N

N

Optimal routing in the De Bruijn networks
Zhen Liu

» To cite this version:

Zhen Liu. Optimal routing in the De Bruijn networks. [Research Report] RR-1130, INRIA. 1990,
pp-20. inria-00075429

HAL 1d: inria-00075429
https://inria.hal.science/inria-00075429v1
Submitted on 24 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/inria-00075429v1
https://hal.archives-ouvertes.fr

VI

A AN TR N AG RO NI
A PN

Rapports de Recherche

SO

DA G

2
A s T AN AR B

o2

R R T B e

N° 1130

A NS T o T A NI DA

Programme 3
Réseaux et Systémes Répartis

DR TR

R

OPTIMAL ROUTING IN THE DE
BRUIJN NETWORKS {

PR

DR

oA SIS AN A B MDD

ATy 2N S TG

(AN

R Y S S gt O 2

T,

4
K
4]
b

td
A
)
o

Zhen LIU
Décembre 1989

| Iy

Optimal Routing in the De Bruijn Networks

Routage Optimal dans les Réseaux de De Bruijn

Zhen LIU

INRIA Centre Sophia Antipolis
2004 route des Lucioles
06560 Valbonne, France

E-mail: liu@mirsa.inria.fr

July 1989

H! !D PAPIER RECUPERE ET RECYCLE

Abstract

In this paper, we consider the problem of optimal routing in an interconnection network, called
the de Bruijn network, where the sites are linked in the form of a de Bruijn graph. We provide the
distance functions for the undirected as well as the directed de Bruijn graphs. The optimal routing
problem is then reduced to that of pattern matching. We use Morris and Pratt’s failure function and
Weiner’s prefix tree to develop algorithms that find the shortest paths in the uni-directional and in
the bi-directional de Bruijn networks, respectively. These algorithms are linear in time and in space

(in the diameter of the graph).

Résumé

Dans ce papier, on considére le probléme du routage dans un réseau d’interconnexion, appelé le
réseau de deBruijn. On obtient les fonctions de distance pour les graphes de deBruijn orientés et
non-orientés. Le probléeme du routage optimal est ensuite réduit a celui de la reconnaissance des
chaines de caractéres. On utilise la fonction d’échec de Morris et Pratt et I’arbre de préfixe de Weiner
pour développer des algorithmes de routage dans les réseaux de deBruijn orientés et non-orientés,
respectivement. Ces algorithmes trouvent les plus courts chemins dans ces réseaux, et sont linéaires

en temps et en espace par rapport au diamétre du graphe.

Keywords : Computer network, de Bruijn graph, routing algorithm, distance function, shortest

path, pattern matching, failure function, prefix tree.

Mots-clés : réseau d’interconnexion, graphe de deBruijn, algorithme de routage, fonction de dis-

tance, plus court chemin, reconnaissance des chaines de caractéres, fonction d’échec, arbre de préfixe.

1 Introduction and Notation

This paper is concerned with the problem of optimal routing in an interconnection network, referred
to as the de Bruijn networks, where the connections between sites can be described by the de Bruijn
graph. We are interested in the distance functions and the routing algorithms of such networks. Both

uni-directional and bi-directional de Bruijn networks are analyzed.

Graphs are widely used in the design and analysis of computer networks. A vertex in the graph
denotes a site in the corresponding network, and an edge denotes a communication link between two
sites. If a network is uni-directional, i.e., the communication links in the network are uni-directional,

a directed graph can be used. Whereas for bi-directional network undirected graphs are used.

Let G = (V,E) be a directed (or undirected) graph, where V denotes the set of vertices, E the
set of arcs (or, for undirected graph, edges), (3,5) € E indicates that there is an edge from vertex i to
vertex j (or, between vertices ¢ and j). In an undirected graph, (,5) € E is equivalent to (4,%) € E.
The cardinal N = |V| denotes the number of vertices in G. Without loss of generality, we assume that
V={12,---,N}.

The vertex i is a neighbor of the vertex j if (,5) € E or (j,i) € E. The degree of a vertex is the
number of its neighbors. The degree of a graph is the maximum degree of the vertices. A path from

the vertex i to j is an ordered set of vertices {i,v1, vz, +,vn, 5}, such that

(iyvl) € Ea (vla ”2) € Es ttt (vn,j) €E

The length of a path is the number of edges on this path. The distance from i to J is the minimum

length of the paths from i to j. The diameter of a graph is the maximum distance in the graph.

The de Bruijn graph (cf. de Bruijn [2]), denoted by DG(d, k), has N = d vertices with diameter k
and degree 2d. This corresponds to the state graph of a shift register of length k using d-ary digits. A
shift register goes from a state to another by doing a shift operation. The multiprocessor system which
can be modeled by a de Bruijn graph DG(d,k) is called de Bruijn network, referred to as DN (d, k).

Let X = (zy,---,24), z; € {0,1,---,d — 1}, 1 < i < k, denote a vertex in DG(d, k). For all'
a € {0,1,---,d — 1}, let X~(a) = (z2,"++,%,0a), and X*(a) = (a,z;,-++,2Zx_,) denote the vertices
obtained by the left and right shift operations, respectively. The directed DG(d, k) is composed of
the vertices X = (zy,---,24), and the edges X — X~(a) and X*(a) — X. The undirected de Bruijn
graph can be obtained from the directed one by removing the directions of the edges. In what follows,

we call X~ (a) (X*(a), respectively) a type-L (type-R, respectively) neighbor of X.

:

2

001 >0

g
2
o
\

Y

101 111

100 110

(a)

011

8
.i—‘

010 ®io1 |

(®

Figure 1: Examples of de Bruijn graphs. (a) Directed DG(2,3). (b) Undirected DG(2,3).

Examples of directed and undirected de Bruijn graphs are given in Figure 1. The reader can see
that each vertex is of degree 2d and there are Nd arcs (or edges) in the graph. By removing the
redundant arcs (or edges), i.e., those with multiple occurrences in the graph, or those linking the same
vertices, one can show that, in a directed DG(d, k), there are N —d vertices of degree 2d and d vertices
of degree 2d — 2, and that in an undirected DG(d, k), there exist N — d? vertices of degree 2d, d2 — d
vertices of degree 2d — 1 and d vertices of degree 2d — 2.

In the design of computer networks, one intends to increase the number of vertices while keeping
a limited degree of graph (due to technical constraints) and a minimal graph diameter (since the
transmission of a message in the network may be proportional to its diameter). One of the most
attractive features of de Bruijn graphs is that they are nearly optimal graphs that minimize the

diameter, given the number of vertices and the degree of the graph (see Imase and Itoh [4]).

Another concern of the design of a network is fault-tolerance, which becomes crucial when the
system is large. It is shown in Pradhan and Reddy (8] that de Bruijn networks are able to tolerate up

to d — 1 processor failures.

De Bruijn networks are adequate for various applications. In fact, it is shown, in Samatham
and Pradhan [9], that the binary (d = 2) de Bruijn network allows one to represent various usual
architectures such as linear arrays, rings, complete binary trees and shuffle-exchange networks, so that

it can be used to solve efficiently many problems.

Other interesting characteristics of the de Bruijn networks include the existence of multiple Hamili-
tonian paths (de Bruijn [2], Etzion and Lempel [3]), extensibility (Samatham and Pradhan [9]) and

regularity which admits easy routing procedures (see Section 3 below).

In this paper, we discuss the problem of optimal routing in the de Bruijn networks. In Section 2,
we provide the distance functions for the directed and undirected de Bruijn graphs. In virtue of these
distance functions, the problem of finding shortest paths is reduced to the classical pattern matching
problem. In Section 3, we develop algorithms, in using the notion of failure function introduced by
Morris, Pratt [7] and the notion of prefiz tree by Weiner [10], for the optimal routing in the uni-
directional and the bi-directional de Bruijn networks, respectively. The complexities in time and in

space of these algorithms are linear in the diameter.

2 Distance Function

Let DG(d,k) denote the de Bruijn graph under consideration, d > 2, k¥ > 1. Let X = (zy,---,%})
and Y = (y1,--+,yx) be two arbitrary vertices in DG(d, k), where z;,y; € {0,1,---,d —1},1 < ¢ <
k. Denote by D(X,Y) the distance from X to Y (recall that D(X,Y) = D(Y,X) if DG(d,k) is
undirected). By convention, we define D(X,X) = 0 for all X € DG(d,k). In the following two

subsections, we provide the distance functions for directed and undirected DG(d,k)’s, respectively.

Before proceeding with the discussions, we show that DG(d,k) has diameter k. In fact, for all
X,Y € DG(d, k), the following trivial path has length k: _)

X=Xo-X1—5:--= X =Y,

where X; = X;_17(%:), 1 = 1,2,---, k. Therefore DG(d, k) has diameter less. than or equal t6 k. It is
easy to see that the distance from (0,---,0) to (1,---,1) is k. Thus the diameter of DG(d, k) is k.

2.1 Directed de Bruijn Graphs

Consider first the case where DG(d, k) is a directed de Bruijn graph.
Property 1. For all X,Y in the directed DG(d, k), ' ' /
D(X,Y) =k -max{s | 1 <8<k, Th_sq1Zk—st2* Tk = Y1¥2- Y5} (1i
where, by convention, the mazimum over an emply set is zero.
Proof. The proof of this fact is easy. Let 3
I=max{s |1 <8<k, Th_sp1 Tk =y1-Ys}) ; (2)

Kl=k, thenyX =Y, so that D(X ,Y) =0, and equa.lfty (1) holds. Supp:oée ! < k. Define the:vertices

X1=X"(y1), Xz =X1"(ys2)y ++5 Xiot = Xizezr™(¥k)-

One readily sees that
X-Xi—=---=>Xp1=Y

is a path from X to Y. Thus
DX,Y)<k-1I - ' 3)

Consider now an arbitrary path
X—)Zl—)-n-—)Zj=Y,

We have necessarily,
Zi = Zj-v" (W) Zica = Zja " (9e-1)s oo 2= X (gk-jn),

which implies that
Y = (yl" . $yk) = ZJ = (zj-l-l’ 9Tk Yk—j41y ,yk)a

so that .
Nny2-*-Yr-j = Tj41%5;42 - Tg.

Using definition (2) yields £ — j < I, so that
DX,Y)> k-1 (4)

We can thus conclude (1). (]

Let 6(d, k) denote the average distance between vertices in the directed de Bruijn graph DG(d, k)
It is readily checked from (1) that

k
6(d,k) =Y iok-‘a

=1

where a = 1/d, @ = 1 — a. Therefore
6(d,k) =k - (1 - a*)a/a (5)

In particular, when d = 2, @ = @ = 1/2, so that §(2,k) = k — 1 + 1/2*.

2.2 Undirected de Bruijn Graphs

In this subsection, we suppose that DG(d, k) is undirected. Our main result concerning the distance

function is the following:

i

Theorem 2. For all X,Y in the undirected DG(d, k), i
D(X,Y)

= 2k -1+ min {Lg‘p’j%k(z -J- I,‘,j(X,Y)),lént_,;I%k(—z +j- r,-'j(X,Y))} - (6)

= 2k—14 min (i-j - max{li;(X,Y),r;{(X,Y)}) (7)

" where

li,j(X,Y) = max{s|s<j, s<k-i+1, TiTit1 " Tits=1 = Yjmat1Yjma42" yg} (8)
rii(X,Y) = max{s|s<i, s<k—j+1, insn1®icesa s Ti = Yilie1-Yipa1} (9)
where, by convention, the mazimum over an empty set is zero.

‘ Let

(X,Y) =2k - 1+ min {lé‘.-“,,%k(’ =7 = hi(X,Y)), min (~i+j - ri.j(X,Y))} (10)

In order to prove Theorem 2, we establish the following claim which is equivalent to Theorem 2
Claim 3. Forall0 <n> k and all X,Y € DG(d, k), such that D(X,Y) = n,..the rezati;;;
D(X,Y)=l(X,Y) (11)
holds.

Proof. We prove the claim by induction on n. For n = 0, the fact that D(X ,Y)=0implies X =Y.
- We get immediately !, x(X,Y) = k, so that

I(X,Y)=0=D(X,Y).

Suppose now for some 0 <n < k-1,

VX,Y € DG(d,k), D(X,Y)<n: D(X,Y)=I(X,Y). (12)

Consider the pair of vertices X,Y € DG(d, k) such that D(X,Y) = n + 1. We first prove that

D(X,Y) <I(X,Y) B (13)

Examine (10), there exist s,t such that either
UX,Y)=2k—145s—1t=1y(X,Y),

or .
I(X,Y)=2k -1—-s+1t—r1,4(X,Y).

In the first case, denote § = I,,(X,Y). We have
X =120 To 1Y1-041Y1-042 < - YTs40T 54041 " - * Tk

7

In term of string, Y = y1y2---yx can be obtained by shifting X. We first perform s — 1 left shift
operations on X to obtain an X', then k—# right shifts on X’ to obtain X" by inserting successively on
the left of X’ the digits ¥t—g, Yt—6-1,°*- Y1y 21y ,Zk—t, Where 2y, -+, zx_; are arbitrarily chosen digits

with values i {0,---,d — 1}, and finally k — ¢ left shifts on X” to obtain Y by inserting successively
the digits Y41, -+, ¥k on the right of X”. :

In the second case, we proceed in a similar way. Let 6 = r,:(X,Y). We have also

X =31Z2 0 - Te 0YtYit1* - Y146—1Ts41%s42 < - - Tk

We first do k— s right shift operations on X to obtain an X', then k —@ left shifts on X’ to obtain X" by
inserting successively the digits y;46,Yt46+41,°°*, Yk, 21, -+, 2t—1 on the right of X', where 2y,---,21
are arbitrarily chosen digits with values in {0,--.,d — 1}, and finally ¢ — 1 right shifts on X" to obtain
Y by inserting successively the digits y;_1,---,y; on the left of X”. '

The above algorithms show that Y can be reached from X in at most I(X,Y’) steps. Therefore,
relation (13) holds.

We now prove that
D(X,Y) 2 I(X,Y) (ia)

Observe that all the subpaths of a shortest path are shortest paths. Thus
— . . -— . +
DX,Y) = min{_ min (D(X~(@),¥)+1), miz (D(X*(@)¥)+1)} (15)

Since D(X,Y) = n + 1, there exists some ag; 0 < ap < d — 1 such that at least one of the inequalities
D(X~ (ag),Y)<n, or D(X%(ap),Y)<n
holds. Therefore, equation (15) can be rewritten as

D(XaY) = mm{ (D(X‘(a),Y)+1),

min
{a | 0<a<d-1, D(X —(a),Y)<n}

i ¥ 16
{“|OS“Sd—lI,mDer"‘(a),Y)Sn}(D(X (a)Y)+1)} . (16)

Using the inductive assumption (cf. (12)), we get

D(X,Y) = min{ (X~ (a),Y) +1),

min
{a | 0<a<d-1, D(X~(a),Y)<n}

i +
{a| Ogan—ll,mDIzXﬂa),y)sn}(z(X (a),Y) + 1)} (17)

8

It follows from the definitions (8-9) that for all ¢, 0< a < d -1,

Lj(X(a),Y) < max{lip1i(X,Y), lip1a(X,Y)+1}, 1 <i<k- 1, 2$j <k,
ki(X~(@),Y) < 1, 1<j<k " | R
La(X~(a)Y) < 1, 1<i<h

rij(X7(a),Y) < rip;(X,Y), 1<i<k=1, 1<j<k,

i (X7(a),Y) < ri(X,Y)41, 1<j<k,

which imply y

i—j—hii(X™(a)Y) 2 min{(i+1)-j - L1, i(X,Y) -1, ((+1) = (G - 1) = biga,j1(X,Y) = 1},
1<i<k-1, 2<j<k,

koo Ik (X~ (a),Y)

i—1-1,(X"(a),Y)

v

k—j—-12k-j-L;(X,Y)-1, 1<j<k,

v

i-1-12i-1-3(X,Y)-1, 1<i<k, -
—-it+j-rij(X7(a)Y) > —(E+1)+j—rii(X,Y)-1, 1€i<k—-1, 1<j<k,

~k+j-rj(X7(a),Y) > —k+j-r;i(X,Y)-1, 1<j<k. .
Thus
(X~ (a),Y)
= 2k—1+min {lg.}jr;k(z -Jj- le.j(X'(a),Y)),lg;gk(—? +J- r.-,,-(x—(a),y))},,__
2 2k -1+ min {15’?,‘,-2;:(’ - J-L;i(X,)Y) - 1),1311.1;,‘(—1 +J-rii(X,Y) - 1)}
= I(X,Y)-1 v C
Analogously, it is readily checked that ‘ | 1
hj(X*(a)Y) < hi(X,Y)+1, 1<j<k, o " o
Iivj(X+(a)7Y) < li—l,j(Xa Y)’ 2<1:< k’ 17 <k,
ri(X*(a)Y) < max{ri_1;(X,Y), ri1ja(X,Y)+1}, 2<i<k 1<j<k-1,
ni(X*(a)Y) < 1, 1<j<k,
rie(X(a).Y) < 1, 1<i<k,

so that
1-j-h(X*)Y)
i—j-Li(X*(a)Y)
it j—rii(XH(a)Y) 2 min{-(i-1)+j—r 1 ;(X,Y) =1, =i - 1)+ (G +1) - riyj41(X,Y) - 1},
2<i<k, 1<j<k-1,

v

I*j“ll,j(X1Y)—1a ISJSk’

A\

(i—1)-j-l,-_,1'j(X,Y)—1, 2<i<k 1ZLj<k,

~1+4j-ni(X*(a)Y) 2 -1+j-riX,Y)-1, 1<j<k
—itk—rip(X¥(a)Y) > —it+k-ru(X,Y)-1, 1<i<k
Hence,

I(X*(a),Y)

= % — ; in (Ge izl (X+ in (—id4i—r(XF
= 2= T4 min{ min (i- = Ly(XH@), V), min (45 - rig(X @¥)}

2 2k -1+ min {15“:11,2k(z -J-L;(X,Y) - 1)’151_?37%k(_i +7j-rij(X,Y)- 1)}
= I(X,Y)-1
To sumarize,
D(X~(a),Y) > I(X,Y)-1, (18)
D(X*(a),Y) > IX,Y)-1. (19)

Applying these two relations to (17) immediately yields (14). In view of (13) and (14), the relation
(11) holds for n + 1. By induction, (11) holds for all 0 < n < k. 1

Corollary 4. For all X,Y € G,

D(X,Y) =2k -1+ min {1<’?‘g’§‘5k(’ -j- ls,j(X,Y)),lsglsi;lSk(-t +3 - rii(X, Y))} (20)

Proof. The equality follows from Theorem 2 and the facts that

1>321 = 2k-14+i-j7~Li(X,Y)> k2> (X,Y)
§>i21 3 2%k-1—itj—ri;(X,Y)> k> ra(X,Y).

10

mean distance §(d, k)

a
8t
degree d = 2 (o)
7t degree d = 3 (o)
- degree d = 4 (%)
6 |
5 .
4 } e
o
3t * ’
° .
2 3)
* o
1} L
: ! . ! ! : > diameter k
0 1 2 3 4 5 6 7 8

Figure 2: Average distance of undirected de Bruijn graphs

Let §(d, k) denote the average distance between verticse in the undirected de Bruijn graph DG(d, k).
It is not easy to give a simple relation between §(d,k) and d,k. Numerical results are provided in

Figure 2.

3 Optimal Routing Algorithms for the De Bruijn Networks

In de Bruijn networks, the connections between processors are highly regular: They are described by

shift operations. This allows one to specify routing paths in a very simple way: A path from X to Y

X=X X4 —»---=X,=Y

11

of length n can be described by 2n digits of d-ary: a;1b1a2b; - --anb,, wherea; = 0or1,0 < b; < d - 1,
and

a;i=0,b=u if X;=X 1 (u), ai=1,b=u if X;=X;_1*(u).
In words, a; indicates the type of neighbor, b; identifies the neighbor of this type. In case the de Bruijn

network is uni-directional, the digits a1,---,a,, which are all equal to zero, can be omitted.

Thus, when a message is generated, it is composed of five fields: control code, source address,
destination address, routing path, and the message content. The routing path field is of the form
{(a1,b1),"--,(an, bn)}, each pair specifying the selection of a particular neighbor. When a site, say
X, receives a message, it looks at the routing path field. If it is empty, then the message is destined
for this site, and the message is accepted. If, however, the routing path field is not empty, the site
removes the first element (pair) (a,b) from the field and transmits the message to the neighbor with

address Z:
Z=X"(b) if a=0, Z=X*0b) if a=1.

When the network is uni-directional, the value of a is not important, in which case, an element in the

field of routing path can simply be the value of b.

In a computer network, the optimal routing consists in finding a shortest routing path from a
site to another. In the above section, the length of the shortest paths from an arbitrary vertex X to
another arbitrary vertex Y in a de Bruijn graph is analyzed. In this section, we develop the algorithms
that generates the shortest paths for any arbitrary pair of source and destination. The complexities

in time and in space of these algorithms are also analyzed.

3.1 Algorithms of optimal routing path generation in the de Bruijn networks

Consider first the simpler case: The de Bruijn network DN(d, k) is uni-directional. The reader might
have observed that an algorithm which finds the shortest paths was also provided in the proof of
Property 1. We rewrite this in a more explicit form. Let X = (z1,---,24), Y = (91, y¥k). In the
algorithm, a path P

X=Xo-X1—»--2X,=Y,

where X; = X;_,=(b;),i=1,---,n, is represented by P = {by,bs,---,b,}.

Algorithm 1: Find a shortest path P from X to Y in the uni-directional de Bruijn net-
work DN(d,k).

12

begin

1. ifX=Y
2. thenP =90
else
begin
3. Use Algorithm 3 (see below) to compute ! which is defined by (2);
4. P = {141, W42, Yk }; o
end;
end.

Assume now that the de Bruijn network DN(d,k) is bi-directional. Let X = (z1,---,2¢), Y =

(y1,---,yx) be the source and destination, respectively. A path P:
X:Xo—'Xl—)"'_’ n=Y,-

where X; = Xi—l—(bi)a or X; = Xi—l+(bi)a t=1,---,n,isrepresented by P = {(alsbl)’(a2’ b2)7 v 9(an’ bn)}a
where a; = 0 (resp. ¢; = 1) if X; = X;_17(4;) (resp. X; = Xi_1H (b)), i =1,---,n. :

As in the previous case, an algorithm which finds the shortest paths in the undirected de Bruijn

graph was provided in the proof of Theorem 2.

Afgorithm 2: Find a shortest path P from X to Y in the bi-directional de Bruijn network
DN(d, k).

begin
1. ifX=Y
2. thenP=0
else
begin
3. Use Algorithm 3 (see below) to compute /; ;(X,Y), 1< 4,5 < k,

which are defined by (8); and let

D1=2k—1+31—-—t1—01= min 2k—1+i—j—l§’j(X,Y),

1<1,7<k

|2
where 91 = lsl,tl (X’Y)7

4. Use Algorithm 3 to compute 7;;(X,Y), 1< 4,5 <k,

13

which are defined by (9); and let

D2=2k-1-32+t2—02=1§Iin’;‘lék2k-—1—i+j—r;'j(X,Y),

where 83 = 75, 1,(X,Y);
5 if D1 = D2 =k

6 then P = {(O,yl),(O, yZ)" e ’(Os ?/k)};

7. else if D; < D,

8. then :

P ={(0,u1),"--,(0,us5,-1), (1,y4-6,), (1, Yt1-6,-1)-+, (1, y1),(1,v1), -, (l’vk—h),(O,ytﬂ-l),' (0, 31)},
where uy; -+, us, 1,01, +, Vg, are arbitrarily chosen d-ary digits;

9. else .
P= {(19 “1)1 Tty (1’ uk—32)7(0a ytz+02)9(0v ytz+02+1), ttty (Ov yk),(O, ’01), Ty (0, vta—l))(laytz—l)a' *ty (1, 3/1)},

where uy, -, Ug_s,, V1, +, Vg1 are arbitrarily chosen d-ary digits;
end ;

end.

Observe that it would be convenient to introduce a special symbol “+” in the routing path spec-
ification to indicate that (0,%) (resp. (1,#)) is an arbitrary neighbor of type-L (resp. type-R). This
would allow the site which transmits the message to be able to select freely one of the neighbors of
the specified type, so that the traffic could be more or less balanced. If such a symbol is used, the site

specifications (a, ;) or (a,v;), a = 0,1, in lines 8 and 9 of the above algorithm, can be replaced by

(a,*).

We must now develop algorithms for the computation of ! (defined by (2)) and I; ;(X,Y), i ;(X,Y)
(defined by (8-9)). Observe first that { = Tk,1, and that the computations of r; j(X,Y) are analogous
to those of /; ;(X,Y). Therefore, we focus on the computations of !; j(X,Y), 1 < 4,5 < k. Observe
also that /; ;(X,Y) is the length of the longest substring of X which starts with z; and matches a
substring of Y which terminates with yj- Thus, these computations reduce to a pattern matching

problem. We will call /; ;(X,Y), or simply li;, the matching function. Two different algorithms will
be presented.

14

3.2 Computing matching functions by failure function

The following algorithm slightly. generalizes the algorithm of the computation of failure functions
which was previously designed by Morris and Pratt [7], for the problem of pattern matching in a

string,

Let X = (z1,---,2k), Y = (41, -+, %). Let ¢;j, j > 1, denote the failure function of the pattern

TiZig1 - Tkt
cij=max{s | 1 <8< j—1i, 2iZip1- Tits—1 = Tjmygp1Tjmstb2" " Tj}

where, by convention, the maximum over an empty set takes value zero.

Algorithm 3: Compute [;;(X,Y),;2(X,Y),---, L (X, Y).

begin
1. ¢;=0
2. forj=i+1tokdo
begin
3. h=c¢j1;
4 while A > 0 and z;y; # zj do h = ¢; 4 h_1;
5. ifh=0and z;) # z;
6 thenc;; =0
7 else ¢;; = h + 1;
end;

8. ifz; =y then ;; =1else [;; = 0;
9. forj=2tokdo

begin
10. ifl;j 1=k—i4+1thenh = cipelseh=1;
11. while h > 0 and z;;, # y; do h = Liivho;
12. ifh=0and z;4), # y;
13. then l;; =0
14. elsel;; =h+1;
end;

end.

One can show by induction on j (in a similar way as Aho, Hopcroft and Ullman [1]) that Algorithm

15

3 correctly computes the failure functions ¢;, ¢; i41, - +, € x and the matching functions l; 1,1 2, - - - ik

It is easy to see that Algorithm 3 is of the same order of complexity in time and in space as Morris

and Pratt’s algorithm, so that the complexities in time and in space of Algorithm 3 are O(k).

In Algorithm 1, lines 1, 2 and 4 cost at most 2k units of time. Line 3 calls Algorithm 3 once, so
it takes O(k) time unit. Hence the time complexity of Algorithm 1 is O(k). It is immediate that the
space complexity of Algorithm 1 is O(k).

In Algorithm 2, lines 1, 2, 6, 8 and 9 cost at most 2k units of time. Lines 3 and 4 make use of
Algorithm 3 for at most 2k times. This is of quadratic cost O(k?). These lines also search for the two
pairs (81,%1) and (s2,t2) which yield minimal distances D; and D,. Such a search cost at most 2k2
units of time. Lines 5 and 7 are of constant cost. To summarize, the time complexity of Algorithm 2
is O(k?).

It is not difficult to see that lines 3 and 4 of Algorithm 2 can be implemented in linear space O(k)
with quadratic cost in time. Indeed, it suffices to store for all ¢ = 1,2, .- -, k, the values ¢ijand [;;,in

c1,; and Uy j, respectively, j = 1,2,.-.,k. We rewrite line 3 of Algorithm 2 as follows:

D) = k;
fori=1to k do
begin
Use Algorithm 3 to compute IS TEREIN
Let s ~t —l; s = minygjcrt — 5~ lij ;
ifDy>2k-1+4+s—-1t—1,,
then sy = s, =t, Dy =2k - 1438 —t; =l 4,;

end

The computation of r;;, sz, t; and D, can be carried out in the same way. Therefore, the

complexity in space of Algorithm 2 is O(k).

3.3 The use of prefix trees

Owing to Theorem 2, the optimal routing problem reduces to that of pattern matching. The above
two subsections provide a linear and a quadratic in time (in the diameter) algorithms for optimal

routing in uni-directional and bi-directional de Bruijn networks, respectively. We now use the notion

16

of prefir tree, introduced by Wiener [10], to obtain a linear algorithm for the bi-directional de Bruijn

network.

Some definitions are in order. Let S = aia; - - -a, be a string of length n over some alphabet A. A
position in the string is an integer between 1 and n. A symbol a € A occurs in position ¢ of string § if
a = a;. A substring P identifies position i in S if § = Q,PQ3, |@1] = i — 1, and there is no Q} # @,
such that S = Q] PQj. In other words, the only occurrence of P in S begins at position i. Let L be
a symbol not in A, called the endmarker, and let a,;; = L. It then follows that each position i of
the string SL = a; - - - an@,4, is identified by at least one substring, namely a; - - -Qpapt+1. We call the
sortest substring that identifies position ¢ in SL the prefiz identifier of position i in S.L, denoted by
P(3).

The prefiz tree for the string S1 is a labeled out-tree T such that

1. For each interior vertex v € T, the edges leaving v have distinct labels in .A(J{L1};
2. T has n + 1 leaves labeled 1,2,---,n,n + 1, corresponding to the positions of the string S1;

3. The sequence of labels of edges on the path from the root to the leaf labeled i is P(1), the prefix

identifier of position ¢ in S1.

The use of endmarker guarantees the existence of a unique prefix tree for any given string. Many
pattern matching problems can be solved by prefix trees. For instance, if one wants to'ﬁnd a longest
repeated substring in S, it suffices to locate the interior vertex of the prefix tree of S1 with the
maximal depth (the depth of a vertex in an out-tree is the length of the path from the root to the
vertex). The sequence of labels of the edges on the path from the root to this vertex corresponds to
the longest substring, and the leaves in the subtree obtained with this vertex as the root corresponds

to the positions where the longest substring occurs.

Note that a prefix tree for a string of length n may have O(n?) vertices. However, we can compact
a prefix tree by condensing every chain (a chain is a path all of whose vertices have exactly one son) in
the prefix tree into a single vertex. One can easily show that the compact prefir tree ha.é O(n) vertices.
Each vertex of the compact prefix tree is associated with the depth of the vertex in the initial prefix
tree; the vertices obtained by condensing chain are associated with the depths of the deepest vertices
on the chains of the initial prefix tree. A linear (in time and in space) algorithm that constructs a

compact prefix tree from any given string over a fixed alphabet is provided by Weiner [10].

We are now in a position to show that a shortest path between two arbitrary vertices X and Y in

17

the bi-directional de Bruijn network DN(d, k) can be found in O(k) in time and in space.

Let X = z1Z2-+- %k, ¥ = Y1y2- Yk, and X = 2p241--- 21, ¥ = thyh—1---%1. Let also S =
XLYT and S = X1YT be two strings, where L and T are two different endmarkers, L,T ¢
{0,1,---,d - 1}.

Algorithm 4: Using prefix tree to find a shortest path P from X to Y in the bi-directional
de Bruijn network DN(d, k).

(the same as Algorithm 2 except that lines 3 and 4 are replaced by the following)

3.0 Use Weiner’s Algorithm to construct the compact prefix tree T for string S;

let the vertices in T' be labeled in such a way that the leaves are labeled 1,2,--.,2k + 2, corre-
sponding to the positions in S, the root is labeled 0, and the interior vertices other than the root are
labeled with different negative integers;

let D(v) denote the depth associated with vertex v;
3.1 For all v € T, compute p(v) and ¢(v) such that

, 1<v<k,
p(v) =< 2k+2, k+1<v<2k+2,
minues(v) p(u), v<0,

2k 4 2, 1<v<k+1, or v=2k+2,
g(v)=¢ v—k -1, k+2<v<2k+1,
minués(u) Q(u), v<0,
where s(v) denotes the set of sons of v € T.

3.2 Find the interior vertex w € T such that

P(w) + g(w) - D(w) = p(v) + g(v) - D(v),

min
{vlp(v)+a(v)<2k}
where the set {v|p(v) + ¢(v) < 2k} is not empty, it contains at least the root of T;
5.3 Let sy =p(w), i = k+1—q(w), Dy = k-2 + p(w) + g(w) - D(w),

4-0 Use Weiner’s Algorithm to construct the compact prefix tree T for string S;
let the vertices in T be labeled in such a way that the leaves are labeled 1,2,--.,2k + 2, corre-

sponding to the positions in S, the root is labeled 0, and the interior vertices other than the root are

labeled with different negative integers;

18

let D(v) denote the depth associated with vertex v;
4.1 For all ve T, compute p(v) and g(v) such that

v, 1<v <k,
v)=< 2k+2, k+1<v<2k42,
minues’(v) z’)(u) v <0,

2k + 2, 1<v<k+1, or v=2k+2,
jv)y=¢ v—k-1, k+2<v<2k+1,
minues(u) Q(u) v<0,
where 3(v) denotes the set of sons of v € T'.
4.2 Find the interior vertex @ € T such that

P@)+ @)= D)= min o)+ 1(v) - D),

4.3 Let sy =k+1- p(w), t2 = gw), Dy = k -2+ p(w) + g(w) — D(w);

The complexity in space of Algorithm 4 is trivially O(k), owihg to the fact that the compact

" prefix trees T 'and T of strings S and § have O(k) vertices. Line 3.0 uses Weiner’s algorithm for the
construction of the compact prefix tree, so it is linear in time O(k). Line 3.1 costs O(k) in time, as
the computations of p(v) and ¢(v) can be completed by a simple visit in the compact prefix tree T
Similarly, line 3.2 costs O(k) in time, which is the cost of a visit in the compact prefix tree T. Line

- 3.3 is of constant cost. Lines 4.0-4.3 are of the same cost as 3.0-3.3. Therefore, Algorithm 4 is linear
in time O(k).

The correctness of this algorithm is guaranteed by the following proposition.
Proposition 5. Let w be defined by line 3.2 of Algorithm 4. Then

2k-1+ 1?’1i'12ki -7 —Li(X,Y) =k -2+ p(w) + ¢(w) — D(w) (21)
<ia<

Proof. Denote by T'(v) the subtree of T obtained by taking v € T as the root. Let L(v) be the
substring of § that is obtained by concatenating the labels of the edges in the path from the root to
v in the initial prefix tree. By definition, p(v) (respectively q(v) + k + 1) represents the leaf of T(v)
with the smallest label, and hence corresponds to the smallest position p(:v) in X (resp. ¢(v)in Y)
which has the prefix L(v), provided 1 < p(v) < k (resp. 1 < g(v) < k).

19

Forall1 < hy < hy € 2k+2, lét f(h1,hs) be the vertex of T such that T(f(h1,h2)) is the smallest
subtree that contains the leaves labeled hy and hy. It follows from the construction of the compact
prefix tree T of the string § = X LY'T, that D(f(hy, h2)) represents the length of the longest common
substrings started from the positions hy and hy in S, respectively. Hence, for all v € T, and all
1<1i,j <k, such that f(7,2k + 2 — j) = v, the relation

Li(X,Y) = D(v)
holds. More over, i > p(v), 2k + 2 — j > k + 1 + ¢(v), so that
2k-1+i-j-5i;(X,Y) 2k ~2+p(v) +¢(v) - D(v) > k — 2 + p(w) + ¢(w) — D(w),

which completes the proof. | I

4 Remarks

We have presented the routing algorithms in a succinct form. In order to gain efficiency, some me-
chanical transformations on the programs are necessary, see Knuth [5], Knuth, Morris, and Pratt [6]
for discussions on the possible approaches. Appropriately implemented, the constant factors of our

linear algorithms are low enough to make these algorithms of practical use.

It is clear that when the diameter k£ of the de Bruijn network is small, the use of conceptually
simpler pattern matching algorithms, which would yield routing algorithms of complexity O(k?) or

even O(k?), may not be worse than the linear algorithms.

Acknowledgements ¢ The author is grateful to Philippe Mussi for useful discussions on this

work, and to Michel Syska for his numerical computations.

References

[1] A. V. Aho, J. E. Hopcroft, J. D. Ullman, The Design and Analysis of Computer Algorithms.
Addison-Wesley, 1974. |

20

(2] N. G. de Bruijn, “A Combinatorial Problem”, Proc. Akademe Van Wetenschappen, Vol. 49, part
2, pp. 758-764, 1946.

[3] T. Etzion, A. Lempel, “Algorithms for the Generation of Full-Length Shift-Register Sequences”,
IEEE Trans. on Information Theory, Vol. IT-30, No. 3, pp. 480-484, 1984,

[4] M. Imase, M. Itoh, “Design to Minimize Diameter on Building-Block Network”, IEEE Trans. on
Computers, Vol. C-30, No. 6, pp. 439-442, 1981.

(5] D. E. Knuth, “Structured Programming with go to statements,” Computing Surveys, Vol. 6, pp.
261-301, 1974.

(6] D. E. Knuth, J. H. Morris, V. R. Pratt, “Fast Pattern Matching in Strings”, SIAM J. Comp.,
Vol. 6, No. 2, pp. 323-350, 1977.

(7] J. H. Morris, V. R. Pratt, “A Lineaf Pattern Matching Algorithm,” Technical Report No. 40,
Computing Center, University of California, Berkeley, 1970.

(8] D. K. Pradhan, S. M. Reddy, “A Fault-Tolerant Communication Architecture for Distributed
Systems”, IEEE Trans. on Computers, Vol. C-31, No. 9, pp. 863-870, 1989.

[9] M. R. Samatham, D. K. Pradhan, “The De Bruijn Multiprocessor Network: A Versatile Parallel
Processing and Sorting Network for VLSI”, IEEE Trans. on Computers, Vol. C-38, No. 4, pp.
567-581, 1989.

[10] P. Weiner, “Linear Pattern Matching Algorithms,” Proc. IEEE 14th Annual Symposium on
Switching and Automata Theory, pp. 1-11, 1973.

Imprimé en France
N) par .
I Institut National de Recherche en Informatique et en Automatique

