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Abstract

Learning 3D shape representation with dense correspon-
dence for deformable objects is a fundamental problem
in computer vision. Existing approaches often need addi-
tional annotations of specific semantic domain, e.g., skele-
ton poses for human bodies or animals, which require extra
annotation effort and suffer from error accumulation, and
they are limited to specific domain. In this paper, we pro-
pose a novel self-supervised approach to learn neural im-
plicit shape representation for deformable objects, which
can represent shapes with a template shape and dense cor-
respondence in 3D. Our method does not require the pri-
ors of skeleton and skinning weight, and only requires a
collection of shapes represented in signed distance fields.
To handle the large deformation, we constrain the learned
template shape in the same latent space with the train-
ing shapes, design a new formulation of local rigid con-
straint that enforces rigid transformation in local region
and addresses local reflection issue, and present a new hi-
erarchical rigid constraint to reduce the ambiguity due to
the joint learning of template shape and correspondences.
Extensive experiments show that our model can represent
shapes with large deformations. We also show that our
shape representation can support two typical applications,
such as texture transfer and shape editing, with competi-
tive performance. The code and models are available at
https://iscas3dv.github.io/deformshape.

1. Introduction
Shape representation with dense correspondence is a

fundamental problem in computer vision. It plays a key role
in many applications such as shape reconstruction [29, 35,
25], texture mapping [33, 10], and shape editing [10, 9, 39].
Early works often need additional semantic prior or anno-
tations to learn such representation, e.g., SMPL [23] and

*indicates corresponding author

Figure 1: We present a self-supervised method to learn neu-
ral implicit representation for deformable objects with a col-
lection of shapes. Our method can generate shapes by de-
forming a learned template and get dense correspondence.

SMAL [45] use registered meshes in certain semantic cate-
gories and LEAP [28] and NASA [9] require annotations of
skeletons and skinning weights, which limits the use cases
and scalability of these representations. On the other hand,
with the emerging implicit representation, more 3D assets
are encoded in implicit sign distance function (SDF), and a
shape representation for deformable objects in SDF is still
largely missing in the community.

In this paper, we aim to design a neural representation for
deformable objects (Figure 1). Given a target deformable
object represented as a set of sign distance field under var-
ious deformations, our method learns an implicit represen-
tation that is able to reconstruct the 3D shapes, interpolate
between the given examples, and provide dense correspon-
dence across shapes, in a fully self-supervised manner with-
out any additional annotation or semantic prior. Following
the common idea [10, 32], we formulate the deformable
shape as a static shape in a canonical (or template) space,
plus the mappings from any target deformation space to the
template space for arbitrary locations in the 3D space. How-
ever, in the existence of large deformation, such as humans
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and animals, we empirically found the above-mentioned ap-
proaches tend to be unstable and can easily get stuck in local
optima if learned self-supervised due to unique challenges:

Highly Under-constrained Optimization. The free-form
template shape and deformation need optimizing jointly but
highly under-constrained. Under the case with large defor-
mation across training examples, the per-location mapping
is error-prone, which in return affects the template shape,
and there lacks a good constraint to push both back to the
correct case. To mitigate the issue, we learn a generative
model for the training shapes, where each shape is repre-
sented as a code in a latent space. We then enforce a valid
shape for the template shape by sampling from this latent
space. We found this helps constrain the template shape
and benefits the learning of dense correspondence.

Incomplete Local Rigid Constraint. As-rigid-as-possible
(ARAP) constraint [1, 39] has been extensively used for dis-
cretized surface such as meshes to penalize irregular surface
deformation in many previous work [1, 39, 15]. However,
defining ARAP equivalent constraint on continuous SDF
is non-trivial. Existing works conduct a few attempts but
all have their drawbacks. For example, Deng et al. [10]
use smooth constraints to avoid predicted deformation be-
ing large. However, this work cannot model the shapes with
large deformation. Park et al. [32] propose a local rigid
constraint however does not penalize flip mapping in a lo-
cal region, and as a result a point on the left hand might
be incorrectly mapped to the right hand. In contrast, we
propose a novel formulation of local rigid constraint that
enforces rigid transformation in local region and addresses
local flip mapping issue, as illustrated in reflection issue of
Figure 3(a). We give theoretical analysis and show that our
local rigid constraint is, to the best of our knowledge, the
first ARAP equivalent constraint define with implicit repre-
sentation in infinitesimal scopes.

Insufficient Large-scale Deformation Prior. We found
the learned shape representations with only local rigid con-
straint at each point [32, 10] still suffer from local optima.
This is because shapes with large deformation often have
rigid deformation in large scope, such as small neighbor-
hood rigid regions (Figure 3(b)) and large rigid regions such
as the limb on human body (Figure 3(c)), and the local
rigid constraint does not have enough spatial context to take
effect. Several rigid constraints on meshes [44] or point
clouds [19] have been designed and proved to be effec-
tive for shape representation by utilizing connections be-
tween surface points. However, it is not straight-forward to
extend these rigid constraints to implicit shape representa-
tion due to the lack of explicit connections between points.
Therefore, previous implicit representation methods neglect
large-scale deformation prior. To this end, we design hierar-
chical rigid constraints for implicit representation to utilize

spatial context of shapes at rigid part level and neighbor-
hood level to reduce the ambiguity to learn shape and cor-
respondence, which effectively constrains rigid motion in
large scale and stabilizes the learning of the representation.

We perform extensive experiments to verify that our
neural representation, learned with three above mentioned
contributions, has superior capability in shape reconstruc-
tion, deformation interpolation, and building dense corre-
spondence. We also show that high quality results can be
achieved in various applications, including texture transfer
and shape editing, using our learned representation.

2. Related Work

Neural Implicit Representation for Rigid Object. Im-
plicit function is widely used in 3D shape representation.
Park et al. [31] propose an efficient model named DeepSDF
to learn SDF to represent shapes. Mescheder et al. [27] and
Chen et al. [7] achieve neural implicit representation assign-
ment by means of a binary classifier. Chibane et al. [8] use
unsigned distance field to achieve high resolution output of
arbitrary shape. Deng et al. [10] propose DIF, which learns
a template to deform to a class of objects. This method
works well for rigid objects, but fails when large deforma-
tion occurs, such as moving human body.
Neural Shape Representation with Shape Priors. Several
methods present neural shape representation for dynamic
shapes using shape priors such as skeleton and skinning for
human body. Prior art works on neural representation of
human body [9, 28, 6] impose bone transformation to con-
strain the deformation space. Jiang et al. [16] use pose-
shape pairs in training data to learn a model to represent
moving body. Ma et al. [26] project human body on a pre-
defined UV map and represent body shape as point cloud.
These methods require the pre-defined topology space, and
the known or easy-to-learn diffeomorphism to realize hu-
man body shape representation. However, none of them
can optimize template and correspondence simultaneously.
Skeleton provides much prior of deformation, so methods
using skeleton are advantageous when ground truth pose are
available. In this paper, we focus on deformable shapes
without pre-defined skeleton and propose a skeleton-free
shape representation with dense correspondence.
Neural Implicit Representation with Dense Correspon-
dence. Training a neural implicit model with dense cor-
respondence is a longstanding task [10]. Oflow [30] can
model motion sequence of a deformed shape. This method
can model shapes with large deformation, but it requires
continuous shape sequence as input. DIF [10] can represent
shapes of the same category and generate dense correspon-
dences among shapes. However, DIF cannot model shapes
with large deformation, such as human body.
Neural Dense Correspondence. Finding accurate dense
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Figure 2: Illustration of our shape representation network.

correspondence among shapes is a fundamental problem in
computer vision. Several methods have explored this prob-
lem in supervised manner [21, 13, 41] or self-supervised
manner [13, 14, 4, 12, 11]. In supervised methods, the cor-
responding points between the input shapes are required to
know. In self-supervised case, some works [13, 14, 12, 11]
use topology information to constrain the point location on
the surface. However, these self-supervised methods re-
quire mesh as input, which is harder to access than point
cloud in real world capture. Several works in human mesh
registration [4, 42] also predict dense correspondences be-
tween shapes. Bharat et al. [4] use the shape model SMPL
[23] as a prior for training, yet it cannot be generalized
to other shape categories without a pre-built shape model.
Giovanni et al. [42] present a learning approach to regis-
ter non-rigid 3D point clouds. However, this work requires
ground truth correspondences for training. In this paper,
we focus on learning dense correspondence with neural im-
plicit representation using self-supervised method.

3. Method
Our method learns a neural representation for a de-

formable object exhibited in a collection of shapes repre-
sented as signed distance fields (SDF). Inspired by DIF [10],
we formulate the deformable object as a template shape en-
coded in an implicit neural network Φ, and dense correspon-
dence fields Di→tmpl predicted by a network (R3 → R3)
from arbitrary deformation Si (i.e., target space) to the tem-
plate space tmpl. Therefore, to reconstruct the target shape
Si, signed distance values for arbitrary 3D location p are
queried from the template space via the dense correspon-
dence as

SDFi(p) = Φ(Di→tmpl(p)). (1)

With the SDF of a target shape, the 3D mesh can be
extracted using surface reconstruction algorithms such as
Marching Cubes [24]. Though the overall representation is
straightforward, our method focuses on shapes with large
deformation, such as moving humans and animals, while
DIF [10] can only deal with static categories, such as cars
and chairs, we show later in this section effective learning
in observations of large deformation is non-trivial.

3.1. Embedded Shapes and Template

In this section, we investigate how to learn a reasonable
template field. The previous template field network [10] did
not enforce the template shape to be a valid shape of any
subject. In practice, this method often generates template
with many floating artifacts when dealing with shapes with
large deformation (Figure A). The floating artifacts can mis-
lead the network to find wrong correspondences on template
field. However, an ideal template field should have common
shape pattern of the target shapes to provide key clues for
correspondence.

In order to learn a reasonable template field, we propose
to constrain the template shape in the same latent space with
the training shape examples. To this end, we extend the neu-
ral implicit SDF function Φ to condition on a latent code
α, where each training shape and the template shape are
mapped to an unique latent code. In this way, the training
shape collection naturally forms a strong regularization to
ensure a reasonable template shape and effectively prevent
flyers. The latent space also serves naturally for the dense
deformation fields between target shape and the template
shape. As illustrated in Figure 2, we use the latent codes
from the target shape αi and the template shape αtmpl to
drive an encoder and a decoder respectively for dense cor-
respondence prediction. The encoder-decoder network is
denoted as D. Inspired the key finding by Simeonov et al.
[36], that the distance from surface is a key clue to learn 3D
correspondence, we add the SDF together with the point lo-
cation as input of encoder to provide geometry clues. There-
fore, the target shape can be reconstructed as

SDFi(p) = Φ
(
D
(
p,Φ(p|αi)|αi, αtmpl

)
|αtmpl

)
. (2)

For simplicity, we use Di→tmpl(p) for D(p,Φ(p|αi)|
αi, αtmpl) in the following sections.

3.2. Local Rigid Constraint

During the training, Φ, D, and latent code space {α} are
optimized jointly by minimizing the reconstruction loss on
the training shape collection. However, even with the regu-
larization on the template shape, this is still a highly under-
constrained optimization problem, and additional regular-
ization is needed. A common option is to assume rigid mo-
tion in local infinitesimal scopes, and ARAP [1, 39] is a
widely adopted solution on 3D surfaces. In this section, we
propose, for the first time, a novel ARAP equivalent con-
straint defined in implicit representation.

Inspired by Nerfies [32], local deformation can be reg-
ularized by constraining the singular values from the Jaco-
bian matrix of the deformation field. In their work, all three
singular values are encouraged to be close to 1. However,
this does not rule out the reflection as part of the rotation [2],
as illustrated in Figure 3 (a), which will deform the shape
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Figure 3: Illustration of hierarchical rigid constraints.

inside out or erroneously map the symmetry geometry, e.g.,
left hand in one shape maps to the right hand in another.
While rarely observed in Nerfies [32] since the deformation
in their data is relatively small, this drawback becomes vital
when deformations are large.

Our ARAP equivalent constraint is also achieved by con-
straining the singular values of the Jacobian matrix of the
deformation field. The analysis on ARAP equivalence can
be found in the supplementary material. In theory, pref-
erence over local rigid deformation is equivalent as en-
couraging the Jacobian matrix J(Di→tmpl) to be a rota-
tion matrix [32]. According to Umeyama [43], the closest
orthogonal matrix of J(Di→tmpl) in the Froebenius norm
is R = USVT with S = diag(1, 1, det(UVT )), where
U,V are obtained via singular value decomposition (SVD),
i.e. J(Di→tmpl) = UΣVT (See more detail in the supple-
mentary material). Therefore, denoting σ1, σ2, σ3 to be
singular values of Jacobian in point p, i.e. J(Di→tmpl)(p),
we define the ARAP loss in local region as

Larap =smoothL1(σ1, 1) + smoothL1(σ2, 1)

+ smoothL1(σ3, det(UVT )).
(3)

Note that the reflection happens when det(UVT ) < 0,
which is penalized in our ARAP loss since σ3 is always
positive. To further penalize reflection, we also directly pe-
nalize negative det(J(Di→tmpl)). The overall local rigid
loss is defined as

Llr =
∑
i

∑
p∈S−

i ∪S0
i

Larap(p)+relu
(
−det

(
J(Di→tmpl)(p)

))
,

(4)
where S−

i is the points from shape interior, i.e., SDF (p) <
0, and S0

i is the points from shape surface, i.e., SDF (p) =
0. We obtain the Jacobian matrix via auto gradient mecha-
nism, and use a smooth L1 loss for stable training.

3.3. Hierarchical Rigid Constraint

Existing implicit learning methods [32, 10] only super-
vise local rigidity of deformation at each point. However,
these methods do not leverage spatial context (i.e., seman-
tic parts, neighborhood distribution) of shapes effectively.
To mitigate the correspondence ambiguity with spatial con-
text, we propose a new implicit-based hierarchical rigid
constraint that consists of three terms at different levels, i.e.,
the local rigid constraint in infinitesimal scopes (Sec. 3.2),
a neighborhood rigid constraint for nearby region, and a
piece-wise rigid constraint for large part.
Neighborhood Rigid Constraint. This constraint is ap-
plied on small regions but in larger scale than Llr, con-
straining the implicit field in each region to remain consis-
tent after transformation. As shown in Figure 3(b), if points
in a small neighborhood undergo the rigid transformation,
the SDF of each point near the subject’s surface will remain
unchanged during deformation.

To this end, we add constraints respecting the above-
mentioned property between the template space and each
target deformation space. For each point p on the surface
S0
i of target deformation, we sample points around it us-

ing a Gaussian distribution with σ (set to 0.05 in the ex-
periment). We then estimate the local rotation R around p
from J(Di→tmpl) similar to Sec. 3.2. Each point sampling
p + η (η ∈ R3) in the neighborhood is then mapped to the
template space at ptmpl

i = Di→tmpl(p) +Rη. We propose
a neighborhood rigid loss that penalizes inconsistent SDF
values sampled from the target and template space as

Lnbr =
∑
i

∑
p∈S0

i

Eη∼N (0,σ)∥Φ(ptmpl
i |αtmpl)−Φ(p+η|αi)∥22,

(5)
where E is the expectation over Gaussian sampling, which
is implemented by averaging the deviation of SDF values of
sampled points. Taking numerical stability into account, we
follow Levinson et al. [18] to calculate gradient of R.
Piece-wise Rigid Constraint. In fact, rigid motion can
happen not only locally but also in a much larger seman-
tic scope [44, 19], such as the limb on human body (Figure
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Figure 4: Part classification and shapes of two subjects.

3 (c)). These large but rigid structures are often the source
of large deformation in 3D space. We thus add a loss term,
named piece-wise rigid loss, to favor rigid motion in large
scale to help detect the existence of large rigid parts if any.

Our piece-wise rigid loss is enabled via part classifica-
tion networks that predicts for each 3D point, inside or
on the surface of the 3D shape, the probability belonging
to each of NP parts. With the predicted part association,
the least square solution of rigid transformation (Rh, th)
for each part h can be obtained. The piece-wise rigid loss
then penalizes the sum of minimal rigid transformation er-
ror over points of all parts as

Lpr =
∑
i

∑
h∈[1,NP ]

min
Rh,th

∑
p∈S0

i ∪S−
i

Ph(p)∥(Rhp+ th)

−Di→tmpl(p)∥22,
(6)

where Ph is the predicted probability belonging to part h.
In general, the points from shape interior have strong cor-
relation with surface points. Therefore, we not only con-
strain surface points, but also inner points. In practice, the
part classification network is learned in self-supervised way,
jointly with Di→tmpl, which needs only a pre-defined total
number of parts NP . Because the calculation of per-part
rigid transformation (Rh, th) could be slow, we therefore
leverage a closed-form analytical solution to get the mini-
mal rigid transformation error following Sorkine-Hornung
et al. [40] for efficient and differentiable implementation of
Eq. 6. Figure 4 shows that our method can effectively learn
part classification in self-supervised manner.

Overall, our hierarchical rigid constraint is defined as

Lrigid = wlrLlr + wnbrLnbr + wprLpr (7)

where wlr, wnbr and wpr are loss weights.

3.4. Implementation Details

We train our model in an end-to-end manner, and the
latent code and parameters of all networks are optimized

together during training.
Besides the hierarchical rigid constraint, we also add a

loss term to incorporate directly supervision from the train-
ing shapes on the SDF as

Lsdf =∑
i

(
ws

∑
p∈Si

|Φ(p|αi)− s̄|+ wn

∑
p∈S0

i

(1− Sc(∇Φ(p|αi), n̄)
)

+ wEik

∑
p∈Si

|∥∇Φ(p|αi)∥2 − 1|+ wρ

∑
p∈Si\S0

i

ρ(Φ(p)|αi)),

(8)
where Sc is cosine similarity, s̄ is ground truth SDF value,
and n̄ is ground truth normal. The first term directly su-
pervises the SDF value, the second term supervises the sur-
face normal, and the third term regularizes the amplitude of
SDF gradient to satisfy Eikonal equation. The fourth term
refrains from the off-surface points with SDF values close
to 0, where ρ(s) = exp(−δ · |s|), s ≫ 1. We use the sim-
ilar method to supervise queried SDF values (Eq. 2), more
details can be found in supplementary material.

We also supervise the surface normal consistency
jointly with the deformation field. Specifically, we ro-
tate the ground truth n̄ from the target space to the tem-
plate space using predicted rotation J(Di→tmpl)(p), i.e.,
J(Di→tmpl)(p)n̄[17], and then compare it with the normal
directly estimated with SDFs of correspondence in the tem-
plate space, i.e., ∇Di→tmpl

Φ(Di→tmpl(p)|αtmpl). The nor-
mal loss Lpfn is defined as

Lpfn =
∑
i

∑
p∈S0

i

(1−Sc(∇Di→tmpl
Φ(Di→tmpl(p)|αtmpl),

J(Di→tmpl)(p)n̄))
(9)

We also use regularization terms on latent codes Lreg =∑
i ∥αi∥ and enforce the latent code of template to be close

to its nearest latent code of shape in the training set.
Inspired by 3D-CODED [13] that pre-trains the network

to enforce the predicted correspondence of a point in input
shape to close to the input point, we use a loss term Lrecon

to enforce the self-correspondence Di→i(p) of the target
shape to close to p using L2 loss, which enables good initial
correspondence. The hyper-parameters such as loss weights
are fixed over all the experiments.

4. Experiment
4.1. Dataset

We use the human dataset D-FAUST [5] and animal
dataset DeformingThings4D [20] for evaluation. D-FAUST
contains 5 males and 5 females. Each person performs vari-
ous movements, such as punching and waving arms. We use
the same data split as Atzmon et al. [3]. Shapes from several



D-FAUST[5] DeformingThings4D[20]
bear rabbit elephant whale deer average

CD↓ IoU↑ corr↓ CD↓ IoU↑ corr↓ CD↓ IoU↑ corr↓ CD↓ IoU↑ corr↓ CD↓ IoU↑ corr↓ CD↓ IoU↑ corr↓ CD↓ IoU↑ corr↓
DIF 11.936 0.647 0.0901 16.579 0.636 0.2062 14.005 0.566 0.1515 187.662 0.431 0.0612 22.146 0.492 0.0812 24.772 0.489 0.1948 44.053 0.547 0.1303

3D-CODED 3.450 0.592 0.1038 1.327 0.824 0.1654 1.303 0.797 0.1271 0.832 0.888 0.0377 2.689 0.692 0.0710 2.683 0.656 0.1440 1.658 0.784 0.0688
Our 1.594 0.881 0.0304 0.439 0.940 0.0700 1.731 0.897 0.0925 0.587 0.910 0.0198 1.754 0.908 0.0175 2.121 0.870 0.0786 1.165 0.912 0.0557

Table 1: Capacity evaluation on D-FAUST and DeformingThings4D.

MANO[34]
CD↓ IoU↑ corr↓

DIF 8.137 0.824 0.0557
3D-CODED 0.833 0.879 0.0241

Our 0.150 0.935 0.0024

Table 2: Capacity evaluation on generated MANO[34]
hands.

3D-CODED DIF ours ground

truth
DIF ours ground

truth
3D-CODED

Figure 5: Comparison of model representation capability
from our method with DIF and 3D-CODED. Our method
outperforms DIF and 3D-CODED by a large margin on the
representation capability.

Surface Pointcloud 

with Noise
Reconstructed Shapes

Figure 6: Results on datasets with synthesized noise. We
can observe that our method can generate reasonable results
with synthesized noise.

sequences are randomly split. Although pose is available
in the dataset, it is not used in our experiments. Deform-
ingThings4D contains various animals. In our experiment,
we select 5 animals with very different shapes and skeleton
structures, including bear, bunny, whale, elephant and deer.

4.2. Representation Capability

We evaluate the representation capability of our method
by comparing reconstructed shapes in the training set with
SOTA shape representation methods, DIF [10] and 3D-
CODED [13]. To get the results with DIF, we only use the

queried SDF value from template field via correspondence
without per-point correction to reconstruct shapes, because
shapes with correction term are not just a deformed tem-
plate, their geometry mainly depends on correction instead
of correspondence. Table 1 shows quantitative compari-
son on D-FAUST and DeformingThings4D, measured with
Chamfer distance (CD×1000) and Intersection over Union
(IoU). On D-FAUST, our method outperforms 3D-CODED
and DIF. On DeformingThing4D, our method also outper-
forms DIF and achieves better IoU than 3D-CODED with
comparable average performance on CD. We find that in
our task IoU is a more stable evaluation metric than CD,
because CD is sensitive to small floating components. In
the supplementary material, we show several failure cases
where floating components make CD increase. We also test
our method on synthesized MANO [34] dataset. As shown
in Table 2 and Figure 5, our model can deal with chal-
lenging hand shapes and outperforms 3D-CODED and DIF.
We futher demonstrate the robustness of our method against
noise. We follow DeepSDF [31] to apply synthesized noise
on the depth maps where σ = 0.01, before calculating SDFs
from these depths. Although suffering from heavy noises,
our model still performs well. Figure 6 demonstrates the
qualitative experiment, and for the quantitative experiment:
Chamfer=0.936, IoU=0.830.

4.3. Shape Interpolation

In this section, we demonstrate that our model can also
represent shapes similar to the shapes in training set. We
evaluate shape representation capability through model fit-
ting from full observation or partial point cloud rendered
from D-FAUST and DeformingThings4D.

In experiments, we obtain each partial point cloud from
single depth image, while obtaining each full observation
from 20 depth images captured from multiple views. Dur-
ing evaluation, we use the shapes from training sequences
but not involved in training. With trained models, we con-
duct model fitting from partial point clouds or full observa-
tions by optimizing the latent code α and a global transfor-
mation with the following function

L = wsLsdf + wsLpbs + wnLpbn + wnLpfn + wregLreg,
(10)

where Lpbs and Lpbn are constraints to supervise queried
SDF values from the template and normal of queried SDF
values. Details can be found in supplementary material.



D-FAUST[5] DeformingThings4D[20]
bear rabbit elephant whale deer average

CD↓ IoU↑ corr↓ CD↓ IoU↑ corr↓ CD↓ IoU↑ corr↓ CD↓ IoU↑ corr↓ CD↓ IoU↑ corr↓ CD↓ IoU↑ corr↓ CD↓ IoU↑ corr↓
DIF 11.790 0.636 0.0917 17.010 0.629 0.1959 15.057 0.548 0.1648 192.317 0.425 0.0617 22.247 0.486 0.0851 28.907 0.426 0.2360 45.672 0.531 0.1487

3D-CODED 3.389 0.597 0.1068 1.276 0.826 0.1720 1.467 0.791 0.1326 0.807 0.889 0.0360 2.580 0.697 0.0799 2.823 0.657 0.1631 1.669 0.784 0.0742
Our 1.480 0.890 0.0307 0.609 0.940 0.0789 1.716 0.891 0.0831 0.720 0.909 0.0216 1.613 0.914 0.0241 2.917 0.867 0.1003 1.321 0.911 0.0616

Table 3: Shape reconstruction from full observation.

D-FAUST[5] DeformingThings4D[20]
bear rabbit elephant whale deer average

CD↓ IoU↑ corr↓ CD↓ IoU↑ corr↓ CD↓ IoU↑ corr↓ CD↓ IoU↑ corr↓ CD↓ IoU↑ corr↓ CD↓ IoU↑ corr↓ CD↓ IoU↑ corr↓
DIF 11.787 0.632 0.0924 17.177 0.621 0.2228 15.238 0.543 0.1963 190.240 0.428 0.0878 22.255 0.495 0.1001 27.268 0.467 0.2293 45.239 0.534 0.1673
Our 1.689 0.881 0.0324 1.757 0.910 0.0922 2.407 0.868 0.0928 2.196 0.873 0.0359 1.685 0.885 0.0237 3.403 0.833 0.0960 2.156 0.882 0.0681

Table 4: Shape reconstruction from partial point clouds.

For full observation input, our method outperforms 3D-
CODED on 10 subjects of D-FAUST (Table 3). As shown
in Figure 7, the reconstructed shapes with 3D-CODED may
distort to reduce CD. For shape reconstruction from partial
observation, we compare our method with the SoTA method
DIF [10]. As shown in Figure 8 and Table 4, our method
outperforms DIF by a large margin for partial point clouds.
Since 3D-CODED fails to work well on partial observation,
we do not show its results in Table 4.

3D-CODED DIF ours ground

truth
DIF ours ground

truth
3D-CODED

Figure 7: Comparison of shape reconstruction from full
point clouds with DIF and 3D-CODED. Our method out-
performs DIF and 3D-CODED by a large margin on the
reconstruction results.

pointcloud

input
DIF ours ground

truth
DIF ours ground

truth

pointcloud

input

Figure 8: Comparison of shape reconstruction from partial
point clouds with DIF and our method. Our method outper-
forms DIF by a large margin on the reconstruction results.

4.4. Correspondence

We evaluate the accuracy of correspondence for train-
ing shapes (Table 1), which shows the capacity of our

method, and for shapes reconstructed from partial observa-
tion (Table 4) and full observation (Table 3) of unseen data.
We compare our method with unsupervised correspondence
learning methods: 3D-CODED [13] and DIF [10]. Our
method achieves better correspondence performance, i.e.,
corr, than DIF and 3D-CODED. The correspondence met-
ric corr is calculated in the following manner. Given the
reconstructed shapes Sf1 and Sf2 , we optimize Eq. 10 to
get deformation field, and then warp Sf1 and Sf2 to tem-
plate space. For each point pf1 on Sf1 warped to template,
we find the nearest point warped from a point (e.g., pf2 ) on
Sf2 to template, then we set pf2 on Sf2 as the correspon-
dence of pf1 on Sf1 . We calculate the geodesic distance be-
tween ground truth corresponding point p̄f2 and predicted
corresponding point pf2 as error. For each subject, we ran-
domly select 100 shapes from the training set and the testing
set, and evaluate the geodesic distance error between each
pair. The correspondence metric corr is calculated by av-
eraging the geodesic distance error of each pair of shapes.
We also test model trained on noise depths (Figure. 6) and
corr=0.0233.

4.5. Template Visualization

Figure A visualizes the template fields generated by our
method and DIF. The template built by our method is in the
manifold of human shape, while the template by DIF does
not follow human shape, which shows that the same points
in differently posed shapes may have different correspon-
dences in template, such as points on arms. Therefore, our
method is effective to get reasonable template.

4.6. Ablation Study

We first investigate the effect of our contributed con-
straints on representation capability. We conduct compar-
isons by removing Lrecon, Lpr, Lnbr, Lpfn, Llrand Larap,
respectively, and we also compare the results if the Llr only
has Larap (’only Larap’) or the Llr is replaced by the elas-
tic loss [32] (’replace Llr’). As shown in Table A, all our
constraints are useful in our method. Our local rigid con-
straint is more effective than the elastic loss [32], and our



our method DIF

Figure 9: Comparison of zero-level set of the learned tem-
plate field by our method and DIF [10].

local rigid constraint could resolve reflection issue of the
elastic loss. Figure B shows visual results of our rigid loss
terms. Different colors indicate correspondence. Without
Lpr, the model suffers from heavy artifacts. The loss Lnbr

is effective to reconstruct flexible regions such as front legs.
For ’only Larap’, we do not use the second term of Llr to
further penalize the reflection issue on top of Larap, and
we see inside-out flip at the bear’s right front paw. For ’wo
Larap’, we penalize the second term of Llr (Eq. 4). Figure
11 shows that this term not only alleviates the floating ar-
tifacts, but also helps to find correct correspondences. So,
the term Larap can reduce irregular shapes, and the second
term of Llr helps eliminate floating artifacts.

full modelonly 𝐿𝑎𝑟𝑎𝑝 replace 𝐿𝑙𝑟wo 𝐿𝑙𝑟wo 𝐿𝑛𝑏𝑟 wo 𝐿𝑝𝑓𝑛wo 𝐿𝑝𝑟 ground truth

Figure 10: Qualitative experiments of the rigid loss terms.

full modelwo 𝐿𝑎𝑟𝑎𝑝 full modelground truth wo 𝐿𝑎𝑟𝑎𝑝 ground truth

Figure 11: Qualitative experiments of wo Larap terms.

We also investigate the effect of our embedded template
space. We replace our embedded template module with a
separate network that has the same structure as Φ to predict
template field. As shown in Figure 12, the separate template
representation learns unreasonable template, and further re-
duces the ability of our method to represent shapes.

To investigate the effect of different scope of rigid con-
straints, we change the number of parts in piece-wise rigid
constraint, and the standard deviation σ of the random sam-
ple in Eq. 5 for the neighborhood rigid constraint, and show
the quantitative results in Table 6 and Table 7. In terms
of the physic scale, Llr works in infinitesimal scope. The
mean volume, proportional to cube of σ, of convex hull
of sampled points in neighborhood constraint is roughly
5 × 10−4 when σ is 0.05, and the mean volume of parts is
0.0768, 0.0334, 0.02175 for part number 5, 10, 20 respec-
tively. We find that σ = 0.05 corresponds to preferred scale
while smaller and lager sale lead to worse performance.
With relatively small scope, piece-wise rigid constraint is
flexibly applied on shapes and performs well.

our

template

generated shape

via our template

separate 

template

generated shape

via seperate template

Figure 12: Qualitative comparison of our embedded tem-
plate shape and separate template for shape representation.

4.7. Applications

Texture Transfer. We show a texture transfer application
of our method. Shapes Sf1 and Sf2 are represented by our
model. We apply texture to Sf1 , sample points on Sf1 and
Sf2 , and transfer these points to the template space. Points
on the surface of Sf2 query color from the nearest point on
the surface of Sf1 in template space. As shown in Figure 13,
the textures of the source shapes are well transferred to the
correct regions of the target shapes under various poses.

source target source target source target

Figure 13: Results of texture transfer. Textures on the
source shapes are transferred to the target shapes.

Shape Editing. We describe how to achieve shape editing



wo Lrecon wo Larap wo Lpr wo Lnbr wo Lpfn wo Llr only Larap replace Llr full model
CD ↓ 358.129 0.767 0.736 2.045 0.547 0.735 0.609 0.815 0.439
corr ↓ 0.0867 0.0772 0.0858 0.0789 0.0772 0.0709 0.0761 0.0701 0.0700

Table 5: Ablation study on bear from DeformingThings4D [20]. We conduct the experiment on training data.

5 parts 10 parts 20 parts
CD↓ 2.169 2.645 0.687
IoU↑ 0.876 0.865 0.885
corr↓ 0.0448 0.0375 0.0141

Table 6: Results of different number of parts in piece-wise
rigid constraint.

σ=0.01 σ=0.03 σ=0.1 σ=0.05
CD↓ 1.109 1.421 1.803 0.687
IoU↑ 0.877 0.872 0.852 0.885
corr↓ 0.0139 0.0226 0.0520 0.0141

Table 7: Results of different standard deviations for the
neighborhood rigid constraint.

with our method. Given a set of surface points p1 on tem-
plate space and corresponding target points p2, we follow
DIF [10] to optimize a latent code αopt so that the target
positions lie on the surface of the generated shape as

L =
∑

p1,p2

w1(
∣∣Φ(p2|αopt)

∣∣+ ∣∣Φ(Dopt→tmpl(p2)|αtmpl)
∣∣)

+ w2∥Dopt→tmpl(p2)− p1∥22 + w3Lpr + w4∥αopt − αtmpl∥22.
(11)

The first term constrains the SDFs of target points in tar-
get shape and their correspondences in template, the second
term enforces correspondence consistency, the third term
encourages piece-wise rigid motion, and the fourth term
constrains the latent code αopt close to αtmpl. To calcu-
late Lpr, we directly sample points in the bounding box of
the template shape and the target points p2. As shown in
Figure 14, the template shapes are well deformed to target
points. At the top right of the figure, raising the hands can
cause the left leg to move in an undesired manner, and the
resulting average shape after shape editing may become un-
reasonable. This issue is out of the scope of this paper and
we leave it as the future work.

5. Limitations and Future Works
Although our method can deal with shapes with large

deformation and achieve promising results, there are some
problems left for future works. First, our method can-
not represent out-of-distribution data. our method acquires
knowledge about shape deformation from training set and
does not use any prior of skeleton, so it cannot represent
shapes that are out of distribution of training set. This prob-

Figure 14: Shape editing results. Shapes on the left are
warped to shapes on the right. Red points are selected sur-
face points and green points are the target positions. Arrows
are used to illustrate the direction of deformations.

lem limits the generalization of shape reconstruction and
degrades shape editing (Sec. 4.7). Second, our method can-
not represent shape collections with topology changes be-
cause the key features (such as SDF values and normals)
used in our method cannot be correctly calculated under this
data setting. For example, if two body parts contact with
each other, we can not get accurate SDF values due to the in-
visible contact surface from any camera view. In fact, this is
a common issue for other methods using implicit represen-
tation. Third, the latent code space lacks smooth constraint.
Our method is capable of optimizing the latent code to get a
valid interpolation, but cannot guarantee valid shapes when
receiving random codes. In fact, most codes in the latent
space is invalid, which may be tackled by proper smooth
constraint in latent. In the future work, we plan to address
these challenges and propose effective shape representation
approaches for more general deformable shapes.

6. Conclusions

We present a model to represent shape with dense cor-
respondence in a self-supervised manner. Even for sub-
jects with large deformation, our method can learn good
shape and dense correspondences. We also show two typ-
ical applications of shape representation, and our method
can achieve competitive performance.

Acknowledgments. This work was supported in part by
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In this supplementary material, we first introduce the de-
tails on network architecture (Section A) and loss functions
(Section B). Then we show additional experiments and ab-
lation study (Section C). Finally, we give the closed-form
analytical solution to get the minimal alignment error of
our piece-wise rigid constraint (Section D.1), analyze the
least square solution of rotation (Section D.2.1), and reveal
the relationship between ARAP loss and the local rigid con-
straint (Section D.2.2).

A. Details on Network Architecture
In this section, we describe more details of our network.

It consists of three modules: an encoder-decoder network,
part prediction networks, and an SDF prediction module.

Encoder-Decoder Network. The encoder-decoder net-
work predicts correspondences on template (Figure 2 of the
main paper). The encoder receives a point p from the tar-
get space Si, along with its predicted SDF value from the
SDF prediction module as input. It then produces a vec-
tor l(p) ∈ R8. Following that, the decoder takes l(p) as
input and outputs the corresponding point Di→tmpl(p) in
template space. Our encoder and decoder consist of 5 and 4
fully connected layers, respectively.

Part Prediction Networks. The networks ψe and ψd pre-
dict part probabilities, i.e. Ph in Eq. 6 of the main paper,
for each point. Each network divides the target shape into
20 parts, totally 40 parts together for calculating piece-wise
rigid constraint, i.e., NP = 40 in Eq. 6 of the main paper.
Our part prediction networks ψe and ψd have 4 and 3 fully
connected layers, respectively. We use SoftMax to normal-
ize the probabilities predicted by each network. Both net-
works are trained in a self-supervised manner by optimizing
piece-wise rigid constraint.

For each point p in a target space Si, ψe takes the output

*indicates corresponding author
*indicates corresponding author

vector l(p) ∈ R8 of the encoder as input, and ψd takes
the correspondence point Di→tmpl(p) ∈ Stmpl in tem-
plate space as input. Since the correspondences are con-
sistent across shapes deformed from the same template, the
part segmentation learned by ψd is also consistent across
all shapes. The segmentation results are shown in Figure 4
in our main paper and Figure C in the supplementary ma-
terial. However, the correspondences are not learned well
at the beginning of training. Conceptually, the prediction
of ψd highly depends on learned correspondences and tem-
plate, so it cannot be effectively trained at the beginning
of training, with highly-undertrained optimization of corre-
spondences and template. In order to address this issue, we
use ψe to predict part segmentation, which does not depend
on correspondences on template. During training stage, we
observe that ψe provides valid rigid constraint earlier than
ψd and enables the network to converge faster.

SDF Prediction Module. The SDF prediction module Φ is
in charge of modeling template SDF field as well as SDF
fields of other shapes in training set. With dense corre-
spondence predicted by the encoder-decoder network, we
can query SDF values from template field to reconstruct
target shapes (Eq. 2 in the main paper). Inspired by Atz-
mon et al. [3] that the initial scalar field contributes greatly
to shape representation learning, we add the distance of an
input point p to center (0, 0, 0) to the output of the neural
implicit SDF function Φ and achieve similar initialization to
Atzmon et al. [3]. The output of SDF prediction module is
formulated like [22] as Φ(p|α) = ϕ(p|α) + ∥p∥2, where ϕ
denotes a neural network for SDF prediction. The network
ϕ consists of 5 fully connected layers.

Other Details. Similar to the previous works [10, 38], the
parameters of encoder, decoder, and SDF prediction module
are all predicted by Hyper-Nets, while part probability net-
works have their own parameters.All the Hyper-Nets in our
method consist of 5 fully connected layers with relu as ac-
tivation function. The dimension of hidden features is 256



in Hyper-Nets, and is 128 in other modules. The dimension
of latent code α for each shape is 128.

We use the sine activation function proposed by Sitz-
mann et al. [37] for encoder, decoder, SDF module and
part probability networks, because it has excellent property
of representing complex signal and its derivative [37]. The
sine activation function is in form of f(x) = sin(ωx), and
larger ω usually indicates output with higher frequency. In
our experiments, ω is set to 15 in part probability networks,
and set to 30 in encoder, decoder and SDF prediction net-
works.

B. More Details on Loss Functions
In Section 3.4 of our main paper, we follow the idea of

Lsdf to supervise queried SDF values from template. In the
following, we show the detailed formulations of the con-
straints. The Lsdf is used to supervise SDF values Φ(p|αi),
while the following constraints are used to supervise SDF
values queried from template field Φ(Di→tmpl(p)|αtmpl).

SDF Regression Constraints. The SDF regression con-
straints have the similar formulation to Lsdf . In order to
constrain the queried SDF to have the same sign of the
ground truth, we design the constraint for queried SDF
value formulated as

Lpbs =
∑
p∈Si

|ŝ(p)|,

ŝ(p) =

{
Φ(Di→tmpl(p)|αtmpl), if s̄ · Φ(Di→tmpl(p)|αtmpl) ≤ 0

0, otherwise

(1)
where s̄ is the ground truth SDF value. The loss weight of
Lpbs is ws, which is the same as ws in the main paper (the
first term of Eq. 8).

In order to supervise the normal on a represented shape,
we constrain the gradient of the queried SDF field to align
with ground truth normal:

Lpbn =
∑
i

∑
p∈S0

i

(1− Sc(∇pΦ(Di→tmpl(p)|αtmpl), n̄)),

(2)
where n̄ is the ground truth normal, and Sc is cosine similar-
ity. Note that the Lpbn is different from Lpfn (Eq. 9 in the
main paper). The loss Lpbn supervises normals on the rep-
resented shape, while Lpfn supervises normals on template,
which is proved to be crucial for shape representation learn-
ing by Deng et al. [10]. The weight of Lpbn and Lpfn is wn

(which is also the weight of
∑

p∈S0
i
(1− Sc(∇Φ(p|αi), n̄)

of Eq. 8 in the main paper).
We also constrain the gradient of template field to sat-

isfy Eikonal equation:
∑

p∈Stmpl
|∥∇Φ(p|αtmpl)∥2 − 1|,

and apply ρ (the fourth term of Eq. 8 of the main paper) on
template field to encourage off-surface points on template

to have larger SDF values. Their weights are same as wEik

and wρ in the main paper.

Reconstruction Loss. We give the detailed formulation of
Lrecon in Section 3.4 of the main paper as

Lrecon =
∑
i

∑
p∈Si

∥p−Di→i(p)∥2+∑
p∈Stmpl

∥p−Dtmpl→tmpl(p)∥2.
(3)

The weight of each loss term remains the same across all
subjects, specially ws = 3 × 102, wn = 50, wEik = 5,
wρ = 50, wrecon = 5 × 103, wreg = 1 × 105, wlr = 10,
wnbr = 5× 104, wpr = 3× 103.

Figure A: More qualitative experiments to demonstrate the
ability of our method to learn template. The learned tem-
plate shapes with the separate template representation are
all not reasonable, and our template enables significantly
better results of generated shapes than those with the sepa-
rate template.

C. Additional Experiments
C.1. Ablation Study

Effect of Our Template Representation. In this section,
we use the same method as the main paper to further inves-
tigate the ability of our novel template shape representation
architecture and show more results. Instead of representing
the template shape as a latent code, we test an ablation case
where a separate network only predicts template SDF like



w/o ψe w/o SDF input full model
CD ↓ 1.174 0.783 0.687
corr ↓ 0.0165 0.0265 0.0141

Table A: Ablation study on subject 50026 from D-
FAUST[5] dataset. ”w/o ψe” represents the model without
part probabilities prediction network ψe. ”w/o SDF input”
represents the input of our encoder only contains coordinate
p. It shows that ψe can improve the performance on both
Chamfer distance and geodesic distance. Using SDF as in-
put of encoder can greatly improve the performance of our
method.

Figure B: Qualitative results of ablation study. Colors indi-
cate the dense correspondences. SDF can provide encoder
with geometric clues to predict correspondence. The part
prediction network ψe is an essential component of the rigid
constraint, which helps the network converge.

DIF. The architecture of the new template SDF module is
the same as the origin SDF prediction module in our main
paper. Other parts of our network and the loss functions re-
main the same. More results are shown in Figure A. The
learned template shapes with the separate template repre-
sentation are all not reasonable, and our template enables
significantly better results of generated shapes than those
with the separate template.

Effect of ψe in Piece-wise Rigid Constraint. In the main
paper, we conduct the experiments to demonstrate the sig-
nificance of piece-wise rigid constraint. In this ablation, we
investigate the effect of the part probabilities predicted by
the networks ψe (See Section A). Although we cannot attain
consistent part segmentation across shapes with ψe only, we

demonstrate ψe plays a crucial role in our method. We com-
pare the reconstruction and correspondence results of our
method without ψe on subject 50026 in D-FAUST [5] in Ta-
ble A and Figure B. Subject 50026 is selected for evaluation
due to its large range of motion. Experiments show that ψe

can deal with this challenge and improve the performance
of shape reconstruction and correspondence prediction. In
contrast, we observe that method without ψe cannot con-
verge as well as our full model, especially in the end points
of the body with the large range of motion.
Effect of SDF input to Encoder. In order to evaluate the
effect of SDF input to encoder, we compare the Chamfer
distance of shape reconstruction and geodesic distance of
predicted correspondences by removing the SDF input. We
also show the results using our method without input SDF
on subject 50026 in D-FAUST [5] in Table A and Figure B.
We observe that method without SDF as input to encoder
fails in some poses and generates shapes with bad geometry.

C.2. More Evaluations on Model Capacity

In this section, we show more model capacity compar-
isons with DIF [10] and 3D-CODED [13] using recon-
structed shapes in the training set. Figure E and Figure F
shows that our method outperforms both of them.

C.3. Reconstruction from Full Observation

In this section, we will show more qualitative exper-
iments of our method compared with DIF [10] and 3D-
CODED [13]. We generate point cloud of each subject by
simulating multiple depth cameras, and then fit our shape
representation model by minimizing Eq. 10 in the main pa-
per. Figure G and Figure H show the results of humans
and animals. We can observe that our method outperforms
DIF and 3D-CODED, and achieves plausible shape recon-
struction and correspondence results. Our method can fit
shapes with large deformation effectively. Conceptually,
3D-CODED and DIF lack sufficient rigid constraints, so
they cannot model subjects with large deformation properly.
Although DIF can learn template SDF field, the learned
shape is out of the distribution of the training data. There-
fore, there are many floating components on the recon-
structed shapes.

C.4. Reconstruction from Partial Observation

We generate point cloud of each subject by simulating a
single depth camera, and then fit our representation model
by minimizing Eq. 10 in the main paper. Figure I and Fig-
ure J show the qualitative experiments of shape reconstruc-
tion from partial point cloud. Our model can reconstruct
shapes from partial point cloud while 3D-CODED [13]
fails. Therefore, we only compare with DIF [10]. Results
show that our method outperforms DIF by a large margin
for partial point clouds.



Figure C: Comparison with the stitched puppet [44].

C.5. Comparison with LoopReg

In this section, we compare our method with LoopReg
[4] on training set. LoopReg creates a self-supervised loop
to register a corpus of scans to a common 3D human model
(i.e., SMPL [23]), which can model correspondences be-
tween human pairs. As shown in Table B, our method out-
performs LoopReg on both IoU and corr.

LoopReg Our method
IoU ↑ 0.726 0.881
corr ↓ 0.1087 0.0304

Table B: Capacity evaluation on D-FAUST with LoopReg
[4]

C.6. Qualitative Experiment on Part Segmentation

In this section, we compare our method with the stitched
puppet [44]. The stitched puppet [44] is a shape representa-
tion method that manually segments the represented shape
into multiple parts and combines the parts into human body
shapes with different poses. As shown in Figure C, our self-
supervised method achieves comparable results.

C.7. Failure Cases

We show several failure cases in Figure D where float-
ing components make Chamfer distance increase. Although
these shapes have fine human surface geometry, they have
large Chamfer distance because of the floating components
far from the body.

D. Details on Rigid Constraint
In this section, we will give details on the closed-form

solution of piece-wise rigid constraint in Section 3.3 of the
main paper. Then, we will give theoretic analysis on our
local rigid constraint, in which we elaborate on the rela-
tionship between the proposed constraint with implicit rep-
resentation in Section 3.2 of the main paper and the tra-
ditional As-Rigid-As-Possible loss [40] that was originally
proposed for discrete mesh deformation.

Figure D: Several failure cases where floating components
make Chamfer distance increase.

D.1. Closed-Form Solution of Piece-wise Rigid Con-
straint

We follow Sorkine-Hornun et al. [40] to give a closed-
form solution of the minimal rigid transformation error of
our piece-wise rigid constraint Lpr (Eq. 6 of our main pa-
per). Detailed proof can be found in [40]. In this section,
we use the same notions as [40] for easy understanding.

Denote P = {p1,p2, ...,pn} and Q = {q1,q2, ...,qn}
to be corresponding points in Rd. Therefore, the optimal
rigid transformation (R, t) between P and Q can be esti-
mated by minimizing the following alignment error as

L = min
R,t

F (R, t)

F =

n∑
i=1

wi∥Rpi + t− qi∥2,
(4)

where R ∈ SO(d) is rotation matrix and t ∈ Rd is transla-
tion.

First, Sorkine-Hornun et al. [40] proved that the optimal
translation t can be expressed as

t = q̄−Rp̄, (5)

where q̄ and p̄ are the centroid of Q and P

p̄ =

∑n
i=1 wipi∑n
i=1 wi

, q̄ =

∑n
i=1 wiqi∑n
i=1 wi

. (6)

Incorporate the optimal t into Eq. 4, and then we get the
loss function F as

F =

n∑
i=1

wi∥R(pi − p̄)− (qi − q̄)∥2. (7)

Giving the definitions as follows

xi := pi − p̄, yi := qi − q̄, (8)

we can set the translation t to be zero, and then focus on the
estimation of R by optimizing the following equivalent loss
function

L = min
R

n∑
i=1

wi∥Rxi − yi∥2. (9)



Denote W = diag(w1, ..., wn), X = [x1,x2, ...,xn],
Y = [y1,y2, ...,yn]. Then the loss function L can be ef-
fectively calculated with the following closed-form solution

L =

n∑
i=1

wi(∥xi∥2 + ∥yi∥2)− 2Sσ(XWYT )

Sσ =

{
σ1 + σ2 + ...+ σd−1 + σd, if det(UVT ) = 1

σ1 + σ2 + ...+ σd−1 − σd, if det(UVT ) = −1,

(10)
where U, V are the left and the right singular matrices of
XWYT , and {σi} are singular value of XWYT in de-
scending order. Moreover, the gradient of Sσ is a rotation
matrix, which does not contain large value and enables sta-
ble learning process.

In order to calculate the 3D alignment error L, we only
need several efficient operations, such as solving SVD of
3 × 3 square matrix XWYT and conducting point-wise
additions and multiplications.

In our problem, P and Q are consisting of the points in
the target space {p} and the correspondence {Di→tmpl(p)}
in the template space, respectively. Therefore, the piece-
wise rigid loss Lpr (Eq. 6 of our main paper) can be ex-
pressed in closed-form as

min
Rh,th

∑
p∈S0

i ∪S−
i

Ph(p)∥(Rhp+ th)−Di→tmpl(p)∥22

=
∑

p∈S0
i ∪S−

i

Ph(p)(∥x∥2 + ∥xi→tmpl∥2)− 2Sσ(XWhX
T
i→tmpl)

(11)
where x and xi→tmpl are the points in the target space and
their correspondence in template after removing their re-
spective centroid as

x = p− p̄

xi→tmpl = Di→tmpl(p)− D̄i→tmpl(p),
(12)

and p̄ and D̄i→tmpl(p) are their respective centroid as
Eq. 6. The j-th column of X ∈ R3×n is a x derived from
the j-th point p, each column of Xi→tmpl ∈ R3×n is the
correspondence xi→tmpl of the j-th point p, Ph(p) is the
probability that point p belongs to h-th part, and Wh is a
n× n diagonal matrix, its j-th diagonal element is the pre-
dicted part probability Ph of the j-th point p.

D.2. Analysis on Local Rigid Constraint

D.2.1 Analysis on Least Square Solution of Rotation

In this section, we give further analysis on the formula-
tion of closest rotation matrix of J(Di→tmpl). With sin-
gular value decomposition (SVD), we get J(Di→tmpl) =
UΣVT . Given the properties of the determinant, we know

that det(J(Di→tmpl)) = det(U)det(Σ)det(VT ). Ac-
cording to the definition of the singular value, the sin-
gular values of J(Di→tmpl) (i.e. diagonal items of Σ)
are always positive. Therefore, det(J(Di→tmpl)) has the
same sign as det(U)det(VT ), i.e. det(UVT ). When
det(J(Di→tmpl)) < 0, its closest orthogonal matrix UVT

has negative determinant. However, a rotation matrix
must have positive determinant. To this end, previous
method [43] figured out the closet rotation that has pos-
itive determinant. R = USVT (R have positive de-
terminant) of J(Di→tmpl) with a diagonal matrix S =
diag(1, 1, det(UVT )).

D.2.2 Equivalence between Local Rigid Constraint
and ARAP

In this section, we will prove that our implicit local rigid
constraint is equivalent to traditional As-Rigid-As-Possible
(ARAP) loss in infinite small scope. ARAP loss [39] is
generally defined on discrete representations such as mesh,
while we find that with the closed form of alignment error
Eq. 10 ARAP loss can be extended to continuous implicit
representation for infinite small scope.

According to Sorkine et al. [39], ARAP loss on mesh is
defined as

E = min
R

∑
j∈N (i)

wij∥(p′
i − p′

j)−Ri(pi − pj)∥2. (13)

In our method, we represent the shape as implicit field
instead of mesh in original ARAP [39], so there is not ex-
plicit adjacency relation for our shape representation. It is
barely addressed and highly challenging to constrain ARAP
in the continuous implicit shape representation.

For a sampling point p, we assume the adjacent points
of p are uniformly distributed on the surface of a sphere
centered at p, which can be formulated as p+ ωs, where ω
is an arbitrary unit vector. For simplicity, we consider wij

as 1.
Considering the adjacent points within the infinitely-

small volume, we denote adjacent points as

p+ ωds, (14)

where ds is infinitely small length.
Denote the mapping from p to p′ as D(p) and ∂p′

∂pT , i.e.
J(Di→tmpl)(p), as J . In our case, p is in the target shape
space and p′ is in the template shape space. Then we have
the following equation by Taylor expansion

D(p+ ωds) = D(p) + Jωds+ o(ds). (15)

According to Eq. 10, we can also get a closed-form so-
lution for ARAP loss in Eq. 13. Because ω is evenly dis-
tributed on the sphere,

∑
ω ω = 0, the centroid of p+ ωds



is p and the centroid of D(p)+Jωds is D(p). After incor-
porating p+ωds andD(p)+Jωds and their centroids into
Eq. 8, we get xi = ωds and yi = Jωds+ o(ds), and incor-
porate xi and yi into Eq. 10, then we can get the following
equation by ignoring the infinitesimal of higher order

E =
∑
ω

∥ωds∥2 + ∥Jωds∥2 − 2Sσ(
∑
ω

ωωTJT ds2)

=ds2
∑
ω

(∥ω∥2 + ∥Jω∥2)− 2ds2Sσ(
∑
ω

ωωTJT ).

(16)
Since ω is uniformly distributed, we use integration instead
of summation.

E = ds2(

∫
S2

∥ω∥2dω+
∫
S2

∥Jω∥2dω

−2Sσ(

∫
S2

ωωTJT dω)),

(17)

where S2 represents the surface of a unit sphere embedded
in the 3-dimensional space, and each term will be analyzed
in the following part.

Since ∥ω∥2 = 1, the first term can be easily calculated
as the area of the sphere, i.e. 4π.

Then the second term can be simplified as

∫
S2

∥Jω∥2dω =

∫
S2

ωTJTJωdω

=

∫
S2

tr(ωTJTJω)dω =

∫
S2

tr(ωωTJTJ)dω

= tr

(∫
S2

JTJωωT dω

)
= tr

(
JTJ

∫
S2

ωωT dω

)
.

(18)
To solve the above function, we need to know the result
of
∫
S2 ωω

T dω. We use spherical coordinates to calcu-
late the integration. ω = (sinθcosϕ, sinθsinϕ, cosθ)T =
(sinθcosϕ, sinθsinϕ, 0)T + (0, 0, cosθ)T

∫
S2

ωωT dω =

∫ π

0

∫ 2π

0

sinθ

( 0
0

cosθ

+

sinθcosϕsinθsinϕ
0

)
( 0

0
cosθ

+

sinθcosϕsinθsinϕ
0

)T

dϕdθ

(19)

Consider
∫ 2π

0
sinϕ dϕ = 0 and

∫ 2π

0
cosϕ dϕ = 0:

=

∫ π

0

∫ 2π

0

sinθ

( 0
0

cosθ

 0
0

cosθ

T

+

sinθcosϕsinθsinϕ
0

sinθcosϕsinθsinϕ
0

T )
dϕdθ

=

∫ π

0

∫ 2π

0

sinθ

sin2θcos2ϕ sin2θsin2ϕ
2 0

sin2θsin2ϕ
2 sin2θsin2ϕ 0
0 0 cos2θ

 dϕdθ

(20)
Consider the periodicity of

∫ 2π

0
sin2ϕ dϕ = 0:

=

∫ π

0

∫ 2π

0

sinθ

sin2θcos2ϕ 0 0
0 sin2θsin2ϕ 0
0 0 cos2θ

 dϕdθ

=

 4π
3 0 0
0 4π

3 0
0 0 4π

3

 .

(21)
Denote singular value decomposition (SVD) of J to be

J = UΣVT . Then Eq. 18 can be calculated as

tr(JTJ

∫
S2

ωωT dω) = tr(JTJI
4π

3
)

=
4π

3
tr(JTJ) =

4π

3
tr(VΣUTUΣVT )

=
4π

3
tr(VΣΣVT ) =

4π

3
tr(VTVΣΣ)

=
4π

3
tr(Σ2) =

4π

3
(σ2

1 + σ2
2 + σ2

3),

(22)

where σ1, σ2, σ3 are singular values in descending order.
With the above result of

∫
S2 ωω

T dω, the third term of
Eq. 17 can be calculated as

Sσ

(∫
S2

ωωTJT dω

)

=Sσ

(∫
S2

(ωωTJT )T dω

)

=Sσ

(
J

∫
S2

ωωT dω

)
= Sσ

(
4π

3
J

)

=
4π

3
(σ1 + σ2 + det(UVT)σ3).

(23)

We can simplify Eq. 17 with the above results of its three
items as

E =
4π

3
ds2(3 + σ2

1 + σ2
2 + σ2

3 − 2(σ1 + σ2 + det(UVT)σ3))

=
4π

3
ds2((σ1 − 1)2 + (σ2 − 1)2) + (σ3 − det(UVT))2).

(24)



Our Larap in Section 3.2 of our main paper has the fol-
lowing formulation

Larap = smoothL1(σ1, 1) + smoothL1(σ2, 1)

+ smoothL1(σ3, det(UVT ))
(25)

If σ1, σ2 and σ3 are close to 1 and UVT = 1, the smoothL1
loss becomes L2 loss. By ignoring the scale term, Larap has
the same form as Eq. 24.

Therefore, our implicit local rigid constraint is equiva-
lent to traditional As-Rigid-As-Possible (ARAP) loss in in-
finite small scope.
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Figure E: Reconstruction from training set of humans. We compare our method with DIF [10] and 3D-CODED [13]. Our
method reconstructs shapes with multiple poses and large deformations. The characteristics of each subject is represented
well.



Figure F: Reconstruction from training set of animals. We compare our method with DIF [10] and 3D-CODED [13]. Our
method reconstructs shapes with multiple poses and large deformations. The characteristics of each subject is represented
well.



Figure G: Reconstruction from full observation of humans. We compare our method with DIF [10] and 3D-CODED [13].
Our method achieves plausible shape reconstructions and can predict correspondence across shapes.



Figure H: Reconstruction from full observation of animals. We compare our method with DIF [10] and 3D-CODED [13].
Our method achieves plausible shape reconstructions and can predict reliable correspondence across shapes.



Figure I: Reconstruction from partial observation of humans. We compare our method with DIF [10]. Our method recon-
structs shapes with multiple poses and large deformations. The characteristics of each subject is represented well.



Figure J: Reconstruction from partial observation of animals. We compare our method with DIF [10]. Our method recon-
structs shapes with multiple poses and large deformations. The characteristics of each subject is represented well.
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