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Abstract

Unsupervised learning is a challenging task due to the
lack of labels. Multiple Object Tracking (MOT), which
inevitably suffers from mutual object interference, occlu-
sion, etc., is even more difficult without label supervision.
In this paper, we explore the latent consistency of sam-
ple features across video frames and propose an Unsu-
pervised Contrastive Similarity Learning method, named
UCSL, including three contrast modules: self-contrast,
cross-contrast, and ambiguity contrast. Specifically, i) self-
contrast uses intra-frame direct and inter-frame indirect
contrast to obtain discriminative representations by maxi-
mizing self-similarity. ii) Cross-contrast aligns cross- and
continuous-frame matching results, mitigating the persis-
tent negative effect caused by object occlusion. And iii) am-
biguity contrast matches ambiguous objects with each other
to further increase the certainty of subsequent object associ-
ation through an implicit manner. On existing benchmarks,
our method outperforms the existing unsupervised methods
using only limited help from ReID head, and even provides
higher accuracy than lots of fully supervised methods.

1. Introduction
As a basic task in computer vision, Multiple Object

Tracking (MOT) is widely applied in a variety of fields, in-
cluding robot navigation, intelligent surveillance, and other
aspects [36, 33]. Currently, one of the most popular track-
ing paradigms is joint detection and re-identification (ReID)
embeddings. In the case of supervision, ReID is regarded as
a classification task. To keep track of objects, many works
[39, 45] utilize appearance features for object association,
where the representation ability of the ReID head will di-
rectly affect the accuracy of the object association.

However, due to limitations in various conditions such as
labeled datasets, to meet the needs of researchers, there has
been a growing requirement to annotate tracking datasets,
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Figure 1. Supervised and Unsupervised MOT. In the joint detec-
tion and ReID embeddings framework, to obtain discriminative
embeddings for tracking, the left branch is a usual method of su-
pervised MOT training, i.e., given labels, it is trained as an object
classification task. The middle branch is a common method of
unsupervised training, i.e., it is processed by clustering, and tar-
gets with high similarity are regarded as the same class. The right
branch is the proposed method with contrast similarity learning to
improve the similarity of the same objects without label informa-
tion.

which is costly and time-consuming. Therefore, unsuper-
vised learning of visual representation has attracted great at-
tention in tracking. Some works [35, 30] have demonstrated
that training the network in the real direction can also be
done even without ground truth. Some works [5, 6] directly
use ReID features to cluster objects with high similarity
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into the same class, then generate pseudo-labels to train the
network, as shown in the middle branch of Figure 1. But
these cluster-based methods are easy to accumulate errors
during the training process. In contrast, we consider using
an Unsupervised Contrastive Similarity Learning (UCSL)
to train the ReID branch without generating pseudo-labels,
as shown in the right branch of Figure 1.

As a video task, the objects in MOT are always chang-
ing over time, which leads to inevitable problems of mutual
occlusion between objects and objects, and between objects
and non-objects, as well as the disappearance of old objects
and the appearance of new ones. Occluded objects are not
represented consistently from frame to frame due to addi-
tional interference features. Lost and emerging objects the-
oretically cannot be matched with other objects, and they
are almost always negative for the current association stage.
Thus, it is difficult for the model to determine whether arbi-
trary two objects are the same or not. In supervised cases,
ID labels can be used to make the training more explicitly
directed, while in the unsupervised case, the dual limitation
of unlabeling and inherent problems makes unsupervised
MOT even more challenging. So we manage to find poten-
tial connections between objects to determine if the objects
are identical.

In this paper, we propose an Unsupervised Contrastive
Similarity Learning (UCSL) method to solve the inherent
object association problems of unsupervised MOT. Specifi-
cally, UCSL consists of three modules, self-contrast, cross-
contrast and ambiguity contrast, designed to address differ-
ent issues respectively. For the self-contrast, we first match
between objects within frames and between objects in ad-
jacent frames. Correspondingly, we get the direct and in-
direct matching results of the intra-frame objects. Then we
maximize the matching probability of self-to-self to maxi-
mize the similarity of the same objects. For cross-contrast,
considering theoretically the cross-frame matching results
should be consistent with the final results of continuous
matching, we improve the similarity of the occluded objects
by making these two matching results as close as possible.
For ambiguity contrast, we match between ambiguous ob-
jects, mainly containing occluded, lost, and emerging ob-
jects whose final similarity is generally low, to further de-
termine the object identity. Our proposed method is sim-
ple but effective, which achieves outstanding performance
by utilizing only the ReID embeddings without adding any
additional branch such as the occlusion handling or optical-
flow based cue to the detection branch.

We implement the method on the basis of FairMOT [45]
using the pre-trained model on the COCO dataset [19]. Our
experiments on the MOT15 [15], MOT17 [24] and MOT20
[7] datasets are conducted to evaluate the effectiveness of
the proposed method. The performance of our unsupervised
approach is comparable with, or outperforms, that of some

supervised methods using expensive annotations.
Overall, our contributions are summarized as follows:

• We propose a contrastive similarity learning method
for unsupervised MOT task, which pursues latent ob-
ject consistency based only on the sample features in
the ReID module given without the ID information.

• We design three useful modules to model associa-
tions between objects in different cases. To elab-
orate, self-contrast module matches intra-frame ob-
jects, cross-contrast module associates cross-frame ob-
jects, and ambiguity contrast module deals with those
hard/corner cases (e.g., occluded objects, lost objects,
etc.)

• Experiments on MOT15[15], MOT17[24] and MOT20
[7] demonstrate the effectiveness of the proposed
UCSL method. As an unsupervised method, UCSL
outperforms state-of-the-art unsupervised MOT meth-
ods and even achieves similar performance as the fully
supervised MOT methods.

2. Related Work
Multi-Object Tracking. Multi-object tracking is a task

that localizes objects from consecutive frames and then as-
sociates them according to their identity. Thus, for a long
time, the most classic tracking paradigm is tracking-by-
detection [27], i.e., firstly, an object detector is used to de-
tect objects from every frame, and secondly, a tracker is
used to associate these objects across frames. A large num-
ber of works [3, 40, 32, 4] in this paradigm have achieved
decent performance, but the paradigm relies too much on
the performance of detectors. In the past two years, the
joint detection and tracking or embedding paradigm has be-
come stronger. Some transformer-based MOT architectures
[31, 23, 41] designed two decoders to perform detection
and object propagation respectively. JDE [39] and Fair-
MOT [45] directly incorporated the appearance model into
a one-stage detector, and then the model can simultaneously
output detection results and the corresponding embeddings.
These simple but effective frameworks have been what we
are looking for, so we take FairMOT [45] as our baseline.

Unsupervised Tracking. For some tasks, existing
datasets or other resources cannot meet the needs of re-
searchers. In this condition, unsupervised learning has been
a popular solution and its efficiency has been demonstrated
in related studies [12, 21, 35, 30]. SimpleReID [12] first
used unlabeled videos and the corresponding detection sets,
and generated tracking results using SORT [3] to simulate
the labels, and trained the ReID network to predict the la-
bels of the given images. It is the first demonstration of
the effectiveness of the simple unsupervised ReID network
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Figure 2. The overall pipeline of our proposed unsupervised contrastive similarity learning model (UCSL), which learns representations
with self-contrast, cross-contrast and ambiguity contrast.

for MOT. Liu et al. [21] proposed a model, named OUT-
rack, using an unsupervised ReID learning module and a su-
pervised occlusion estimation module together to improve
tracking performance.

Re-Identification. In the field of re-identification, which
is more relevant to MOT, unsupervised learning has been
widely used through various means including domain adap-
tion, clustering, etc. Considering the visual similarity and
cycle consistency of labels, MMCL [34] predicted pseudo
labels and regarded each person as a class, transforming
ReID into a multi-classification problem. Some other works
[5, 6, 20] also utilized clustering algorithms to generate
pseudo labels and take them as ground truth to train the
network. However, error accumulation is easy to occur
during the iterative process. Recent methods propose self-
supervised learning, Wang et al. [38] proposed CycAs in-
spired by the data association concept in multi-object track-
ing. By using the self-supervised signal as a constraint on
the data, networks gradually strengthen the feature expres-
sion ability during the training process.

Cycle Consistency. Cycle consistency is originally
proposed in Generative Adversarial Network (GAN), and
widely used in segmentation, tracking, etc. Jabri et al. [10]
constructed a space-time graph from the video, and cast cor-
respondence as prediction of links. By cycle consistency,
the single path-level constraint implicitly supervised chains
of intermediate comparisons. Wang et al. [37] used cycle
consistency in time as the free supervisory signal for learn-
ing visual representations from scratch. Then they used
the acquired representation to find nearest neighbors across
space and time in a range of visual correspondence tasks.

Contrastive Learning. Contrastive learning has shown
great potential in self-supervised learning. Pang et al. [26]
proposed QDTrack, which densely sampled hundreds of re-
gion proposals on a pair of images for contrastive learn-
ing. And they directly combined this with existing detection
methods. Yu et al. [42] proposed multi-view trajectory con-

trastive learning and designed a trajectory-level contrastive
loss to explore the inter-frame information in the whole tra-
jectories. Bastani et al. [1] proposed to construct two differ-
ent inputs for the same video sequence by hiding different
information. Then they computed the trajectory of that se-
quence by applying the RNN model independently on each
input, and trained the model using contrastive learning to
produce consistent tracks.

3. Method

In this section, we first introduce the overall pipeline, as
illustrated in Figure 2, and then describe the corresponding
specific concepts in detail in the subsequent parts. Finally,
we introduce the whole steps of training and inference.

3.1. Contrast Similarity Learning

Given consecutive three images I1, I2, I3 ∈ RH×W×3,
we first feed them to the backbone, then through detection
branches and ReID heads, we could get detection results
and ReID feature maps, as shown in Figure 2. Based on
the position of the bounding box in the ground truth, the
feature embedding corresponding to each object is obtained
from the corresponding feature map, which forms embed-
ding matrices X1 =

[
x0
1,x

1
1, . . . . . . ,x

N−1
1

]
∈ RD×N ,

X2 =
[
x0
2,x

1
2, . . . . . . ,x

M−1
2

]
∈ RD×M and X3 =[

x0
3,x

1
3, . . . . . . ,x

K−1
3

]
∈ RD×K , where N , M , and K are

the object numbers in I1, I2 and I3 , respectively, and D is
the embedding dimension.

The ReID branch is connected to three contrast similar-
ity learning branches, in which (1) Self-contrast uses intra-
frame direct and inter-frame indirect self-matching to ob-
tain discriminative representations and reduce feature inter-
ference from other objects by maximizing self-similarity.
(2) Cross-contrast uses cross- and continuous-frame match-
ing, and then adjusts similarity between objects to extract
more beneficial features for object association. (3) Ambi-



guity contrast takes into account occluded, lost, and emerg-
ing objects simultaneously, and these ambiguous objects are
matched with each other again to further increase the cer-
tainty of subsequent object association. We will describe
the specific operation in Section 3.1.1, 3.1.2 and 3.1.3, re-
spectively.

3.1.1 Self-Contrast Module

According to the latent knowledge that objects from the
same frame must belong to different classes, we can de-
termine that the similarity between self-to-self should be
large enough. So the proposed self-contrast finally lands on
a self-to-self comparison, which is a strong, deterministic
self-supervised restriction. This strong restriction allows us
to improve the similarity of the same targets and reduce the
interference from other objects by direct and indirect self-
contrast learning, as shown in the first column of Figure 3.

Direct Self-Contrast. We use current feature matrix
X1 =

[
x0
1,x

1
1, . . . . . . ,x

N−1
1

]
∈ RD×N to directly com-

pute the self-similarity matrix Sds = XT
1X1 ∈ RN×N ,

where T represents transpose operation. Then we compute
the assignment matrix with a softmax operation, as

Sdsc = ψrow (Sds), (1)

where ψrow is row-wise softmax operation.
Indirect Self-Contrast. MOT itself operates on mul-

tiple frames, so we further perform our self-contrast sim-
ilarity learning by indirect self-to-self matching. To mea-
sure similarity between objects, we calculate cosine simi-
larity to get a similarity matrix between objects of different
frames Sis = XT

1X2 ∈ RN×M . And similar to Eq.1, we
calculate the association matrix S1→2 = ψrow (Sis) and
S2→1 = ψrow (Sis

T ). The corresponding results S1→2

and S2→1 are considered to match the targets in I1 to I2,
and the targets in I2 to I1, respectively. Each element of
S1→2 and S2→1 in the i-th row and j-th column are as fol-
lows, respectively:

s1→2
ij =

exp
((
xi
1

)T · xj
2/τ

)
∑M−1

j=0 exp
((
xi
1

)T · xj
2/τ

) ,

s2→1
ij =

exp

((
xj
2

)T

· xi
1/τ

)
∑N−1

i=0 exp

((
xj
2

)T

· xi
1/τ

) ,

(2)

where τ is a temperature hyper-parameter [38].
According to the cycle association consistency, after for-

ward association S1→2 and backward association S2→1,
each object will match itself again ideally,

Sisc = S
1→2S2→1. (3)

Cross-ContrastSelf-Contrast

Direct Self-Contrast

Indirect Self-Contrast

Note:
Calculate the

matrix multiply

row-wise softmax

units matrix

T

Figure 3. Self-Contrast and Cross-Contrast. We use three sets of
indirect self-contrast and two sets of cross-contrast methods using
different inputs. For the sake of brevity, we only show a set of
specific feature calculation in each contrast.

The corresponding self-contrast loss can be formulated as:

Lsc = − 1

N

(∑
log (diag (Sdsc)) +

∑
log (diag (Sisc))

)
,

(4)
where diag() is to get a diagonal matrix.

Due to the self-contrast, it is obvious that the similar-
ity between the same targets should be the largest, i.e., the
diagonal elements of Sdsc and Sisc obtained above are the
largest and should be as close to 1 as possible.

3.1.2 Cross-Contrast Module

In almost all scenes of MOT, there is more or less ob-
ject occlusion, and the similarity of these objects is gen-
erally low. Since MOT is an operation on multiple con-
secutive frames, the negative impact of these occluded ob-
jects could last for a long time. Considering theoretically
the cross-frame matching results should be the same as the
final results of continuous matching, we use a weaker un-
supervised restriction, i.e., direct (cross-frame) vs. indirect



(continuous-frame) association similarity comparison, to al-
leviate the above issue.

Specifically, we take three frames I1, I2, I3 ∈
RH×W×3 as inputs, similar with Section 3.1.1, we calcu-
late the target matching matrices between different frames,
i.e., S1→2,S2→1,S2→3,S3→2,S1→3,S3→1. As shown
in the second column of Figure 3, we utilize S2→1 and
S3→2 to compute the association matrix of 3 → 1, similarly
use S1→2 and S2→3 to compute the association matrix of
1 → 3, as

S1→3
∗ = ψrow (S1→2S2→3),

S3→1
∗ = ψrow (S3→2S2→1).

(5)

These matching matrices, which are generated indirectly
through a middle frame, should be the same as direct-
generated matching results.

We use relative entropy to measure the difference be-
tween the two matching distributions. KL divergence [14]
is often used to compute the difference between two distri-
butions P and Q,

KL(P∥Q) =
∑

p(x) log
p(x)

q(x)
, (6)

but it is asymmetrical. We further utilize JS divergence [18]
with symmetrical properties,

JSD(P∥Q) =
1

2
KL(P∥T ) + 1

2
KL(Q∥T ), (7)

where T = (P + Q)/2. The corresponding cross-contrast
loss is as follows,

Lcc =
1

N
JSD(S1→3

∗ ∥S1→3) +
1

K
JSD(S3→1

∗ ∥S3→1).

(8)
By enabling the continuous and cross-frame matching

results to be close together, we use the different associa-
tion results to mainly mitigate the differences in the same
target caused by occlusion.

3.1.3 Ambiguity Contrast

There are occluded, lost, and emerging objects in the MOT,
which will interfere with the whole learning process. We
explore this problem and propose the ambiguity contrast
module.

Based on the similarity between objects, we assume that
objects with similarity greater than θ are the same object.
The remaining objects with lower similarity are defined as
ambiguous objects here. The low similarity mainly due to
occlusion or the disappearance and appearance. In the oc-
clusion case, objects of the same ID do exist, but the sim-
ilarity is decreased due to the absence of original features
and involvement of unrelated features. In the latter case, the
similarity between the lost object and the newly emerged
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Figure 4. Ambiguity Contrast. For brevity, we only give the max-
imum similarity for each row, where certain objects have lower
similarity to all other targets, i.e., even the maximum similarity is
below the threshold value, which is indicated by red circles in the
figure. The corresponding feature embeddings are extracted and
then matched again.

object is lower because there is really no target that can
match it.

Our proposed method for ambiguous objects in the unsu-
pervised training process is shown in Figure 4. We find the
ambiguous objects in I1 according to the matching matrix
of S1→2 based on the similarity. Similarly, we get ambigu-
ous objects in I2 based on the matching result of S2→1.
Then these objects are again subjected to similarity calcu-
lation to get the similarity matrix Sr

1→2 ∈ RD×Nr and
Sr

2→1 ∈ RD×Mr , where Nr and Mr are the number of
ambiguous objects in I1 and I2, respectively. Finally, the
loss of the module is calculated by minimum entropy:

Lac = − 1

|Nr −Mr|+ 1

(
1

Nr
Sr

1→2 log
(
Sr

1→2
)

+
1

Mr
Sr

2→1 log
(
Sr

2→1
))

.

(9)

When the number of ambiguous objects in two frames is
equal, considering the two frames are very close to each
other, we can assume that there are no disappearing or
emerging objects, only occlusion exists, and the entropy
should be as small as possible at this time. When the num-
ber of ambiguous objects in the two frames is not equal,
it must contain disappearing or emerging objects. They
are less similar to other objects because they cannot be
matched, so we dynamically weaken the loss by adaptive
coefficients.

3.2. UCSL for Unsupervised MOT

We apply UCSL on FairMOT [45], which composes of a
backbone network, a detection head, and a re-identification
head. For simplicity, the setting of the backbone and detec-
tion head follows FairMOT [45]. The overall architecture



of UCSL is illustrated in Figure 2.
In the training stage, we follow the three contrast learn-

ing sub-modules in Section 3.1, and the complete loss func-
tion of ReID can be defined as follows:

L (It, It−1, It−2) = Lsc + Lcc + Lac (10)

where three consecutive frames It, It−1 and It−2 denote in-
puts. Lsc, Lcc, and Lac denote self-contrast, cross-contrast,
and ambiguity contrast losses mentioned above, respec-
tively.

In the inference stage, video frames are fed into the net-
work one by one. Then we obtain the corresponding de-
tection results and ReID embeddings. We use the detection
bounding boxes in the first frame to initialize multiple tra-
jectories, and then use two-stage matching to complete ob-
ject association. The overall association idea is also similar
to FairMOT [45], using Kalman Filter [11] to predict the
position of the objects and match bounding boxes with ex-
isting trajectories using embedding distance. For the trajec-
tories and detections that are not matched, we match them
using iou distance. Finally, the remaining unmatched de-
tections are initialized as new objects, and the unmatched
trajectories are saved for 30 frames and matched when they
appear again.

4. Experiments
In this section, the proposed UCSL is evaluated on the

MOT17 [24], MOT15 [15] and MOT20 [15]. The descrip-
tion of the datasets and the experimental setup is as follows,
and next, we compare UCSL with the advanced approaches.
Then, we show the evaluation of the effect of our model
with ablation experiments.

4.1. Datasets

The proposed method is evaluated on MOT15, MOT17
and MOT20. MOT15 is the first dataset provided by MOT
Challenge. It contains 22 video sequences, 11 of which are
used for training and 11 for testing. The MOT15 is derived
from older datasets and has different characteristics, such as
fixed or moving cameras, different lighting environments,
etc. MOT17 consists of 14 video sequences in total, 7 of
which are used for training and 7 for testing, which is the
most frequently used in MOT by far. MOT20 contains 4
training videos and 4 testing videos with more complex en-
vironments and greater crowd density, so MOT20 is more
challenging than any previous datasets.

To evaluate our method, we use the standard MOT chal-
lenge metrics [2, 16, 22], mainly including Multi-Object
Tracking Accuracy (MOTA), ID F1 Score (IDF1), Higher
Order Tracking Accuracy (HOTA), Mostly Tracked objects
(MT), Mostly Lost objects (ML), Number of False Posi-
tives (FP), Number of False Negatives (FN) and Number

of Identity Switches (IDS), where the higher the first four
items the better, the lower the last four items the better, and
we use “↑” and “↓” to represent respectively.

4.2. Implementation Details

By default, UCSL is implemented based on the basis of
the original FairMOT [45]. We take DLA-34 [43] as the
backbone of the model and take the detection branch of
the COCO dataset [19] pre-trained model to initialize our
model parameters. We follow the most hyper-parameters
settings of FairMOT [45].

We use conventional data enhancement approaches such
as rotation, random cropping and horizontal flip, scale trans-
formation, color jittering, etc., and resize the input image
size to 1088×608. We use the Adam optimizer [13] with
the initial learning rate set to 10−4, and the batch size set
to 8. The similarity threshold θ in ambiguity contrast is
0.7. The model iterates 60 epochs on the MOT17 training
set in the internal ablation experiments. We eventually train
the corresponding dataset for 30 epochs on the basis of a
pre-trained model of the CrowdHuman [29] dataset. The
learning rate decays to 10−5 at the 20th epoch. Finally, we
train our model on 4 RTX2080ti GPUs in about 10 hours.

4.3. Performance and Comparison

Comparison on MOT17. In this part, we compare our
method with some other supervised and unsupervised meth-
ods on MOT17. In general, the performance of supervised
methods is more advantageous purely in terms of metrics.
As an unsupervised approach, we expect it to be as close as
possible to state-of-the-art results. As shown in Table 1, we
list some popular methods of joint detection and tracking or
embeddings, and our method achieves considerable results,
especially on IDF1 and HOTA. As the results provided by
SimpleReID [12] are based on public detections, for a fairer
comparison, we use the detection results of the same detec-
tor, i.e., CenterNet [46], to obtain the corresponding private
detection-based results of simpleReID [12]. Since UTrack
[21] is not tested on MOT17 test set, we replace it with our
designed UCSL and conduct experiments under the same
hardware conditions on MOT17. The results are shown in
the tenth result row of Table 1. Based on the same Fair-
MOT+CycAs model, although UTrack [21] and UCSL are
very close on IDF1 and HOTA, our model improves 1.2 in
terms of MOTA. Our model outperforms UTrack [21] in
terms of ReID feature extraction with the same detection
branch. We notice that IDS is not better compared to other
methods, which may attribute to that UCSL tracks more tra-
jectories and has a higher recall.

Performance on Other Datasets. In addition to
MOT17, we also conduct experiments on MOT15 and
MOT20, as shown in Table 1. Since FairMOT [45] uses ad-
ditional MIX datasets for training besides the CrowdHuman



Method Unsup MOTA↑ IDF1↑ HOTA↑
MOT17

TrackFormer [23] No 74.1 68.0 57.3
TransTrack [31] No 75.2 63.5 54.1
TransCenter [41] No 73.2 62.2 54.5

QDTrack [26] No 68.7 66.3 53.9
JDE [39] No 56.7 55.0 45.1

CSTrack [17] No 74.9 72.6 59.3
FairMOT [45] No 73.7 72.3 59.3

SimpleReID* [12] Yes 61.7 58.1 46.9
SimpleReID [12] Yes 69.0 60.7 50.4

UTrack [21] Yes 71.8 70.3 58.4
UCSL (ours) Yes 73.0 70.4 58.4

MOT15
EAMTT [28] No 53.0 54.0 42.5
TubeTK [25] No 58.4 53.1 42.7
RAR15 [8] No 56.5 61.3 46.0

MTrack [42] No 58.9 62.1 47.9
FairMOT [45] No 55.0 60.2 45.9
UCSL (ours) Yes 59.1 59.2 46.3

MOT20
TransCenter [41] No 58.5 49.6 54.1

MTrack [42] No 63.5 69.2 55.3
FairMOT [45] No 55.7 64.6 52.5

SimpleReID* [12] Yes 53.6 50.6 41.7
SimpleReID [12] Yes 61.8 54.8 45.5

UCSL (ours) Yes 62.4 63.0 52.3

Table 1. Performance on MOT17, MOT15 and MOT20 test sets.
“Unsup” means unsupervised training. “*” denotes using public
detections. Bold and underline indicate unsupervised and super-
vised best metrics, respectively.

dataset, we train and test this method under the same con-
ditions for a fair comparison. On MOT15, the performance
of our unsupervised UCSL is metrically stronger than the
supervised methods on MOTA, and achieves comparable
overall performance on other metrics.

MOT20 is more complex than the scenarios in MOT15
relatively and has a larger amount of data, so the results of
MOT20 are improved over those on MOT15. Our model
outperforms the unsupervised SimpleReID [12] largely, es-
pecially on IDF1 and HOTA. Compared with supervised
methods, the results show that our method is already com-
parable to them.

Performance under JDE paradigm. Our method is
based on the JDE paradigm, considering FairMOT [45] as
the baseline by default. We show the results of classical
and our methods under the same paradigm, as shown in Ta-
ble 2. Since the JDE [39] does not provide results on the
MOT17 test set, we retest them under the same conditions.
Due to the same paradigm, our approach also can be applied
in other JDE-based methods, e.g., JDE [39].

Method MOTA ↑ IDF1 ↑ HOTA ↑
JDE(yolov5s) [39] 70.2 66.6 54.1

FairMOT [45] 73.7 72.3 59.3
CSTrack [17] 74.9 72.6 59.3

JDE(yolov5s) + Ours 69.6 68.0 55.7
FairMOT + Ours 73.0 70.4 58.4

Table 2. Mehtods on MOT17 under the same paradigm, JDE (joint
detection and embeddings). “yolov5s” denotes detection branch
baseline. The upper and lower parts are supervised and unsuper-
vised methods, respectively.

Method MOTA↑ IDF1↑ HOTA↑
YOLOX [9] + BYTE [44] 78.8 77.0 62.7

CenterNet [46] + BYTE [44] 73.1 70.0 58.9
CenterNet [46] + UCSL(ours) 73.0 70.4 58.4

Table 3. Comparison with ByteTrack [44] on MOT17. For a more
intuitive comparison, we use YOLOX + BYTE to represent Byte-
Track directly.

Comparison with TBD. Due to the contradiction be-
tween detection and ReID, compared with JDE, indeed,
TBD (tracking-by-detection) paradigm could achieve a
higher performance limit. But joint training methods out-
put detections and embeddings simultaneously, balancing
the accuracy and speed. So under JDE paradigm, we focus
on exploring the impact of the unsupervised approach on
it, rather than aiming for the state-of-the-art performance.
To compare our method with TBD, we consider ByteTrack
[44] as the representative for advanced TBD methods, First,
it should be noticed that ByteTrack [44] uses trajectories in-
terpolation on MOT17 dataset, which turns it into an offline
approach. So we test ByteTrack [44] without interpolation
on MOT17, as shown in the first result row of Table 3. In
our approach, the detection branch uses CenterNet [46] by
default, so the comparison between the second and third re-
sult lines of Table 3 demonstrates that the performance im-
pact of our unsupervised approach is comparable to that of
BYTE [44] with the same detector.

4.4. Ablation Studies

We conduct ablation experiments on the MOT17 test set,
in which we test all contrast losses mentioned above as well
as some settings about input frame interval and output ReID
dimension.

Baseline. We are inspired by the method CycAs [38]. As
shown in the first row in Table 4, only the triple loss of the
original CycAs [38] is used for modeling, aiming to make
the probability of the object matching back to itself reach a
credible level to ensure cycle consistency. In this method,
IDF1 and HOTA are 59.1 and 49.6, respectively.

Self-Contrast Loss. We use both the direct and indirect



Lsc Lcc Lac IDF1 ↑ HOTA ↑ MOTA ↑ MT ↑ ML ↓ FP ↓ FN ↓ IDS ↓
Ldsc Lisc

CycAs [38] 59.1 49.6 69.5 38.7% 19.0% 31309 132816 7839
✓ 61.5 50.8 69.9 39.3% 19.8% 29475 132954 7314

✓ 66.6 54.9 69.8 38.6% 18.1% 31341 133173 5997
✓ ✓ 67.2 55.0 69.4 38.6% 18.2% 32502 134808 5544
✓ ✓ ✓ 68.4 55.6 69.8 39.6% 19.2% 32619 132228 5595
✓ ✓ ✓ ✓ 68.2 55.5 70.5 40.8% 16.2% 40569 125004 5208

Table 4. Performance with different losses on MOT17 test set. “CycAs” represents utilizing original loss function in CycAs [38]. Lsc

represents self-contrast loss, where Ldsc and Lisc represents direct and indirect self-contrast loss, respectively. Lcc represents cross-
contrast loss, Lac represents ambiguity contrast loss.

Interval MOTA ↑ IDF1 ↑ MT ↑ ML ↓
7 68.5 66.5 38.2% 20.7%
3 68.7 67.7 37.8% 20.6%
1 70.5 68.2 40.8% 16.2%

Table 5. Comparison of different input frame intervals. Based on
the current frame, three consecutive frames are taken as input ac-
cording to the number of frame intervals listed in the table. For the
current frame t, for example, when the interval is 1, the inputs are
frames t, t− 1 and t− 2.

ReID Dim MOTA ↑ IDF1 ↑ MT ↑ ML ↓
64 69.8 68.9 38.2% 20.2%

128 70.5 68.2 40.8% 16.2%
256 70.7 68.4 37.7% 20.6%

Table 6. Comparison of different output ReID dimensions.

self-contrast losses to construct the model to extract ReID
embeddings better. In the direct and indirect self-contrast
subparts, we both use the intra-frame cross-entropy loss to
construct the loss function, bringing the same objects closer
together in the feature space and different targets further
apart in the feature space. As seen from the second, third
and fourth rows of Table 4, both direct and indirect self-
contrast learning have little effect on MOTA, while have
significantly improved the IDF1 and HOTA metrics and re-
duced IDS, demonstrating that our self-contrast similarity
learning extracts more discriminative ReID embeddings.

Cross-Contrast Loss. We use cross- and consecutive-
frames matching for cross-contrast similarity learning, with
the aim of reducing the effect caused by mutual occlusion
between objects. As can be seen from the fifth row in Table
4, on basis of self-contrast similarity learning, the cross-
contrast improves IDF1 and HOTA metrics to 68.4 and 55.6
respectively, and there are also different degrees of improve-
ment on other metrics.

Ambiguity Contrast Loss. In order to consider both the
occluded, disappearing and emerging objects in MOT, we
use ambiguity contrast to match these ambiguous objects

again. From the last row of Table 4, one can see that af-
ter adding the ambiguity contrast based on the above two
losses, the result has a more obvious improvement mainly
in MOTA, MT and IDS, indicating that the method does
have a positive effect on maintaining the object’s trajectory.

Input Frame Interval. In our model, the default input
is three consecutive frames. To show its superiority, we set
different input intervals to train and test the corresponding
model on MOT17, as shown in Table 5. Generally speaking,
occlusion will last for a long time, but we find the larger the
frame interval the weaker the performance, which may be
surprising but explainable. Large interval is more suitable
for supervised settings, where objects between any frames
can be well matched with annotated ID labels. However,
long intervals may cause drastic object changes without ID
labels, making matching hard and errors accumulated. In
addition, during training, there is an intersection between
each input frame group. So, long-term temporal relation is
taken into consideration just in an implicit manner.

Output ReID Dimension. In Table 6, we compare three
different ReID embedding dimensions. As we can see,
compared to the 64-dimension ReID embeddings, the 128-
dimension performs better in terms of MOTA and MT met-
rics. The 256-dimension features have a similar improve-
ment effect on the MOTA and IDF1 as the 128-dimension
but consume more space and slow down the training and
inference speed. For all these reasons, we choose the 128-
dimension as the output dimension of the ReID branch.

5. Conclusions
We propose a simple but effective unsupervised method

based on Contrastive Similarity Learning (UCSL). Specif-
ically, we construct three learning types: self-contrast,
cross-contrast and ambiguity contrast learning. Combin-
ing these sub-modules, the network is able to learn dis-
criminative features consistently and reliably, and handle
with occluded, lost and emerging objects simultaneously.
Our unsupervised method outperforms existing unsuper-
vised methods, and even surpasses some advanced super-
vised methods.
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