAT related problems. This spare our im-
plementation from these low-level details. Furthermore, we may exploit the complex security
architecture that is being developed for JXTA.

The JXTA middleware is composed of three layers. At the bottom is the JXTA core, that deals
with low-level functions such as peer establishment, peer discovery, communication manage-
ment and routing. The JXTA services are built on top of the core and deal with higher-level
concepts, such as indexing, searching, and file sharing. These services, although useful by them-
selves, are used by [XTA applications to build high-level applications like chat, auction and per-
sistent storage.

The runtime environment of Anthill is designed as a JXTA service and exploits the facili-
ties offered by the JXTA core to provide an infrastructure for the construction of ant-based P2P
distributed applications. It implements the Nest interface, providing methods for performing
generic requests to Anthill applications. This nest implementation includes an ant scheduler ca-
pable of multiplexing the Java virtual machine among multiple visiting ants. Using the security
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model of Java, the execution of ants is confined to a controlled environment (“sandbox”) by lim-
iting their interactions with the local nest to those included in the AntView interface. A number of
disk- and memory-based resource managers are provided, enabling the ant algorithms to make
use of pre-installed classes in the visited nests. Nevertheless, it is also possible for ants to use
their own specialized resource storages.

The communication layer is based on some of the fundamental primitives offered by the JXTA
core, namely pipes, peer groups and advertisements. Pipes are communication channels for send-
ing and receiving messages, and are used in the communication layer to move ants between nests.
A peer group is a collection of cooperating peers providing a common set of services and speaking
the same set of protocols. Peers may participate in several groups at the same time, thus offering
several services. In Anthill, there is a general peer group constituted by all peers that are execut-
ing the nest service, and several peer groups constituted by the set of nests that accept to execute
a particular ant algorithm. Owners of peer nodes are able to decide which kind of services their
machines are going to offer, by accepting or rejecting the installation of new ant algorithms. Us-
ing features of the Java virtual machine, we are implementing a simple class loader capable of
downloading the code of unknown ants from remote sites and cache it on local disks so as to
avoid repeated downloads. Finally, advertisements are XML structured documents that describe
and publish the existence of a resource, such as a peer, a peer group, or a service. Advertisements
are used by the JXTA discovery protocol to locate services. In Anthill, they are used to advertise
peer groups of nests offering a particular service.

4.2 The Simulation Environment

To evaluate ant algorithms, Anthill includes a simulation environment through which the be-
havior of a particular ant implementation may be simulated and assessed. Simulating different
P2P applications require developing appropriate ant algorithms and a corresponding request
generator characterizing user interactions with the application. Each simulation study, called an
experiment, is specified using XML by defining a collection of component classes and a set of pa-
rameters for component initialization. For example, component classes to be specified include
the simulated nest network, the request generator to be used, and the ant algorithm to be simu-
lated. Initialization parameters include the duration of the simulation, the network size, failure
probability, the number of requests to be generated, and the type and capacity of the resource
managers to be used by ants. This flexible configuration mechanism enable developers to build
experiments at run-time by assembling a collection of pre-defined and customized component
classes, thus simplifying the process of evaluating ant algorithms.

In the current implementation, a P2P network is simulated inside a single Java virtual ma-
chine. The network is specified through the total number of nests and the number of neighbors
associated with each nest. Initially, the required number of nests are generated, and the set of
neighbors for each nest are selected randomly over the set of all nests. The network is dynamic,
as new nests may join the network at runtime and existing nests may crash or voluntarily leave
the network, based on pre-defined join and leave probabilities. Furthermore, the topology of the
network may evolve during simulation, due to ants exploring the network and leaving informa-
tion about remote nests.

Simulated nests are clearly distinct and simpler than the ones used in the runtime environ-
ment. Nevertheless, it is important to note that ant algorithms are totally independent of the nest
implementation and continue to work in both environments without any changes. The commu-
nication layer is based on local interactions rather than remote communication; ants moving from
one nest to another are simply transferred to the scheduling queue of the destination nest. Ant
schedulers of simulated nests are controlled by a centralized scheduler, that uses the provided
request generator to create requests and in a round-robin fashion invokes the ants run() method.
Finally, resource managers are implemented as simple data structures with a maximum capacity
and associated replacement policies.

The simulation proceeds by executing the sequence of generated requests on the nest network
and by monitoring performance parameters such as the number of request initiated, satisfied,
ant moves performed, network generated traffic, etc. The simulation environment enables pro-
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Figure 5. Gnutant Application Overview.

grammers to evaluate several different experiments and obtain average figures for the collected
statistics. Monitoring network traffic is not performed at the packet level, but rather at the ant
level, measuring the number of ants sent between various nests in the system.

In addition to this single-machine simulator, we are also investigating how we can distribute
the simulated nest network on a cluster of Java virtual machines, to remedy problems with scal-
ing the simulation environment to millions of nodes. The scalability problems of the simulation
environment are due to the relatively large memory footprint required by nest implementation.

5 File Sharing in Gnutant

In this section, we present our preliminary experience in using Anthill to build a file-sharing
application called Gnutant. In order to facilitate file searches, Gnutant builds a distributed file
index scattered across the nest network, whose task is to store URLs for shared files, together
with routing information needed to navigate through the index. The index is constructed at
runtime by Gnutant ants, that travel through the network collecting information about new and
existing files and insert this information in the index.

In Gnutant, each file is associated with some meta-data comprising a set of textual keywords
and a unique file identifier. The keywords are used by Gnutant to organize the distributed index
for routing, and may be provided by the user who inserted the file, or obtained automatically
from the filename. The file identifier is composed of the file size and a cryptographic digest
computed over the file content, and enables comparison of files for equality. Thus, different
URLSs for replicas of the same file will have the same file identifier. We exploit this property in
order to provide faster file downloads, by requesting disjoint fragments of the file from multiple
locations.

Figure 5 gives an overview of the Gnutant application. Users interact with Gnutant by copy-
ing files for sharing into a local folder, by issuing search queries and listening for replies, and by
selecting files for download from remote sites. When the application logic layer detects a new file
in the shared folder, an insert request is issued to the local nest in order to advertise the presence
of the file to other nests in the network. Search queries presented by users are issued as search
requests. Upon receiving a request, the nest will generate the appropriate ants to handle it. An
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insertion request for a file contains the file identifier, a URL and the collection of keywords, while
a search request simply specifies a collection of keywords. We say that a file “satisfies a search
request” if its set of associated keywords contains all keywords included in the search request.
As shown in Figure 2, each nest includes three resource managers: a file storage for managing
files in the shared folder; a URL storage containing URLs to files; and a routing storage that ants
may access or modify in order to make routing decisions or improve the routing of future ants,
respectively. The URL and routing storages in the network constitute the distributed file index.

5.1 The Gnutant Ant Algorithms

In this section, we briefly present the ant algorithms used to implement Gnutant. Additional
details can be found in a companion paper [13]. Gnutant ants are generated in response to user
requests, and travel across the network trying to satisfy them. Three distinct types of ant algo-
rithms are used, each of them specialized in a different task. The InsertAnt type is specialized
in advertising the existence of files by insertion of URLs into the distributed index, and is used
when there is a new file available in the shared folder, either because the user placed it there or af-
ter a download. The SearchAnt type is specialized in file searches, and is generated in response to
user queries. It exploits the information left in routing storages by other ants, trying to determine
the shortest path to files matching the user query. Upon reaching its TTL, the ant will return to
the originator nest backtracking its path. During the return trip, the ant will update both the dis-
tributed index and the routing storages to reflect its findings. Finally, the ReplyAnt type is used to
reduce the response times of searches. A ReplyAnt is generated at each nest where a SearchAnt
locates a file. The ReplyAnt returns immediately to the originator nest, while the SearchAnt may
continue its exploration to find other files satisfying the query.

To advertise a file, an InsertAnt is generated for each keyword associated with the inserted
file. Similarly, a SearchAnt is generated for each of the keywords contained in a search request.
Each of these ants carries also the entire query string. Together, the ants try to satisfy the given
request concurrently, exploring different regions of the nest network, since each of them will be
routed independently based on its associated keyword.

5.1.1 Gnutant Routing

InsertAnt and GnutantAnt make routing decisions using the specialized routing storage pro-
vided with Gnutant, by selecting the next nest to visit in their network exploration. The rout-
ing storage is based on the concept of hashed keyword routing, that is similar to the routing tech-
nique used in Freenet [10]. Routing storages associate the hash value of a keyword with a set
of nests that are believed to store URLSs for files associated with the corresponding textual key-
word. When visiting a nest, ants inspect the routing storages using their associated keyword. If
an exact match is found, the ant selects a nest from the set corresponding to the matching hashed
keyword; otherwise, a nest associated with the “closest” hashed keyword is selected.

The hash value of a keyword is computed using the Secure Hash Algorithm (SHA) to obtain
a 160 bit value. This mapping from the textual string space to the bit string space enables us
to compare hashed keywords to determine their closeness. Furthermore, hashing the keywords
also helps disperse the load evenly on the routing storages due to the uniformity property of
SHA. Basing routing storages on the raw textual keywords would result in highly unbalanced
load since keywords tend to be highly clustered in textual string space.

The notion of closeness between hashed keywords is fundamental to Gnutant’s routing scheme.
It allows nests to become biased toward a certain portion of the hashed keyword space. If a nest
is listed in a routing storage under a particular keyword, it will tend to receive more requests
for keywords similar to it. Moreover, nests become specialized in storing URLs of files having
similar hashed keywords, since forwarding a request will result in the nest itself gaining a URL
for the requested file. This clustering property will improve the search performance over time as
the routing storages evolve their knowledge, enabling ants to quickly find the relevant region in
the nest network.
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Figure 6. Search success rate.

5.2 Preliminary Simulation Results

In this section we present an evaluation of preliminary results for the Gnutant application ob-
tained using the Anthill simulation environment. In order to render our simulation more real-
istic, we have collected a set of 10,000 query strings by monitoring the Gnutella network. The
obtained query strings were also used as the names for 10,000 files, all of which were inserted
into the nest network a priori to running the simulation. Thus potentially, all of the queries could
have been satisfied. Furthermore, the routing storages were initialized with randomly generated
SHA keys, causing the ants to move randomly in the beginning. The simulation was run on a
static 2,000-node nest network with a fan out degree of 6 and 10.

After the insertion phase, 500,000 search requests were issued and statistics for the behavior
of the system was collected. Search requests for the simulation was generated using a geometric
distribution for selecting queries from the set of 10,000 Gnutella query strings. This distribution
enable us to bias the search requests towards a certain portion of the available documents, i.e.,
the popular search requests are selected more frequently. The TTL parameter for the search ants
was fixed at 10 hops.

The capacity of the routing, file and URL storages were set to 16, 16, and 64 entries, respec-
tively. All resource storages use the LRU replacement policy. The number of search hits was
sampled every 50th request, and the simulation was repeated ten times in order to obtain aver-
age values.

The simulation results are shown in Figures 6 and 7. Figure 6 shows the success rate for search
requests, when 90% of the search requests correspond to 10% (upper curves) or 50% (lower curve)
of the available documents. The fan out degree for curves a and c are 6, while curve b has degree
10. Figure 7 shows the number of hops necessary for the first reply to a successful search request.
As expected, both figures confirm that the performance of the system improves over time, as the
total number of performed requests increase and the content of the distributed index evolves.
Furthermore, we can see from the figures that the system converges towards a 55% (33%) success
rate for searches and approximately 2.3 (2.8) hops for the average search depth.
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Figure 7. Number of hops until first reply.

6 Related Work

Since the original file sharing applications [17, 8, 10], a flurry of recent P2P projects in differ-
ent application domains have come to being. These include persistent storage services [16, 9],
distributed lookup services [15, 4], and distributed computing applications [1]. The importance
of the P2P distributed computing model was recently recognized by industry, leading to sev-
eral standardization and infrastructure efforts, including JXTA and the Peer-to-Peer Working
Group [14, 7]. Anthill differs from these industrial initiatives because its main goal is to support
the scientific investigation of the properties of P2P systems, by providing a simulation testbed
for prototyping and tuning their P2P algorithms. On the other hand, we are exploiting the rich
facilities offered by JXTA [7] as a basis for the runtime implementation of Anthill.

Anthill’s simulation environment can, to some extent, be compared with agent simulators
such as Swarm [11] and MASS [6]. Swarm is a general purpose software package for simulat-
ing distributed artificial worlds. It provides a general architecture for problems that arise in a
wide variety of disciplines and is particularly suitable for problems involving a large number of
autonomous entities “living” in an environment. MASS is an agent simulator developed with
the aim of accurately measuring the influence of different multi-agent coordination strategies in
an unpredictable environment. Anthill differs from these systems, as they are only focused on
simulation, and do not support deployment in a real network environment.

Gnutant can be compared with existing file-sharing systems. In Gnutella [8], queries are text
strings transmitted through broadcasting: each node receiving a query forwards it to all its neigh-
bors. Being based on broadcasting, Gnutella is prone to serious scalability problems, and to avoid
an exponential growth in the number of messages exchanged, strict limits are imposed on the
TTL of messages and the number of neighbors known to each node. Unfortunately, these limits
restrict the reach of a Gnutella query and thus the number of matching replies. Gnutant inherits
the free search capability of Gnutella, without relying on inefficient broadcasting techniques.

In Freenet [10], each file is associated with a key obtained by hashing the file name. Search
requests contain a single key, representing the desired file. Requests are not broadcast; instead,
they are routed through the network using information gathered by previous requests. Freenet
routing is based on the closeness between keys: if a node is unable to satisfy a request locally, it
is forwarded to the node that is believed to store files whose keys are closest to the requested key.
The main limitation of Freenet is that queries are limited to files with well-known names. Gnutant
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adopts a routing technique similar to that of Freenet, but adds the possibility of performing free
search queries by associating files with keywords.

Despite the fact that Gnutant was designed for file sharing, the underlying mechanism could
be used to implement generic distributed lookup services like CAN [15] and Chord [4]. Our
lookup services would be probabilistic, since we cannot guarantee that existing name-value as-
sociations will be returned when performing a lookup. Using an ant-based implementation of a
distributed lookup service provides ad hoc replication of the key-value associations, rather than
uniform replication as provided by Chord and CAN. The drawback of uniform replication in
highly dynamic P2P systems is that it requires a fairly complex rearrangement of replicas. Using
ad hoc replication has the advantage that popular lookups will return quickly, while the draw-
back is that some (unpopular) index data may be lost due to lack of storage space at peers.

7  Conclusions

This paper presented Anthill, a framework supporting a new approach for building P2P applica-
tions based on the MAS paradigm, in which societies of autonomous agents cooperate in order
to accomplish tasks assigned to them.

The Anthill project is in its early development stages. So far, we have implemented prototypes
of the simulation and runtime environments, and we have used them to develop Gnutant, a set
of ant algorithms for a file-sharing application. The simulation environment, with its flexible
configuration mechanism, has been very valuable in supporting the design of Gnutant. Once
tuned, Gnutant has been deployed without modification in the runtime environment, by simply
substituting simulated resources managers with “real” implementations.

Work is under way to improve the simulation environment by augmenting it with an inter-
face for the graphical visualization of the properties of the simulated ant algorithms. We also
plan to use Anthill to evaluate properties of several existing P2P algorithms, such as persistent
storage services [16, 9] and distributed lookup services [15, 4]. We are implementing ants that
mimic the behavior of Freenet, for the purpose of comparison with Gnutant and studying how
the reliability, availability and performance of hash-based routing may be improved. Finally, we
plan to exploit evolutionary programming techniques to improve the performance of the result-
ing algorithms.
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