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Abstract

Text-to-image models (T2I) such as StableDiffusion have
been used to generate high quality images of people. How-
ever, due to the random nature of the generation process,
the person has a different appearance e.g. pose, face, and
clothing, despite using the same text prompt. The appear-
ance inconsistency makes T2I unsuitable for pose transfer.
We address this by proposing a multimodal diffusion model
that accepts text, pose, and visual prompting. Our model is
the first unified method to perform all person image tasks -
generation, pose transfer, and mask-less edit. We also pi-
oneer using small dimensional 3D body model parameters
directly to demonstrate new capability - simultaneous pose
and camera view interpolation while maintaining the per-
son’s appearance.

1. Introduction
Generating humans from text and/or pose is a challeng-

ing problem in computer vision. The methods can be clas-
sified into two categories, (1) image generation (synthesis)
and (2) pose transfer and editing. Image generation can be
unconditional or conditioned on other information e.g., pose
and text. Pose-guided image generation, conditions on pose
(keypoints, skeleton image, heatmap, body mesh) to gener-
ate images [14, 7, 25, 1]; and text-to-image models such as
DALL-E[28, 27] and [43, 40, 51, 37, 42, 34]. Pose or text to
image is a one-to-many mapping. It can create a person with
vastly different appearances even given the same conditions
- e.g., a person in the same pose but wearing other clothing
or shades of color from the word “red shirt.” The ambiguity
and inconsistency prohibit them from being used to perform
image editing, which requires the maintenance of the vi-
sual appearance of all other aspects of the image apart from
the elements or regions to be edited. Some newer methods
[5, 15, 46] use pose and text to exert further control. How-
ever, the effect is still limited by the inherent ambiguity of
these modalities and is hence unsuitable for image editing.

Figure 1: UPGPT can perform all person image generative tasks:
(a) text and pose guided image generation, (b) fine-grained, mask-
less region editing with text, (c) style and appearance transfer, (d)
pose transfer followed by edit.

The other category is image editing, for tasks such as
changing the clothing, human pose, or face. Most pose-
guided image generation literature fall into this category,
performing pose transfer to transfer a person’s appearance
from a source image to the pose of a target image. How-
ever, we prefer the term edit to encompass other forms of
modification, including using text or modifying the pose pa-
rameters directly, rather than having to transfer them from
the other image. Pose transfer models [22, 35, 41] use both
human pose and a source image as conditions for the gen-
erative image model where visual information of a source
image serves as a stable condition to encourage the models
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to maintain a person’s appearance in the generated image.
[52, 44, 29, 50] have extended capabilities that could also
transfer texture, clothing shape, or both, i.e., appearance
transfer, but no single model can perform all those tasks.
More importantly, they all need to train on source-target im-
age pairs and can not generate a new image without a source
image. To bridge the gap between the two categories, we
propose UPGPT to perform both generation and edit tasks
using a single trained universal model, and image sampling
pipeline, as seen in Figure 1.

In our research, we discovered four underlying problems
in person image generation and editing that have yet to be
addressed: (1) Existing methods cannot interpolate human
pose due to the inherent limitation of the chosen pose rep-
resentations. 2D body segmentation map (parsing map) and
body mesh are dense representations (pixel and voxel) and
cannot be interpolated. To interpolate 2D keypoint points
and their derivatives (skeleton image, heatmap), they must
first be mapped into 3D space, which is a difficult task on
its own, before performing the interpolation in 3D space,
then project back into 2D keypoints. We break away from
the tradition by using pose parameters of SMPL[19], a 3D
body model that represents pose by rotation of body joints.
Then, performing linear interpolation on the SMPL param-
eters produces pose interpolation using our model. (2) Ex-
isting person image editing methods require parsing maps,
which is difficult for users to create or edit by hand. Fur-
thermore, their methods are typically constrained to trans-
ferring information from a single modality. To address this
challenge, our method allows text or drag-and-drop of the
reference image or a combination of them to perform conve-
nient and fast image editing. (3) Missing information from
the source image. For example, when a target image ex-
pects a full-body person, the source image only contains a
partial view where the lower part is not visible, as shown
in Figure 2. This leaves a question of whether the model
should generate short pants, long pants, a dress, a sneaker,
high heels, or leather shoes. (4) A person’s appearance can
change in the target image e.g., a person wearing a jacket in
the source image may have it taken off in the target. Exist-
ing methods rely solely on the source image to provide all
the information. Still, they can fail to generate desired or
correct results if the information is incomplete or wrong, as
shown in Figure 6. We address problems 3 and 4 by adding
a new modality - text to enrich the information source and
to reduce and correct errors. The text description of the ex-
pected outcome can work as a way to filter out unwanted
information (not wearing a jacket) or to fill in missing in-
formation (to generate pants or skirts).

Table 1 compares the capabilities of the two main per-
son image generation methods, and our proposed method
combines all the key features. In summary, the main contri-
butions of our papers are:

Figure 2: Pose transfer is an ill-posed problem: Often, the source
image does not contain all information for the target pose i.e., in
this figure, the pant. Compared to existing methods (PISE[44],
ADGAN[23], DPTN[48], NTED[29], CASD[50]), our method
can create the desired result by utilizing additional multimodal in-
formation.

1. A unified framework that can simultaneously perform
person image generation, editing, and pose transfer
tasks.

2. The provision of zero-shot, mask-less image genera-
tion and editing with text.

3. The use of 3D parametric body model parameters to
demonstrate the first simultaneous pose and camera
view interpolation.

Pose Text-Pose-to UPGPT
Transfer Person Image (Ours)

Pose Edit ✓ ✗ ✓
Appearance Edit ✓ ✗ ✓
Texture Edit ✓ ✗ ✓
Create from Text ✗ ✓ ✓
Edit with Text ✗ ✓ ✓
Pose Interpolation ✗ ✗ ✓

Table 1: Comparing the superset capabilities of pose transfer[52,
41, 30, 23, 44, 50, 29], text-pose-to-image [5, 46, 15] and our
method. Our unified method can perform all the person generation
and edit tasks and introduce a new capability of pose interpolation.

2. Related Works
Diffusion Models (DM) [12, 6] have shown superior

image quality and text-guided capability. In training, the
DM gradually adds noise to the image until it becomes
random noise; this process is known as forward diffusion.
The diffused random noise act as latent variables and is de-
noised progressively to generate an image in image sam-
pling; this progress is known as reverse diffusion. Typi-
cally, a UNet[32] is used to learn to produce the denois-
ing signal. Most methods[27, 34, 24] use the classified-free
approaches[17] to find the direction between the conditional
and unconditional in the latent space, which is to be applied
in sampling time to guide the model towards the condition-
ing direction. However, denoising every image pixel can be
computationally expensive; therefore, LDM[31] proposed



a two-stage process. It first trained a variational autoen-
coder (VAE) [18] to encode the image into smaller dimen-
sional latent variables, and the DM learned to produce the
VAE latent variables. DMs could provide image editing by
performing text-guided diffusion on regions defined by seg-
mentation mask [24, 27, 34, 3, 2]. Dreambooth[33] shows
that they could encode a person’s face into a text token and
use a DM to generate the person in a different scene. More
recently, [10] proposed a mask-less edit of coarse objects
by learning the region from the attention map. Our method
achieves mask-less editing by learning and disentangling a
person’s appearance.

Pose Guided Image Generation. Ma et al. [22] was
among the first literature on pose transfer; they concate-
nated source images with the target pose heatmap and used
them as input conditions to a GAN[8]. Starting from
PATN[52], models take pose from both the source and im-
age. Yang et al. [41] detected and cropped out the person’s
face and used that as an additional image condition within
the network for a more fine-grained detailed generation. In
addition to human pose, ADGAN [23] uses a human pars-
ing map to segment the body parts of the source image to
extract their style codes. This allowed them to change the
style or texture of clothing region. However, as the shape
of the person and clothing is bounded by the segmenta-
tion map of the source image, the image edit is limited to
only texture transfer. To overcome this issue, PISE [44] and
SPGNET [21] trained a separate network to generate a pars-
ing map of the target pose, which they edited before feeding
into the image generator. Allowing the changing of clothing
shape e.g., from short sleeve to long sleeve, but they cannot
perform texture transfer simultaneously. While NTED[29]
and CASD[50] demonstrated transfer of the entire clothing
pieces, they do not provide a method to transfer only the
texture. DPTN[48] uses two paths - source-to-source and
source-to-target, while we require only one path for both
trainings. Unlike our approach, existing methods can only
edit a subset of clothing texture, shape, or appearance (tex-
ture and body), but not all of them. [1] uses SMPL body
mesh, which is more computationally expensive to process
than our method, which uses only 72 parameters. Concur-
rent to our work, PIDM[4] shows clothing style interpola-
tion by interpolating the DM’s noises, but they could not
perform pose interpolation.

Text-Guided Image Generation. There exist text-
to-image models since the early days of GANs [43, 40,
51], to transformer[38]-based DALL-E[28] and diffusion
models[24, 27, 31, 34]. However, they do not provide
precise control over human pose or fine-grained appear-
ances. KPE[5] created the first text-and-pose-guided image
generative model that encodes body keypoints into trans-
former tokens as conditions. Although it can generate ac-
curate poses, as text is a weak condition, it cannot pro-

vide fine-grained appearance control and consistency for
pose transfer. Using a parsing map and hierarchical autoen-
coder to encode different body regions, Text2Human[15]
offered more fine-grained appearance control. Still, it
could not specify person and clothing attributes not la-
beled in the text description, notably the clothing color.
HumanDiffusion[46] segments and encodes each clothing
item with CLIP image encoder into style code and uses a
fixed-size database to store the embedding of fashion styles.
During sampling, they use either CLIP image or text em-
bedding, but not both, to retrieve the closest embedding
from the database. Although this allows them to control
the clothing color using text, their method entangles the
clothing type, color, and texture pattern into a finite num-
ber of combinations. In contrast, our method offers disen-
tanglement and allows users to edit each clothing attribute
independently using combination of image and text. The
existing generative methods could not consistently gener-
ate images for pose transfer or appearance editing. More
recently, ControlNet [47] adds pose guidance to DM, but
it cannot ensure appearance consistency due to the lack of
visual conditioning.
3. Methodology

The primary motivation of our proposed method is to
fully disentangle a person’s image into content and style
represented by pose, text, and image features. We can inde-
pendently edit and mix the different modalities at source to
provide fine-grained person image generation and editing.
Figure 3 illustrates the overall architecture of UPGPT. The
first step is to extract the person’s information from images
and text in the form of features and encode them into condi-
tioning embeddings. The second step is to fuse the embed-
dings within Multimodal Fusion Block (MFB) to provide
conditioning to the UNet of the DM. The figure shows the
training pipeline for the pose transfer task with the source-
target image pair at the input. However, this can be repur-
posed for image generation tasks using the same image as
the source and target image. Existing person image genera-
tion methods [5, 15, 46] use only individual images in train-
ing, while image pairs are necessary for pose transfer meth-
ods [52, 41, 30, 23, 44, 50, 29, 4]. Our novel architecture
allows us to use individual and paired images to increase
the training sample size. The following section describes
the proposed method in detail.

3.1. Multimodal Feature Representation

Our model uses three modalities: pose, image, and text.
We further divide the text into context text and style text.
Overall, a person’s image is disentangled into content rep-
resented by pose and context text; and style as defined by
style text and image.
Image Latent. We encode the target image xD ∈
RH×W×3 using VAE’s [18] encoder into the latent vari-



Figure 3: Overview of our proposed UPGPT architecture. In training, we encode pose, style image, and context text into embeddings that
go to the Multimodal Fusing Block (MFB) for fusing. The output of MFB is used as a condition in UNet to predict the noise needed to
denoise the image’s latent. In sampling, the image encoder decodes the denoised latent ẑ into pixel space.

ables EI(xD) = z ∈ R
H
f ,Wf ,dV where dV is the VAE’s

channel dimension, and f is a downsampling factor in the
power of two, and xD and z are only needed in training.
In image sampling, the trained DM generates a new im-
age latent ẑ, to be decoded by the VAE decoder into pixel
space x̂D = DI(ẑ). Smaller f e.g., 4 gives higher spatial
resolution but quadruples the latent size from f = 8 and
thus increases computational effort considerably. Although
large f is more computationally frugal, the resulting z has
a smaller spatial dimension, which will store more visual
details for the same pixel patch. As a result, a small face in
a full-body image can appear blurry after image reconstruc-
tion DI(EI(xD)).
SMPL Pose. We use [45] as pose estimator EP to create an
embedding based on the SMPL parameters from the target
image xD. The 72 SMPL parameters represent three axis-
angle rotations of 24 body joints, ten body shape parame-
ters, and three camera parameters. The camera view of an
image is determined by the body’s vertical axis rotation pa-
rameter and the camera parameters. Each of the three cam-
era parameters in Cartesian coordinate axes determines hor-
izontal translation, vertical translation, and zooming. The
SMPL parameters are flattened and projected with a linear
layer to p ∈ R1×d where d is the context text embedding
channel dimension. Experiments show that the SMPL’s
camera parameters are insufficient to ensure the person’s
correct horizontal position. Therefore, we concatenate a
silhouette mask pR ∈ R

H
f ,Wf at the UNet input to rein-

force the pose conditioning, we call it as reinforced person
mask (RPM). RPM only needs to be a coarse mask; this
differs from [23, 44, 21, 50], which requires a detailed body
part segmentation map. We used binary silhouette mask in
our main experiments but tried other methods as discussed
further in Section 4.5.

Style Image. From a source image xS , we use a segmenta-
tion map to segment the person into 9 fine-grained seman-
tic regions i.e., head, hair, headwear, background, top, bot-
tom, outwear, shoes, and bag. Each of the segmented re-
gions is cropped and resized. We call this style image, and
we use it as a condition for the person’s appearance style.
Unlike conventional methods that perform segmentation in
run time, we do it in the data preparation stage and store
the style regions. This provides image editing flexibility by
simply changing the style image files. We do not use source
images anymore after obtaining the style images. We treat
a person’s identity as one of the styles determined by face
and hairstyle images. We use a separate face detector to
normalize the face - align the face to an upright position.
If an occluded face is not detected, we replace it with an-
other normalized face image from the same person if it is
available. We encode the style images with a pre-trained
CLIP [26] image encoder ES before projecting it with a lin-
ear layer into s ∈ RN×d where N is the number of style
regions defined for a person.
Style Text. CLIP [26] trains an image encoder and text en-
coder jointly on image-text pairs, with a common embed-
ding for both modes aiming to be close to each other in the
CLIP embedding space. For example, the CLIP embedding
of the text ”a red shirt” and an image of a red shirt should
be close in terms of Euclidean distance. We use this to cre-
ate a zero-shot learning method through editing with text.
Like us, HumanDiffusion[46] uses CLIP image encoding in
training, but they can only use either text or image to control
image sampling, while we can use either or both modali-
ties. Also, we use two different text conditions - content
and style to provide better disentanglement and finer con-
trol. Figure 4 shows how we can mix the style images and
texts in image sampling. Style text provides a fast and con-



venient way to control the clothing texture and color, while
we can use style images to dictate specific appearances such
as face and color shade.

Figure 4: We can mix-and-match a combination of image (green)
and text (blue) embedding in sampling time.
Content Text. The content text describes the content of the
target image e.g., gender, clothing shapes, and fabrics. We
use a pre-trained LLM (large language model) transformer
[13] for text encoding. We take the transformer’s last layer
feature as our content text embedding EW(y) = w ∈ Rl×d

where l is the maximum text token length.

3.2. Conditional Diffusion Model

The DM training process consists of a sequence of time
steps t = 1...T , where Gaussian noise ϵ is scaled using a
noise schedule [12] and added to an image latent variable
z to produce a noisy version. This concatenates with pR
to produce zt, fed into the input of a denoising UNet ϵθ.
We propose to condition using our MFB block to concate-
nate ⊕ pose p, text w and style embedding s and perform
cross-attention with UNet’s ResBlock output at every level
uj where j is layer number.
c = p⊕ s⊕w,Q = ϕQ(c),K = ϕk(c), V = ϕV (uj) (1)

where ϕ performs 1 × 1 convolution layers for projection
into uj’s channel dimension dj and flatten to 1-dimension.

CrossAtten(Q,K, V ) = softmax(
QKT√

dj
)V (2)

We train the UNet by using MSE loss on predicted noise
ϵθ(zt, t, c):

LMSE := Ez,pR,c,t,ϵ∼N (0,1)

[
∥W ⊙ (ϵ− ϵθ(zt, t, c)∥22)

]
(3)

Where ⊙ is element-wise multiplication and W ∈ R
H
f ,Wf

is loss weight we add to the standard diffusion loss. In ad-
dition to the primary loss, many GANs[44, 30, 50, 29] use
perceptual loss[16], which extract features from image pix-
els. However, a single training step in the DM does not
generate an image; therefore, we cannot directly use addi-
tional losses that require image pixels. Consequently, we
use a loss weight W , a 2D tensor with the same dimension
as the image latent, to assign different weights to the loss.
This helps to regulate the training under challenging regions
such as face and hands.

3.3. Generation, Transfer & Editing of Images

Unlike previous pose transfer work, we do not need to
use a segmentation map or any reference person image

Task\Condition Styles Content Pose
Text

Generate source source source
Texture Edit style image/ source source
Shape Edit source target/edit source
Appearance Edit style image/ target/edit source
Pose Transfer source target target

Table 2: Starting from image generation using information from
the source image, the table shows how our method can perform
various tasks using different conditioning combinations.

when sampling a new image. We create a new random im-
age latent z0 to begin the sampling process. Progressively
in each time step t, the image latent is denoised using the
reverse diffusion step as described by [12] to produce a less
noisy image latent ẑt = G(zt, t, c). After the T steps, the
denoised ẑ is decoded by the VAE decoder DI(ẑ) to create
an image in pixel space. We use the same pipeline for all
the tasks by changing only the conditioning.

To adjust the clothing texture and color, we can either
do a texture transfer by using a style image or by replac-
ing the style embedding for that clothing with style text, all
without a segmentation mask. Due to the suitable disentan-
glement property of our method, this changes only the tex-
ture and color but not the clothing shape, as demonstrated
in the left image in Figure 1(c). If we fix the style con-
dition and change only the context text e.g., from ”long
sleeve” to ”short sleeve,” it will only change the sleeve
length while maintaining the clothing texture. We can mod-
ify the content text and style for appearance edit/transfer,
which change/copies both the shape and styles. To perform
pose transfer, we replace the pose of the source image with
one from the target image; this would produce results sim-
ilar to existing pose transfer methods. On top of that, we
use context text from the target image that better describes
the desired appearance to generate images with clothing ap-
pearance more faithful to the target image. The different
configurations are summarized in Table 2, and some image
examples are shown in Figure 1.

4. Experiments
We performed experiments on two tasks: (1) text-pose

guided image generation and (2) pose transfer. Both use
the same model architecture but different image resolutions
and subsets of the DeepFashion dataset [53].

Implementation Details. We train our model using
AdamW optimizer [20] at a learning rate of 5×10−5,
batch size of 24, and loss weight, W (Equation 3) used is
face=8.0, arms=2.0, background=0.5 and 1.0 for others,
and a silhouette mask is used for reinforced pose mask.
Our model is trained with T = 1000 noising steps and a
linear noise schedule.



(a) “The gentleman is wearing a long-sleeve shirt with floral patterns and short pants with pure color patterns.”

(b) “The woman wears a short-sleeve shirt and short skirt in pure color.”

(c) “The lady is wearing a sleeveless shirt, a short pant, and a hat.”
Figure 5: (Zoom in to view full 512 × 256) resolution. (a) We generate a variety of clothing types and texture patterns directly from
SMPL pose parameters while Text2Human has additional stage to create parsing map from pose (DensePose[9]). (b) Text2Human tend
to generate blended crossed legs when the parsing map overlapped. (c) Using vocabulary outside of Text2Human limited dictionary can
result in defective parsing map and hence erroneous final image.

Evaluation Metrics. We use LPIPS[49] and SSIM [39]
to measure the similarity between the generated image
and target image in the pose transfer task. LPIPS uses
pre-trained VGG[36] to calculate the perceptual similarity,
while SSIM measures the similarity by considering the
images’ luminance, contrast, and structure. For the text-
pose guided image generation task, clothing color changes
can significantly impact the similarity score, even if it
looks realistic. Therefore, instead of comparing individual
images, we use Frechét Inception Distance (FID)[11] to
measure the distribution of two groups - ground truth and
generated images.

4.1. Text-Pose Guided Image Generation

Method FID↓
†HumanDiffusion[46] 30.42
Text2Human[15] 24.52
UPGPT(Ours) 23.46

Table 3: Quantitative result on DeepFashion Multimodal dataset
on text-and-pose guided image generation. † taken from [46].

We use the DeepFashion Multimodal dataset proposed
by Text2Human [15] in which a segmentation map and text
description accompany each image. We train on the resolu-
tion 512×352. We follow Text2Human’s data split and crop
the generated images into 512×256. The baseline methods
[46, 15] cannot control clothing color, which would hugely

affect evaluation scores. For a fair comparison, we train our
models without clothing style image embedding.

Table 3 shows our method achieving the best FID score
against the baselines. Next, we perform some qualitative
analysis. HumanDiffusion[46] does not provide code to re-
produce their results, but their paper shows blurry images
with color saturation. Both us and Text2Human can gen-
erate high quality images, as shown in Figure 5a and Fig-
ure B.1 in the appendix, but there are a few shortcomings
with the latter. Text2Human cannot generate images di-
rectly from the pose, and it must first generate a parsing
map from the pose and text. As also observed by [46], we
found that they systematically exhibit blended crossed leg
when parsing map overlapped (Figure 5b). Parsing maps
can also induce gender bias, as detailed in the appendix.
Also, Text2Human has limited text capability. Their model
was trained on categorical labels and added text-to-category
mapping later. Therefore, vocabulary falling outside of
their dictionary can generate the wrong parsing map. This
is demonstrated in Figure 5c. The word pant rather than
pants was used in the text prompt, and that causes the skin
(green) and top clothing (white) to smear into bottom cloth-
ing (gray). The following sections will show our superior
visual and text prompting capability.
4.2. Pose Transfer

We use DeepFashion[53] In-shop Clothes Retrieval
dataset for the pose transfer task. Using the given train-test



Figure 6: (Zoom in to view) Pose transfer from (1) source image into the (9) pose target in which the jacket is removed. Reference methods
PISE[44], ADGAN[23], DPTN[48], NTED[29], CASD[50] blend the top wear and jacket to generate the wrong clothing (2-6), while ours
(7) create clear separated jacket from top wear, matching the source image appearance. Conditioning on the content text that correctly
describes the target image, we create the final pose transfer result in (8) matching the ground truth (9) appearances. (10) and (11) show we
can perform consecutive texture and appearance transfers with texts. In (12), we show how to perform texture and identity transfer using
style images while still conditioning on the previous style text edit.

split of individual images (48675 and 4039, respectively),
PATN[52] proposes a pose transfer dataset of about 102k
image pairs for training and 8570 pairs for testing. Given
our model architecture’s flexibility to support individual and
image pairs in training, we combine both as our training
dataset. As the Inshop subset does not provide a text de-
scription of images, we use the text labels from the Multi-
modal subset, which cover most of the samples in Inshop.
We resize the image to 256×176, maintaining the same as-
pect ratio. We also combined the fine-grained segmentation
map from both subsets. However, a small number, about
5% of Inshop test image pairs, either have incomplete text
or segmentation maps or do not contain humans; we ex-
cluded these from the test set. We evaluate our and refer-
ence methods using the same reduced test set to obtain the
fair quantitative results in Table 4.

Although our method is not designed explicitly for the
pose transfer task alone, we near state-of-the-art results;
we found that small faces in our generated images can ap-
pear blurry due to the inadequacy of VAE in capturing rich
details in small faces. In other words, an image x recon-

Method FID↓ LPIPS↓ SSIM↑
ADGAN[23] 20.025 0.2289 0.6856
PISE[44] 17.799 0.2273 0.6781
DPTN[48] 16.686 0.2192 0.6958
CASD[50] 10.439 0.1777 0.7131
UPGPT(ours) 9.427 0.1886 0.6970
NTED[29] 8.813 0.1814 0.7011
†UPGPT(ours) 7.876 0.1766 0.7276

Table 4: Quantitative results on pose transfer task. † compare the
generated images against images reconstructed by VAE.

structed DI(EI(x)) by VAE can have a blurry face even
if our model produces a perfect image latent. To confirm
this, we compare our generated images against the images
reconstructed from the ground truth images rather than the
ground truth images, and the scores improve significantly to
top the performance table.

Apart from that, our method produces realistically look-
ing images and excels in utilizing all modalities when in-
formation in the source image is incomplete or incorrect.
This is best demonstrated in the pose transfer task in Fig-



ure 6, where the jacket in the source image (1) is removed
from the target image (9). Even assuming the person still
has their jacket on, existing methods (2-6) often fail to dis-
tinguish between the jacket and the top wear, blending the
style and texture to create incorrect clothing. In contrast,
our results (7) show clear distinguishment, resembling the
source image appearance. UPGPT blocks out the jacket in
the image generation process by conditioning on the con-
text text of the target image, creating our final pose transfer
result (8) that resembles the ground truth target image (9).

4.3. Flexible Image Editing

Columns (10-12) in Figure 6 demonstrate the flexibility
of our fine-grained control method. From (7), we replace
the jacket style image with the style text “jacket in orange
leopard pattern” to perform texture transfer (10). Our style
text has good zero-shot capability, and we can use words
like zebra, pandas, and oceanic instead of color. Then, we
change the context and style texts in (11) to replace bot-
tom wear with a short green skirt, changing the texture and
clothing type i.e. appearance edit. Please note that the jacket
from (10) remains in (11), showing that our approach allows
for consecutive editing. This is a significant improvement
from existing methods [50, 29, 4] that have demonstrated
only to transfer appearance from a single image reference.
In contrast, we can mix different modalities from different
sources to perform flexible and fine-grained control across
clothing type, texture, or both. Although it is convenient to
use text to change clothing types and colors, some things
are difficult to describe in words e.g. specific clothing pat-
terns or the face of a particular person. Therefore, our meth-
ods also support using styles images for editing and identity
transfer, as shown in (12). The pipeline of going from (1) to
(12) demonstrates we can mix and match different modali-
ties - pose, style, content text, and style images to achieve
excellent fine mix-and-match in generating and editing per-
son images.

4.4. Pose and Camera View Interpolation

Figure 7: Complex hand and camera movement achieved using
linear pose interpolation.

We demonstrate our approach’s superior pose capabil-
ity and disentanglement with simultaneous pose and cam-
era view interpolation as shown in Figure 7. The pose in-
terpolation can be performed by linear interpolating SMPL
parameters between two poses. To our best knowledge, this
is the first demonstration of pose interpolation within the
human image generation literature.

4.5. Ablation Study

We performed experiments to explore the importance of
the reinforced pose masks (RPM) and evaluated their per-
formances as shown in Table 5. Qualitatively, without any
form of RPM, the person in generated images looks visually
similar to other masks apart from the occasional horizontal
offset. We explore two methods: a bounding box and a
mask derived from the SMPL render. Including a bounding
box as a mask improves the scores compared to not hav-
ing one. A further approach is to use the silhouette mask
created from SMPL rendering as the segmentation input.
However, the derived mask is less accurate, and the result is
slightly worse than using a silhouette mask estimated from
2D images.

Reinforced Pose FID↓ LPIPS↓ SSIM↑
Mask (RPM)

w/o RPM 10.176 0.2670 0.6146
w bounding box 10.100 0.2447 0.6254
w SMPL rendering 9.245 0.2149 0.6604
w silhouette mask 9.427 0.1886 0.6970

Table 5: Quantitative results of ablation on reinforced pose mask.
5. Limitations

Apart from the blurry small faces discussed in Section
4.2, one of our method’s limitations is that clothing textures
sometimes do not match the style image e.g., the stripes can
have different thicknesses. This is due to the limitation of
the CLIP image encoder, which does not necessarily capture
fine-grained spatial detail but focuses on the overall color
response.

6. Conclusion
In this paper, we proposed UPGPT, the first universal

method to perform unified person image generation, edit-
ing, and pose transfer tasks. Unlike existing methods that
require masks for editing, our mask-less approach provides
a convenient way of fine-grained person image editing using
a combination of modalities. We achieved competitive pose
transfer results in comparison to the state-of-the-art meth-
ods. Also, we overcame the inadequacy of SMPL pose esti-
mation to incorporate it into our model to improve pose dis-
entanglement and demonstrate the first simultaneous pose
and camera view interpolation in pose-guided image gener-
ation literature.
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Appendix
This appendix consists of two sections. Section A contains more 256×176 examples of our results from Section 4.2 for pose
transfer and image edit. Section B provides further quantitative analysis on baseline method Text2human using the method
detailed in Section 4.1 for image generation task at higher resolution 512× 256.

A. Image Editing
This section provides more image editing examples using a model trained on the low resolution 256×176 images. Our

method allows for simultaneous and consecutive image editing using multimodality from multiple sources. Some baseline
pose transfer models can perform only a single appearance transfer (clothing texture, shape, or face) from a single reference
image, but we could do much more. In Figure A.1a, we demonstrate the capability of our method to transfer a delicate
clothing style, followed by text edits and pose transfer. We can also remove objects (bag in Figure A.1b, hat in Figure A.1d).
Figure A.1c shows how we can create a new clothing type not from the dataset by mixing ”sleeveless tank” in the style text
and ”long sleeve” in the content text. Baseline methods are limited to fashion transfer of the same type i.e., top wear to top
wear. Still, we can do any combination of fashion transfer, such as replacing a shirt and pants with a dress, as shown in Figure
A.1d.

(a) Our method can transfer delicate fashion patterns and pose. (b) Remove the bag, edit length of pants, transfer clothing pattern and identity
(face and hair).

(c) We create a new clothing style by mixing “sleeveless tank” in style text
with “long sleeve” in context text. We can also provide fine-grained transfer
of only the hair.

(d) Replacing two garment pieces (shirt and pants) with a single dress.

Figure A.1: Starting from the source image in the left, we perform step-by-step consecutive image editing from multiple multimodal
sources.



B. Text-Pose Guided Generation
Overall, Text2Human and our method, UPGPT, can generate high quality images; we display examples of both results

and ground truth in Figure B.1. Some of Text2Human’s images may appear smaller because of the padding they added to the
dataset, while we use unmodified DeepFashion Multimodal images. However, Text2Human has two major limitations that
can affect the overall visual perception - (1) systematic error in crossed legs and (2) poor gender and pose disentanglement.

Figure B.1: (Zoom in to view full resolution) Both UPGPT(our method) and Text2Human can generate high quality images.



B.1. Blended Crossed Legs

Figure B.2 shows systematic error in the legs when crossed and blended in the parsing map and results in the same in
the generated images. We avoid this problem by using the SMPL model as pose guidance which contains 3D body pose
information.

Figure B.2: (Zoom in to view) Text2Human often generates erroneous crossed legs from parsing map. Our method avoids this problem by
using the SMPL model as pose conditioning.

B.2. Poor Gender and Pose disentanglement

In Text2Human, the body appearance ties closely to the parsing map. Figure B.3a shows that Text2Human generates two
parsing maps - male and female from the pose. There is very little difference between them apart from the hair length. Due to
incompatible body proportion, Text2Human females’ overall appearance (Figure B.3a) have subtle unnaturalness compared
to ours in B.3b. Although we use only the female SMPL model to train our model, our model can generalize the genders well
yet provide good disentanglement between gender and pose. The gender bias in Text2Human can be further shown in Figure
B.4 where short haired parsing maps often result in a male face, which doesn’t occur with our approach.

(a) Text2Human. The female appearances have very little difference to males apart from the head. The generated female
appear to have broader shoulder than images in dataset.

(b) UPGPT. People generated from the same pose look more natural for their genders.

Figure B.3: Our method provides better disentanglement between pose and gender.



Figure B.4: Text2Human tends to generate male faces from parsing maps with short hair.


