Agent Migration between Incompatible Agent Platforms

Pauli Misikangas and Kimmo Raatikainen
Department of Computer Science, University of Helsinki
P.O. Box 26 (Teollisuuskatu 23), FIN-00014 UNIVERSITY OF HELSINKI, Finland
email: { pauli.misikangas,kimmo.raatikaing@cs.helsinki.fi

Abstract ards in the near future. In the worst case, some vendors
might create their own extensions or competitive standards

Several agent platforms of general purpose exist — for because “the existing standard was not adequate.” If they
example, Voyager, Jade, and Grasshopper — each of whicthave enough customers and applications to back up their
provide an environment for building and executing software opinions, the agent world will split and we are back with
agents. Unfortunately, the platforms are usually incompat- the original problem.
ible with each other. Thus, agents built for one platform Thus, there are good reasons for trying to develop tech-
cannot be used in another platform, nor can they interact niques that would narrow the gap between agent platforms.
with agents in other platforms. Some effort is putinto stand- At least, we should be able to re-use the same agent source
ardizing agent communication and migration in FIPA and code in different platforms. This is analogous to writing
in OMG, but these standards are not yet supported by mostportable programs that can be compiled under different op-
of the existing platforms. Therefore, we should find someerating systems. A commonly used technique for this is to
other ways to allow interaction between agents in different separate all system specific code into modules that are used
platforms. through a system independeplication programming in-

In this paper we will show that itis possible to make plat- terface(API). The advantage of this approach is that only
form independent agents that are able to migrate betweenthose APl modules must be re-implementeddach sup-
incompatible platforms. We will also describe how mes- ported operating system. This simple idea can easily be ap-
sages can be delivered to agents in other platforms, andplied to agents as well. We can separate the platform spe-
show how to build platform independent service agents thatcific part of an agent and create an interface for it. The
are used via method calls. The ideas have been tested imest of the agent is platform independent and can be used in
practice with Voyager, Jade, and Grasshopper platforms. other platforms without modifications.

This idea can be elaborated even further. In this paper

we will show that it is possible to make platform independ-
1. Introduction ent agents that are able to migrate between incompatible
platforms — for example, between Voyager and Jade. In

The software agent society has re-invented the old prob_addition, we yvill Qespribe how to deliver messages between
lem of several incompatible systems, which has annoyed®d€nts running in different platforms so that the message
programmers for decades in the forms of operating systemsP2SSing is transparent to the sender and the receiver. We
programming languages, and so on. There are dozens of gifWill also outll.ne the principles of building platform inde-
ferent agent platforms including Voyager [9], Jade [1], and pendent service agents so Fhat they can be epr0|teq by us-
Grasshopper [6leach of which has the same basic func- "9 normal method calls. Finally, we will present a S|.rnplt=T
tions extended with some fancy features. Unfortunately, the€X@mple agent that has been used to test agent migration
general rule is that these platforms are incompatible with P€tween Voyager, Jade, and Grasshopper platforms.
each other. Therefore, agents built for one platformneca
be used in another platform. And even worse, agents canno2. Background
communicate with other agents that reside in another plat-
form. This means, for example, that a shopping agent built Every project that is planning to take advantage of agents
for platform X cannot buy products sold by agents in other must choose whether to use an existing agent platform or
platforms. to build one of its own. The choice is not easy because

Agent system developers are hopefully looking to FIPA there are several platform candidates and none of them out-
[4] and OMG [8] which are trying to standardize agent com- does others in all respects. Especially, if one is developing a
munication and migration. If everything goes well, some commercial product, such as shopping agents for electronic
day we will have nice standards supported by most of the commerce, one should try to select the platform which will
agent platforms. However, it would be unrealistic to hope have the most users in the future. Whichever is selected,
that all agent platform vendors will support those stand- it might turn out to be the wrong decision in the long run.

On the other hand, building a new platform is even more Monads Agents Monads Service Agents
risky since users who are already using some agent system

will probably not be very anxious to move to a new sys- Native Agents

tem. However, many research projects that are not aiming \ Monads API \

to build a commercial product might find the development Il L1

of a new agent platform a fascinating solution. ‘ Monads Services ‘ ‘ Agent Platform ‘
The dilemma of using an existing agent platform l i i i l i i

versus building a new one was also faced in the Monads ‘ Low Level System Services ‘

project [3]. Our goal is to advance working in wireless
environments, i.e. a laptop computer or an advanced PDA
connected to a fixed network via wireless networks, such Figure 1. Conceptual architecture of the Mon-
as GSM Data [7], GPRS [2], wireless LAN [10], by using ~ ads system

intelligent and adaptive agents. Since none of the existing

agent platforms is designed to be used with wireless con-

nectio'r;s, whe were t'et;nlpted to build aCinfagent system c;f OUMhrogramming interfacehat includes everything needed in
own. Anot er possi ity was to modily an existing plat- programming agents and agent-server intercommunication
form so that it suits our purposes better. In both cases, the(See Figure 2). Such an interface defines, among other
result would have been a system that is incompatible with things, how agents send and receive messages, how agents

existing ones. , register and look up services, and how agents move between
Our decision was to build the Monads system on top of agent servers, and so forth.

an existing agent platform that uses Java as the basic agent
implementation language. However, we were not ready to

commit ourselves to a sinale platform. Instead. we desian dplatforms are usually incompatible with each other. This
ngie p ' » We designediy ,q greatest obstacle for agent migration between plat-
a system that can easily be implemented for several plat-

L : forms as i in Figure 3. If wi Id transfer th
forms so that user-level Monads applications will work on depicted gure 3 e could transfer the state

each of them. Furthermore. Monads agents are able to in and classes of an agent to another platform and wake up the

' ’ 9 o ‘agent, even then the agent could not do anything useful in
. ; %his foreign environment because it does not know how to
operate in agent servers without Monads support, as wgll 8%se local services. Actually we would not even reach that
%oint because different types of agent servers do not have

common protocols for sending or receiving agents, classes,

Unfortunately, agent programming interfaces of different

Monads Agent Gatewawhich is described in Section 4.
Figure 1 outlines the basic conceptual archltegture of and messages.
the Monads System. All Monads agents are built upon .
. , ; : In Monads we have solved the problems mentioned
the Monads API, which defines the operations and services . .

. : —above by separating the platform independent part of an
needed by the agents. The operations and services are im: ent (the’head)) from the platform specific part (the
plemented using the corresponding functionality of the un- ’bgod ' The agent bod aﬁd head P mm nF: te with
derlying platform whenever possible. If some operations Y- 9 y ad communicate

are not supported by the underlying platform or they should iaCeT]tOHt(?:(; bgnginger?ttésggact g?ﬁgﬂi :2 é?eurcel,-aj Sl‘T’ieOf
be optimized for a wireless connection, we use our own im- 9 9 y 9 i

plementation instead. Since the underlying agent platform'o‘genu?’Ody provides some basic operations needed by

is not modified in any way, native agents can be used to'\a/ligcznt'f'heszclr?ts:gg dmde:ﬁr?ggns%\/rﬁear%zrt]rt]izg f;rlﬁhsrzrs_
gether with the Monads agents. 9

ceive messageat are needed when an agent server or some
other agent wants to communicate with the head. The main
3. Separating agent’s head and body program of an agent is in the head (cladgAgent), which
also implements the methods in thgentHead , defin-

Every agent platform has a unique set of services and in-iNg what the agent will do when a message arrives, and
terfaces of its own. Many platforms have a special agentSO on. The body (clas€Body) extends the platform spe-
superclass from which all agents must be derived, for ex- Cific agent superclasXAgent , if the platform has one,
ample. This means that each platform has a unagent @nd implements the operations defined inAlgentBody .
Whenever the head wants to operate with an agent server—
!The partners of the Monads project are Nokia Mobile Phones, send a message, for example—the head calls a method

Nokia Research Center, Sonera Ltd.,, and the University of Hel- ; ;
sinki. The project is also funded by the National Techno- available in theAgentBody . The body then performs the

logy Agency of Finland (TEKES). The project homepage is at OP€rations necessary to fulfill the request in the particu-
hitp:/www.cs.helsinki.filresearch/monads lar platform. Analogously, the body handles method calls

X' sinterface

3 XAgent
1 XAgentop1()

Agent | xemone0 Agent
Platform 4; Platform

MyAgent
xAgentOp1()
XxAgentOp2()

Figure 2. Interface between agent and platform

conflict

Figure 3. Unsuccessful agent migration because of incompatible interfaces

made to the XAgent by calling corresponding methods in Get Native Proxy: Get an object reference to an agent or

theAgentHead . its proxy. The identifier of an agent is given as a para-
The body part of an agent must be implemented for every meter and the type of the return valué€dbject , that
platform we want to support. However, it is the same for is the superclass of all Java classes. The head must

every agent, so the task needs to be done only once. The know the actual interface class of the agent and must
body should be kept as small as possible, containing only cast the reference to the interface class. After this the
those operations that are absolutely necessary to survive head can use normal Java method calls to communic-
in native servers without any Monads support. Thus, the ate with the agent.

AgentBody interface should contain at least the following

operations: . .
Typically, when a Monads agent arrives at an agent

i server, it first searches for some Monads services—the
Monads Naming Service, for example—and starts using
them if they are available. However, the agent can also op-
erate in non-Monads agent servers by using the operations
listed above. Although the set of operations is very limited,
it is sufficient for many useful tasks.

Move: Move to another agent server by using the agen
transfer services of the underlying platform.

Send Message:Send a text message—for example, a FIPA
ACL message—by using native communication ser-
vices. The body should also be able &zeive such
messages.

Find Service: Find a service by name and return the iden- 4. Advantages of head-body partition
tifier of the service agent. This is done by using native
yellow pages service.

pr—— 4 canb i In the previous section we described the basic idea of di-
The class structure in Figure 4 can be seen as an instance Afithe i ; s ; _
apter design pattern [5]. In fact, th¥Body is atwo-way adaptesince Vldlng agen.ts Into pIatform SpeCIfIC and pIatform mde.pend
it adapts interfaces to both directions — from head to platform and vice €Nt parts—into the body and th? head. |_n this .s_ectlon we
versa. show the advantages we can gain from this partition.

Platform independent

X sinterface interface
| |
| XAgent | [AgentBody|
| xAgentOp1() bodyOp1() ‘
: xAgentOp2() bodyOp2() | bod
A g ent : : oay
Platform ‘ i 1
X | eiemens ! AgentHead
| X head | | headop1() |
‘ XBody K>———L—» headOp2()
I xAgentOpl() -|- - -, :
: xAgentOp2() I I
| - - - |- bodyOp1() | ‘
! bodyOp2() !
| | MyAgent
! ! headOp1()

[|

Figure 4. Separating the platform independent part of an agent

4.1 Head migration Agent latform X

The head-body partition allows us to use the source code
of the head in several platforms. In fact, the compiled ver-
sion of the head is also portable. This reflects the principal
idea of this paper: Maybe we could move an instance of
the head class to another platform at run time? If we use
Java as the agent implementation language, the transfer is
fairly easy since Java offers tools of object serialization and
deserialization. In other words, we can transform an object /
into byte stream and vice versa. Thus, we can serialize a] © €
head, send it to another platform, deserialize it, and connect Y
it to a new body. After these steps the agent is again ready h ()
to run but now in a different platform. However, we need [~
a service that performs all the steps needed for the agent
migration.

The Monads Agent Gatewa§MAG) provides connec-
tions between agent servers of different platforms as de-
picted in Figure 5. The MAG is actually just a service
agent that opens a socket connection to another MAG when
needed. When an agent wants to migrate to another platin different platforms must be stored into the head. When a
form, the MAG splits the agent into the head and the body MAG receives a head, it can check whether the head already
but only the head is transferred to the destination platform. has a body in the platform or a new body should be created.
At the receiving end, the local MAG creates a rawdy for
the received head and joins them together; see Figure 6. 4.2 Message delivery between platforms

The body part stays alive in the original platform and
waits until the head comes back and is re-connected to the A commonly used method of agent communication is to
body. It is important that the head is connected to the samesend text messages between agents. If compared to method
body as before écause the ideity of a head-body agent calls, text messages have the advantage of being independ-
is associated to the body. Thus, it would be impossible to ent of the platform, programming language, class iat=§,
reach an agent after destroyinglitsdy kecause the identi- and location of communicating agents. It is enough that the
fier of the agent becomes invalid by doing that. In order to sender and the receiver agree on the meaning of messages,
find the right body for a head, identifiers of heads’ bodies and there are some ways to deliver text messages between

Agent Platform Z

@ ;/ Agent Serverswith
/ Monads Services

Figure 5. Agent platforms connected with
Monads Agent Gateways

- migrationvia head

body for platform X body for platformY

Agent
Platform

Agent
Platform

Figure 6. Moving the head of an agent to another agent platform

the source and the destination. 4.3 Using platform independent services via

. o . method calls
FIPA ACL [4] is a promising candidate for a common
agent communication language. .FIPA is also giving stand- The use ofRemote Method InvocatiofRMI) in agent
ards on how messages are delivered between platforms, - L '
communication simplifies the programming of agents. In-

Thusz wherj agent platform vendors ;tart to use these stap détead of sending messages, we can use normal method calls
ards in their products, we have a uniqgue agent communic-

. L . . r rvi from nts. In practi Il meth Il
ation system. However, this is not going to happen in theto equest services from agents. In practice, all method calls

handl ; . i
near foreseeable future. Of course, we can already use FIPAa re hand ?d by @roxy objectwhich provides exactly the

. L same call interface as the target agent. The proxy forwards
ACL in communication between our agents but the plat-

forms are not able to deliver messages in that form to agentsa” calls to the actual agent by using either local method calls

in another platform. However EIPA ACL messaging is suo- or RMI if the target agent is in another host. The caller does
P i ' ging P~ not need to know the actual location of the agent called: the
ported by the Monads Agent Gateway.

proxy will take care of that.

Many platforms provide operations for sending mes- Wheq an agent wants to use a service via method calls,
sages. In the platforms that do not support messages, wd must first _ask the underlylng platform to creaj[e a proxy
can define a common agent interface that has the operatiofi©" the service agent. Typically, platforms provide an op-
receiveMessage(String message) . Thus, agents eration which uses the agent identifier or service name as a
can send messages to each other Hiingathis method. parameter and returns an object reference to the proxy. In
When somebody sends a message to a head-body agent, tipsder t_o use this reference, the caller must first cast the type
message goes to the body first. If the head is present, thdo the interface class of the service that must be known in
body delivers the message to the head. If the head has gongdvance.
to another platform, the body has two choices: It can either L€t us assume that we have created a platform independ-
store the message until the head comes back or ask the MAGNt service agent using the head-body partition described
to deliver the message to the head. In the latter case, MAGIN Section 3. The implementation of the service is in the
on the receiving side will forward the message to its des- head and itis to be used through a separate service interface
tination by using the normal communication services of the class. Now we would like to register this service into the
local platform. underlying platform so that other agents could start using

the service. Unfortunately, most platforms refuse to register

This kind of message delivering, which is transparent to the head as a service agent, because it does not derive the
the sender, i.e. the sender does not notice that the receiveplatform specific superclass of agents. On the other hand,
is in another platform, is possible only when the receiving we cannot register the body either since it does not imple-
agent has a body in the sender’s platform. However, agentsnent the interface class of the service. The only solution
can also send messages to other agents by using the MAGeems to be to change the body so that it will provide the
directly if they know the identifier of the receiver in the tar- necessary interface. But then we have to makedy for
get platform. each head-platform combination, or do we?

Not necessarily. In the current Monads system proto- method we are using.
type, we use a trick that takes advantage on the dynamic
class handling of the Java language. We use the same clasg Example agent
name for the body implementation in all platforms. So, in-
stead of naming them agoyagerBody or JadeBody ,
all body implementations are namitbnadsBody . Thus,
we can create a body class for our service that extends th
MonadsBody and implements the service interface by del-
egating all requests to the head, as shown in Figure 7. Th
same service body class can be used in all platforms —

The following example illustrates our approach. We
would like to make an agent that carries a message, mi-
E‘grates to a given destination, displays the message using a
local service, and asks for a new message and destination.
Qe know that every agent server hablser Interface Ser-

.) . i onlyvice Agen(UIS) that can be used for user-agent interaction.
the implementation of its superclabtonadsBody varies The service is registered under the natoserinterface”
between platforms. In addition, the source code for the Ser-.nd implements the following interface:

vice body class can be generated automatically when given,piic interface Userinterface {
a list of the interfaces that are to bepported. void showMessage(String message);

Use of platform independent service agents gives some, String ask(String question);
additional requirements for the MAG implementation. We

must ensure that the body object created for a service hea‘i’ition We derive ourMessageAgent agent from the

is always an instance of the service body class. TherEfore’AgentHead class that is the base class for all agent heads.

we store the name of the body class into the head. When ahe actual agent program resides in tive() method

MAG receives_ an agent head, it checks whether the heanhiCh is called by the body when the agent is created
needs a special body class or the normal body class calyy when the agent has migrated. As its first action, the

Ee used. MVXZ mu_?:l also pe cgrtzful }N'th tk;]e CIISSSI Ioadlrt;gMessageAgent agent searches for the identifier of a local
etween S. 1he service body class should always eUIS, requests a reference to it, and asks it to display the
transferred together with the head, but MenadsBody message. Then the agent asks for a new message and the
muslt not be .transfferr]red Ibecause every platform has its OWIddress of the destination. Finally, it asks the body to move
Imp ementgnon 0 t at.c ass.] - to that destination. If the destination address points to an-
We admit that this trick of ours violates “the spiritof pure - gther platform, the body uses the Monads Agent Gateway

object-oriented programming” a little gbause it is based for migration, otherwise it calls the move operation of the
on special features of Java. There are alternatives, thoughyngerlying platform.

Service body classes could also be obtained in the followingpublic class MessageAgent extends AgentHead {
ways: private String message;

— When a head is created for the first time or it arrives DUb“Csu'\Sgrsg?g‘EAgemo {

at a platform where it has not been before, it gives a message = "Hello!";
list of the interface classes that should be supported by o
the body extension. These classes are given to a’body Public void live() {

We implement the agent by using the head-body par-

, . String uis_id =

generator’ which creates the Java source code for the body findService("Userinterface”):

service body. This class is compiled to bytecode by a Userlnterface uis =

normal Java compiler. (Userlinterface)body.getProxy(uis_id);
— The head carries a template of the service body source uis.showMessage(message);

L L. . message = uis.ask("Message?");

code with it. This is just like the code created by the String destination =

body generator but the name of the superclass is left uis.ask("Destination?");

open. For each platform, the appropriate superclass body.moveTo(destination);

name—XBody in platformX, for example—is putinto /I called again after migration

the source code before compilation. Thus, we do not;
need to use body generator but we must transfer addi- This example agent has been tested successfully with
tional data with the head. Voyager, Jade, and Grasshopper. We implemented the UIS
— If all platforms into which the agent may migrate are for each platform and registered it to agent servers as a local
known in advance, the necessary service body classeservice (in Jade we used Monads Naming Service for regis-
can be created and compiled beforehand. Class gentration). The message agent was able to migrate between
eration and compilation during migration are avoided, agent servers of different platforms via the MAG and use
but all body classes must be transferred with the head. 3]l versions of the UIS without any problems.
We have not implemented the alternative methods listed We also made some preliminary performance measure-
above, because they all inttuce more overhead than the ments to see how much overhead the Monads Agent Gate-

Agent
Platform
X

MyServicel

/\/W\/) serviceOpL()
Object obj = X.lookup("MyService"); serviceOp2()

MyServicel service = (MyServicel) obyj; ‘ ’

service.serviceOpl();
AN AF
MyServiceBody MyService
FTTT T - serviceOpl() serviceOpl()
| serviceOp2() serviceOp2()
(MyServicel)head) serviceOpl(); % Automatically generated Platform independent
from class MyServicel service implementation

Figure 7. Calling a service method

way causes to agent migration. In these measurements, thether platform, and how to build platform independent ser-
average time needed for agent migration via the MAG was vice agents that are used through normal method calls. The
roughly the same as when using platform specific move op-ideas presented above have already been tested successfully
erations. One must remember, though, that MAG is not using Voyager, Jade, and Grasshopper platforms.

meant to be used for agent migration inside a platform

butbetweerplatforms. Thus, making detailed performance References

comparisons with other systems is impossible because al-

ternative systems do not exist. [1] F. Bellifemine, G. Rimassa, and A.0Bgi. JADE — A
FIPA-compliant Agent Framework. http://www.practical-
6. Conclusions applications.co.uk/PAAM99/abstracts.html.

[2] G.Brasche and B. Walke. Concepts, Services, and Protocols

; ; ; of the New GSM Phase 2+ General Packet Radio Service.
It is useful to have different kinds of agent platforms IEEE Communications Magazing5(8):94-104, 1997.

from which to choose. All platforms have their advant- 5 o Campadello, H. Helin, O. Koskimies, P. Misikangas
ages and drawbacks so one can select the one which suits’ * . Makeli, and K. Raatikainen. Using mobile and intel-

one’s purposes best. On the other hand, having multiple in- ligent agents to support nomadic users.Poceedings of
compatible systems ruins the dream of having a world-wide ICIN 2000 Idera, 2000.

agent system in which agents could move between agent [4] Foundation for Intdigent Physical Agents.FIPA 97 Spe-
servers and could interact with other agents. Agent platform cification Part 2: Agent Communication Langua@etober

standards developed by FIPA and OMG may be the salva- __ 1998

. . o [5] E. Gamma, R. Helm, R. Johnson, and J. VlissidBssign
tion but even if they are successful, standardization takes Patterns - Elements of Reusable Object-Oriented Software

time. . . Addison-Wesley, 1995.

In this paper we have taken a different approach to the (6] |Kv++ GmbH. Grasshopper. httwww.ikv.de/products/
problem of incompatible platforms. We have shown that grasshopper/index.html, 1999.
some of the incompatibility problems can be solved with [7] M. Mouly and M.-B. Pautet. The GSM System for Mobile
a specialagent architecturén which all platform specific CommunicationsMouly and Pautet, 1992.

code is separated from the platform independent main pro- [8]1 Object Management GroupMobile Agent System Interop-
cedure of an agent. By using our design technique it is erability Facilties Specificationl. 998.

. . . . [9] ObjectSpace, Inc. Objectspace voyager. http://
possible to build agents that can migrate between different www.objectspace.com/products/prodVoyager.asp, 1999.

platforms. However, these agents can not use all features of10] K. Pahlavan, A. Zahedi, and P. Krisnamurthy. Wideband
the underlying platform. We have also described how mes- Local Access: Wireless LAN and Wireless ATMIEEE
sages can be delivered to an agent that has migrated to an- Communications Magazind5(11):34-40, 1997.

