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Abstract

Automatic analysis and understanding of common ac-
tivities and detection of deviant behaviors is a challeng-
ing task in computer vision. This is particularly true in
surveillance data, where busy traffic scenes are rich with
multifarious activities many of them occurring simultane-
ously. In this paper, we address these issues with an unsu-
pervised learning approach relying on probabilistic Latent
Semantic Analysis (pLSA) applied to a rich set visual fea-
tures including motion and size activities for discovering
relevant activity patterns occurring in such scenes. We then
show how the discovered patterns can directly be used to
segment the scene into regions with clear semantic activ-
ity content. Furthermore, we introduce novel abnormality
detection measures within the scope of the adopted model-
ing approach, and investigate in detail their performance
with respect to various issues. Experiments on 45 minutes
of video captured from a busy traffic scene and involving
abnormal events are conducted.

1. Introduction

Increasing needs for security applications have moti-
vated the advancement of research in the area of visual
surveillance systems in recent days. Because of the over-
whelming amount of data from these surveillance systems,
unsupervised methods with ideally no manual labeling are
preferred. In this paper we address the problem of learn-
ing common patterns of activities occurring in a busy traffic
scene. In such a scene, it is not easy to extract trajectories
of individual objects due to frequent occlusions. Still, one
would like to obtain dominant activity patterns occurring
in the scene, segment the scene based on activities happen-
ing at each location, and detect abnormal events. In order
to achieve this we use low level visual features extracted
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from the video as input to the pLSA topic model to find the
spatio-temporal correlations among these features. We im-
prove the method proposed by Wang et al. in [8] by adding
object size information along with location and motion in-
formation, and present a novel way to segment the scene us-
ing the patterns discovered with pLSA directly as features.
The obtained scene segments have semantic interpretation
at each level of cluster size.

Using topic models like pLSA allows us to use differ-
ent abnormality measures based on the interpretation of the
model. We investigate the use of abnormality measures that
include likelihood measure coming from the fitting of the
learned topics to the test document, or the likelihood of
measured topic distribution compared to those observed in
the training data. As a novelty in this context, we explore
the use of document reconstruction errors relying on distri-
bution distances like Kullback-Leibler divergence or Bhat-
tacharyya distance. Using 45 minutes of video captured
from a busy traffic scene and involving abnormal activities
(vehicles parked at wrong locations, or people crossing out-
side the zebra crossing), we compare the performance of the
different measures by plotting recall-precision curves and
discuss the effects of document size, object size features,
and number of topics on the detection results. Results show
the need for appropriate normalization of abnormality mea-
sures and that our abnormality measure performs as well as
the more traditional likelihood fitting measure.

The rest of the paper is organized as follows.In the next
section we present a brief survey of related work. In sec-
tion 3, input features to pLSA are described. In section 4
the dataset, discovered activity patterns and scene segmen-
tation are detailed. In section 5, we present various abnor-
mality measures and comparative results. The conclusions
are given in section 6.

2. Related Work

Methods proposed for activity analysis can be broadly
classified into two categories. Under the first category, ob-
jects are first detected, tracked and the object trajectories are



used for further analysis. Examples of this approach can be
seen in [7, 2, 12, 10]. While good results are reported us-
ing this approach in uncluttered scenarios, it is sensitive to
occlusion and tracking errors. The problem becomes more
pronounced in the case of crowded scenes as frequent oc-
clusions make reliable tracking an impossibility.

Under the second category, motion and appearance fea-
tures are extracted from the video stream without tracking
or object detection. The features thus extracted are directly
used to create models of activities, but loss of tracking in-
formation makes it very difficult to separate different ac-
tivities happening simultaneously. Recently, Topic mod-
els have been successfully used in getting semantic activ-
ity patterns from low-level feature co-occurrences. Wang et
al. [8] introduced the use of location and optical flow fea-
tures along with Hierarchical Bayesian approach to model
activities and interactions. Li et al. [4] used spatio-temporal
features along with a hierarchical pLSA for learning global
behavior correlations. The method we propose is along the
ideas given in [8], but we use a richer feature set by includ-
ing object size, and propose a method of using the model
for scene segmentation.

How is abnormality defined? Qualitatively, an abnormal
(rare, unusual) event can be simply defined as “an action
done at an unusual location, at an unusual time”. Quan-
titatively, abnormality is defined in [6] in two ways, 1)
Events that are fundamentally different in appearance, and
2) unusual order of events, where many of the events could
be normal. Machine learning approaches to abnormality
detection define them simply as behaviors that cannot be
explained by the learnt models. In cases where the scene
model is learnt by clustering trajectories [9, 2] abnormality
is defined as an outlier trajectory i.e, when an object trajec-
tory’s distance to every cluster exceeds the intraclass dis-
tance of every cluster [2]. When activities are modelled as
a sequence of observations as in [6], based on a set of ob-
servations yo, ...yt−1 a prior for observation yt is formed.
After observing yt, the posterior distribution is evaluated.
The distance between the prior and posterior distributions is
used as a criteria to identify anomalies. Xiang et al. in [12]
propose a run-time accumulative anomaly measure based
on likelihood obtained from the learned model. Zhong et
al. in [13] build a database of spatio-temporal patches us-
ing normal behavior and detect those patterns that cannot be
composed from the database as being abnormal. The work
mentioned so far extract explicit object information to iden-
tify abnormalities.

Among the methods using low level visual features,
Wang et al. [8] use likelihood measure calculated from the
learnt model. But as simple motion features are used, it does
not model activities of static objects in the scene. In [4], ab-
normalities are detected using an un-normalized likelihood
measure. It was shown to work only with a single type of

abnormality. While un-normalized measure can give good
results when the documents are more or less of same size,
they are prone to errors due to variations in document size.
In our work, we show that due to the large variability in the
video content, simple un-normalized measure does not give
good results. Therefore we investigate possible abnormal-
ity measures within our modelling framework in order to
understand the various aspects influencing a particular mea-
sure. In our experiments, we found that the normalized log-
likelihood measure and a novel abnormality measure based
on the Bhattacharyya distance between the raw word dis-
tribution and the reconstructed one using the learned topic
distribution gives good performance.

3. From Visual Features to Activity Patterns
Topic models have shown good performance in model-

ing complex scenarios with a simple data representation.
They were initially proposed to automatically discover the
main themes or topics from large corpus of text documents,
where a topic refers to a set of consistently co-occurring
words in the text documents. In video analysis, these topics
correspond to the activities that are frequently occurring in
the scene, where the meaning of an activity depends on the
visual words which have been used to build the documents.
In the following, we first present the visual features used
to characterize our scene content and build our documents,
and then describe the pLSA topic model.

3.1. Visual words

To discover global activity patterns using pLSA, we need
to define our vocabulary (the set of visual words character-
izing the scene content), and how we build our video doc-
uments. In our case, a visual activity is described by three
types of features: location, motion, and size features.

Location: In surveillance videos, most of the activities are
characteristic of the place where they occur. Thus, location
has to be taken into account when building our vocabulary,
and we quantize a pixel position into non-overlapping cells
of 10× 10. Therefore for a video of dimension, 280× 360
we obtain a set of 28× 36 cells.
Motion: To identify the relevant parts of the scene, we first
perform background subtraction using the algorithm pro-
posed in [11] and detect the foreground pixels. For each
of them, we also compute its optical flow using the Lucas-
Kanade algorithm. Foreground pixels are categorized into
static pixels (static label) and moving pixels by thresholding
the magnitude of the optical flow vectors. Moving pixels
are further differentiated by quantizing their motion direc-
tion into four labels (left, right, up, down) according to the
intervals (−π2 ,

π
2 ], (π2 ,

3π
2 ], ( 3π

2 ,
−3π

2 ], (−3π
2 , −π2 ]. Thus, in

total, we have 5 possible motion words.
Size: To further characterize foreground objects, we asso-



ciate with each foreground pixel the size of the connected
component it belongs to. In our dataset we observe that the
foreground blobs can be roughly classified into two cate-
gories based on foreground blob size. The first one con-
sists of small blobs corresponding mainly to pedestrians
and the second one consists of large blobs corresponding
to vehicles or group of pedestrians. Therefore, we apply a
simple K-Means clustering on the extracted blob sizes with
K = 2, and use the cluster number as a size word describ-
ing roughly the size of objects in the scene.

Vocabulary: Our vocabulary could be defined as the carte-
sian product of the location, motion, and size word spaces,
leading to a total of 28× 36× 5× 2 = 10080 words. How-
ever, while knowing the joint feature (motion,size) for each
location might be desirable (for instance to distinguish be-
tween cars and people on zebra crossings), this results in a
high dimensional vocabulary. As pLSA models word co-
occurrences across documents, we expect that topics will
capture separately people activity or car activity at a given
location since they don’t occur simultaneously. In other
words, given an activity and location, we expect the mo-
tion and size to be independent, and thus we can simply
concatenate them and define the set of words for a cell c,
denoted by Vc, to be the concatenation of the motion and
size words1, leading to a codebook of 28 × 36 × (5 + 2)
words only. Thus, a word can be denoted by wc,a, where c
is the location and a one of the seven characteristic labels.

Documents: They are built by dividing the video into short
video clips, and count for each clip or document d the num-
ber of times n(d,w) a word w occurs in it to obtain the
document bag-of-words representation. Henceforth, we use
the terms document and clip interchangeably.

3.2. pLSA

Probabilistic latent space models [3], [1], [8] have been
used to capture co-occurrence information between ele-
ments in a collection of discrete data in order to discover the
recurrent topics in the collection. In our context, we expect
such analysis to discover the main scene activities, where an
activity mainly consists of the recurrent observation of the
same motion and size words in scene regions. In this pa-
per, we used the pLSA [3] model which originates from a
statistical view of LSA. Although pLSA is a non-fully gen-
erative model, its tractable likelihood maximization makes
it an interesting alternative to fully generative models like
LDA [1] with comparative performance.

pLSA is a statistical model that associates a latent vari-
able z ∈ Z = {z1, . . . , zNA

} with each observation (oc-
currence of a word in a document). These variables, usually
called topics, are then used to build a joint probability model

1This means that when constructing documents, a pixel will provide
two words for the cell it belongs to: a motion word and a size word.

Figure 1. The Generative model of pLSA

over documents and words, defined as the mixture

P (w, d) = P (d)P (w|d) = P (d)
zNA∑
z=z1

P (z|d)P (w|z). (1)

pLSA introduces a conditional independence assumption,
namely that the occurrence of a word w is independent of
the video document or clip d it belongs to, given a topic
z. The model in Eq. 1 is defined by the probability of a
document P (d), the conditional probabilities P (w|z) which
represent the probability of observing the word w given the
topic z, and by the document-specific conditional multino-
mial probabilities P (z|d). The topic model decomposes the
conditional probabilities of words in a document P (w|d) as
a convex combination of the topic specific word distribu-
tions P (w|z), where the weights are given by the distribu-
tion of topics P (z|d) in the document.

The parameters of the model are estimated using the
maximum likelihood principle. More precisely, given a set
of training documents D, the log-likelihood of the model
parameters Θ can be expressed by:

L(Θ|D) =
∑
d∈D

∑
w

n(d,w) log (P (w|d)) (2)

where the probability model is given by Eq. 1. The opti-
mization is conducted using the Expectation-Maximization
(EM) algorithm [3]. This estimation procedure allows to
learn the topic distributions P (w|z) representing the sought
scene activities.

At test time, we are interested in estimating the weights
P (z|d) of the topics for a document d. This is achieved
by running the EM algorithm keeping the learned model
P (w|z) fixed and maximizing the log likelihood of the
words in the document:

Lud(P (z|d)) =
∑
w

n(d,w) log

(∑
z

P (z|d)P (w|z)

)
(3)

4. Activity patterns and scene segmentation
To illustrate the pLSA modeling with the proposed fea-

tures, we present some topics that were discovered by the
approach and how it can be used to identify activities re-
lated to different object sizes or to segment the scene into
different semantic regions.



Figure 2. Traffic Scene

4.1. Dataset

The approach can typically be used on outdoor video
sequences. We applied it to videos capturing a portion of
a busy traffic-controlled road junction. Sample frames are
shown in Fig. 2. The scene has multiple activities that in-
clude people walking on the pavement or waiting for ve-
hicles to cross over zebra crossings, and vehicles moving
in and out of the scene in different directions. A video se-
quence of 45 minutes recorded at 25 Hz with frame size of
288 × 360 was captured and video clips of 5 seconds du-
ration (125 frames) were defined as our documents. These
clips were divided into a training dataset of 2210 video doc-
uments, and a test dataset of 320 clips.

4.2. Activity patterns

An activity like a vehicle moving on the road can be de-
scribed by a set of motion and size features co-occurring
over a sequence of locations. Similarly, a pedestrian stand-
ing at the foot path can be described by a co-occurring set of
static pixels and size features. Thus, each activity pattern or
a topic is a strongly co-occurring set of visual features rep-
resented by p(w|z). To identify the set of locations which
are mainly active for a given topic, we can marginalize the
word distribution w.r.t. the words that occur at the same lo-
cation. That is, we can plot the map defined for each cell c
by: p(activity ∈ c|z) =

∑
w∈Vc

p(w|z). Fig. 3(a)-(f) show
the activity locations of selected topics highlighted.

Size or Static related topics: We can identify which of
the extracted topics are more related to the activities of
objects of small or large sizes by ranking the aspect ac-
cording to the size probability obtained by marginalizing
over the word ’small size’ of every cell, i.e. by comput-
ing p(size = small|z) =

∑
wc,a/a=small

p(w|z). For in-
stance, Fig. 3(c)-(d) show the top two topics from 10 topics
used to train pLSA involving small objects that correspond
to pedestrians walking on the side-walk. A similar analysis
can be done with static objects, and corresponding topics
indicate pedestrians waiting to cross the road and cars wait-
ing at the traffic light (Fig. 3(e) and (f)). Interestingly, note
that the topic model was able to discover that during several
parts of the junction traffic cycle, both pedestrian (bottom
right) and cars (top right) needed to wait simultaneously.

(a) (b)

(c) (d)

(e) (f)
Figure 3. (a)-(b) Examples of common activity patterns (a) vehi-
cles passing, (b) pedestrians crossing the road, (c)-(d) the first two
topics involving small objects - pedestrians walking on the foot
path, (e)-(f) the first two topics involving static pixels, (e) partially
occluded vehicle waiting for signal (top right) with pedestrians
waiting for signal at the bottom-right, (f) pedestrians waiting at
the footpath for crossing the road.

4.3. Scene segmentation

Another way to investigate the learned topic is to seg-
ment the scene according to the extracted activities. Knowl-
edge of the semantic scene regions could then provide con-
text to the actions and thus help in understanding the intent
of actions in a scene location. For example, in a typical traf-
fic scene like in Figure 2, activities like pedestrians walking
along the pavement, waiting at the zebra crossings are seen
on the pedestrian side while vehicular movements are (in
principle) only seen on the roads. An activity based seg-
mentation achieves this by grouping parts of the scene into
segments such that each segment corresponds to locations
where similar semantic activities take place.

Approach: In [4], Li et al. represent the activity at a given
location by the distribution of quantized spatio-temporal
words that are observed at this location in the training data.
In this paper, we propose instead to characterize a location
by the set of activities that can occur at this pixel. This
should lead to a less noisy representation, and implicitly in-
corporate temporal information as the activities model ob-
servations which co-occur, unlike raw feature distributions
[4]. Activities at the cell location c are represented by the
topic distribution at this cell, denoted P (z|c) and defined as
P (z|c) = P (z|Vc) ∝ P (Vc|z) =

∑
w∈Vc

P (w|z). In prac-



tice, we expect these distributions to smoothly evolve when
the location c moves along semantically similar regions
(e.g. while moving along the same side of the road), and
change abruptly when the location moves across some se-
mantic border (e.g. moving from the road zone to the side-
walk region). Thus, clusters mainly correspond to smooth
manifolds which can not be well represented using metric
based clustering approaches like K-means. We used a spec-
tral clustering algorithm [5] which have been shown to bet-
ter capture such manifolds. It takes an input, an affinity
matrix A which in our case is given by

Aci,cj
= exp(

−D2
Bhat(P (z|ci), P (z|cj))

2σ2
) (4)

where DBhat denotes the Bhattacharyya distance used to
compute the pairwise similarity between the two activity
distributions at cell ci and cj , and is defined by:

DBhat(P,Q) =
√

1−
∑
x∈X

√
p(x).q(x). (5)

The scale σ is taken to be the value that gives minimum
cluster distortion [5].
Results: Figure 4 illustrates the results obtained when ap-
plying the algorithm with number of clusters equal to 2,3, 4
and 9, when the number of topics extracted with pLSA was
10. As can be seen, the results reveal that the number of
clusters correspond to different level of details in interpret-
ing the semantic activities in the scene. When K = 2, the
algorithm segments the scene into regions of activity and
no activity. When K = 3, the activity region is further di-
vided into the pedestrian and vehicle regions. WhenK = 4,
the road is split into the different sides of the road. When
K = 9, further semantic regions like the region correspond-
ing to zebra crossing, where both car and pedestrian motion
can occur, or the different regions from where people come
to cross the road (and wait) appear. Thus, we see that there
is not a single valid value for K, but that each value lead to
a scene segmentation with clear semantic interpretation.

5. Abnormality detection
As discussed in the related work section, there exist sev-

eral ways to define abnormality. In this Section, we present
those that are pertaining to the topic model that we are us-
ing, and evaluate their performance on our dataset.

5.1. Abnormality measures

Modeling using a generative approach gives scope to use
a variety of measures to identify unusual patterns in the
data. But, little study has been done in comparing the dif-
ferent measures on the same task. Here, we present various
possible measures that can be used based on the approach

(a) (b)

(c) (d)

(e) (f)

(g) (h)
Figure 4. Semantic Scene Segmentation obtained from 10 pLSA
Topics with the segments superimposed on the scene in the right:
(a)-(b) 2 clusters (c)-(d) 3 clusters (e)-(f) 4 clusters, (g)-(h) 9 clus-
ters

we consider, and evaluate the measures within the proposed
framework to understand their merits and demerits.

Fitting measures: The estimation of the topic distribu-
tion P (z|d) of a given clip is obtained by optimizing the
log-likelihood function of Eq. 3. Thus, one natural way
to consider if a clip is normal or abnormal is to use this
log-likelihood measure Lud(P (z|d)) at the end of the fit-
ting phase. If the activities happening within the clip cor-
responds to those observed in the training dataset, then the
fitting should be able to find a suitable topic distribution ex-
plaining the bag-of-word representation of the clip. Thus,
normal clips will generally provide high log-likelihood. On
the other hand, if an abnormal activity is going on, none
of the learned topic is able to explain the observed words
of that activity, resulting in a low likelihood fit. In [4], this
measure is used to find abnormal behavior correlations from
a traffic scene.
The likelihood expression in Eq. 3 suffers from a severe
drawback: it is not normalized and thus, whatever the qual-
ity of the fit, the measure is highly correlated with the doc-



ument size. To solve this issue, we can exploit the aver-
age log-likelihood of each word, by dividing n(d,w) by the
number of words nd =

∑
w n(d,w) in Eq. 3, and get the

normalized log-likelihood measure:

Lnld (P (z|d)) =
∑
w

n(d,w)
nd

log
∑
z

P (z|d)P (w|z)

=
∑
w

Po(w|d) logPc(w|d) (6)

where Po(w|d) = n(d,w)
nd

is called the objective distribu-
tion as it is measured directly from the test document, and
Pc(w|d) =

∑
z P (z|d)P (w|z) is called the constrained dis-

tribution as it lies in the constrained simplex spanned by the
topic distribution P (w|z).

Distribution reconstruction errors: The goal of optimiz-
ing the likelihood function is to fit the constrained distri-
bution to the objective distribution. Thus one possibility to
evaluate the quality of the fitting is to measure the discrep-
ancy between the two distributions. For instance, we could
use the Kullback-Leibler divergence as the distance mea-
sure leading to:

LKLd (P (z|d)) = KL[Po(w|d)|Pc(w|d)] (7)
= −Lnld (P (z|d))−H(Po(w|d))

where H(Po(w|d)) is the entropy of document d, which is
a constant specific to each document. From this expression
we note that the topic distribution P (z|d) which maximizes
the likelihood expression in Eq. 3 is actually the one that
minimizes the KL distance LKL. We can thus interpret the
fitting as a document reconstruction process where the error
in reconstruction is given by Eq. 7. Accordingly, we can use
such reconstruction error measure as our abnormality mea-
sure. This also allows us to use other probability distances
as abnormality measures. In this paper, we also used the
Bhattacharyya distance given by Eq. 5 to compare Po and
Pc, according to:

LBhd (P (z|d)) = DBhat (Po(w|d), Pc(w|d)) (8)

Scene topic abnormality measures: Activities that can oc-
cur in a scene are characterized by the activity topics learned
by the model. However, in general, not all combinations of
activities are valid, that is, can occur simultaneously in the
scene. This constraint can be taken into account by learning
the allowed distribution of topics using a training dataset. In
our case, this was done by fitting a Gaussian Mixture Model
with L mixtures to the topic distributions P (z|d) extracted
from the training document. Then, when considering a test
document, we first estimate its topic distribution (by opti-
mizing using Eq. 3), and then compute the likelihood of
this distribution with the GMM to evaluate its validity. In

this view, abnormal clips are outlier entities that have low
likelihood of being generated by the L GMM mixtures of
the topic distribution.

5.2. Results and discussion

The different measures were applied to our test data, con-
taining 140 normal activity documents, and 180 video clips
corresponding to abnormal documents, where abnormality
is defined as: people crossing the road at the wrong place
(far away from zebra crossing), vehicle parked at the pedes-
trian path, or vehicles stopping ahead of the stop line while
the stop sign is red. In the following experiments, unless
stated otherwise, 20 topics were used to model the scene
activities.

Qualitative illustration. The abnormality measures that
we have defined allowed us to identify multiple instances
of several abnormal events occurring both in isolation or
simultaneously with other normal activities in the image.
Fig. 5 shows the first video clips that were retrieved as
abnormal using the normalized log-likelihood Lnl2 mea-
sure. The object causing the abnormality is marked with
red boxes for identification. Fig. 5(a)-(b) shows the event
where a car is parked in the pedestrian foot path. In (b), ad-
ditionally a pedestrian crosses the road in the wrong place.
In Fig. 5(c)-(d) a car stops ahead of the stop line, and this
stop is not due to stopped cars in front of it. In Fig. 5, (e)-(f)
pedestrian were crossing the road away from the foot path.

Quantitative evaluation. Recall-Precision (RP) curves
were considered to quantitatively assess the performance of
the approach and compare the abnormality measures. Fig. 6
shows the RP curves for the Likelihood, Normalized Like-
lihood, KL-Divergence, Bhattacharyya distance and Topic-
GMM likelihood abnormality measures. We first note that
the performance obtained with the Topic-GMM likelihood
abnormality measure has the least detection rate. Indeed,
this approach only considers as normal the specific com-
bination of activities observed in the training documents.
Thus, as we only have around 35 minutes of video in the
training data, there is very little chance to observe all com-
mon activity combinations, and thus this abnormality mea-
sure quickly performs randomly, i.e. according to the odds
in the test set. As expected, the unnormalized likelihood
measure too does not achieve good performance. The re-
construction error measure obtained from KL-divergence
and Bhattacharya distance show better performance, but
still not as good as the normalized likelihood measure,
which achieves the best performance with good detection
rates (with a precision of almost 1 for a recall of 50%).
Document size normalization. An analysis of the detec-
tion errors made using the likelihood measure, the KL-

2The Adaptive Bhattacharyya measure that we will describe below pro-
duced the same results.



(a) (b)

(c) (d)

(e) (f)
Figure 5. The top abnormal events retrieved using the normalized
likelihood measure or the Adaptive Bhattacharyya distance mea-
sure. Note that, for illustration purposes, several abnormal doc-
uments corresponding to the same already displayed events have
been omitted. (a)-(b) shows the event where a car is parked in
the pedestrian foot path. (b) pedestrian crossing the road in the
wrong place, (c)-(d) a car stopping ahead of the stop line. (e)-(f)
pedestrian crossing the road away from the foot path.
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Divergence, Bhattacharyya distance and GMM likelihood.

divergence, and the Bhattacharyya distance, reveal that they
are affected by document size or entropy. This is illus-
trated in Fig. 7, where we plot the Bhattacharya distance
error measure as a function of the document size. As can
be seen, smaller documents (with low entropy) tend to have
higher reconstruction error, while larger documents (with
high entropy) tend to have lower error. The normalized log-
likelihood measure directly alleviates this effect by using
the average word log-likelihood as abnormality measure.
The KL-divergence measure can be normalized by remov-
ing the document specific entropy term. When this is done,
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Figure 7. Bhattacharyya abnormality error measure vs Document
Size: Scatter plot showing the relation between the Document size
(number of words) and Bhattacharyya distance abnormality mea-
sure. The superimposed curve in red shows the expected Bhat-
tacharyya error for a given size computed from the training data.
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we are left with the cross entropy term H(Po|Pc) given by:

H(Po|Pc) =
∑
w

Po(w|d)logPc(w|d) (9)

which is simply the normalized log-likelihood measure.
In the case of Bhattacharyya distance, such a direct nor-
malization is not possible. Therefore we treat this bias by
performing an adaptive normalization based on document
size and learnt from the training data. For this, we construct
a histogram of document size in the training set, and calcu-
late for each bin the expected error measure for documents
belonging to that bin (please see the red curve in Fig. 7).
Then, for a test document, its reconstruction error using
Bhattacharyya distance is normalized with the expected er-
ror according to its size before being compared with the
abnormality threshold. Fig. 8 shows the results obtained
after removal of the document size bias. As can be seen,
this leads to a considerable improvement, and the Adaptive-
Bhattacharyya abnormality measure performs now as well
as the normalized log-likelihood measure, although with
a different behavior. While the latter one performs better
at medium recall, the Adaptive-Bhattacharyya succeeds to
keep a precision significantly higher than random for very
high recall.
Video Features. We also evaluate the effect of adding the
size words in our description of activities, as compared to
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Figure 9. RP curves for Normalized Likelihood, Adaptive Bhat-
tacharyya distance, with and without using the size words.
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Figure 10. Effect of varying the number of topics: RP curves for
Normalized Likelihood (left), and Adaptive Bhattacharyya dis-
tance (right) when using 10, 20, 50 and 100 Topics.

using just optical flow words as was done in [8]. This is dis-
played in Fig. 9, where the normalized log-likelihood and
Adaptive Bhattacharyya distance abnormality RP curve are
plotted with and without object size words. These curves
show that the detection rates improve significantly when ob-
ject size words are used as compared to just optical flow
words.
Number of topics. Finally, Fig. 10 plots the RP curves for
our two best measures when 10,20,50 and 100 topics were
used (20 topics were used in the other curves) to model the
different scene activities. As can be seen, the number of
topics does not affect the results much. This is particularly
true for the normalized likelihood measure, and when using
more than 20 topics in the Adaptive Bhattacharyya case.

6. Conclusion

In this paper we have presented an unsupervised ap-
proach to activity analysis using pLSA. A novel scene seg-
mentation based on the learned topics is proposed to local-
ize and analyze the activity patterns, and results show that
the obtained segmentation matches well with locations of
semantic activities of the scene. A detailed investigation
on various abnormality measures is presented. The results
obtained from our experiments on a real dataset show that
topic modeling approach is effective for abnormality deduc-
tion. They have highlighted the need for normalizing abnor-
mality measures w.r.t. the document size, and, we believe,
have provided greater insights into the merits and demerits
of the abnormality measures, enabling one to choose the

most appropriate method for the task. In the future, we
would like to confirm our results with more datasets, and
explore fusing the results from Normalized Likelihood and
Adaptive Bhattacharyya measure to improve our results.
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