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Figure 1: Man-made environments are often characterized by repetitive scene objects, e.g. tables, chairs, and trees. AssetField represents
these environments with a set of informative ground feature planes aligning with the physical ground, from which neural representations of
scene objects are extracted and grouped into categories. The proposed mechanism allows users to manipulate and compose assets directly
on the ground feature plane and produces high-quality rendering on novel scene configurations.

Abstract
Both indoor and outdoor environments are inherently

structured and repetitive. Traditional modeling pipelines
keep an asset library storing unique object templates, which
is both versatile and memory efficient in practice. Inspired
by this observation, we propose AssetField, a novel neu-
ral scene representation that learns a set of object-aware
ground feature planes to represent the scene, where an asset
library storing template feature patches can be constructed
in an unsupervised manner. Unlike existing methods which
require object masks to query spatial points for object edit-
ing, our ground feature plane representation offers a natu-
ral visualization of the scene in the bird-eye view, allowing
a variety of operations (e.g. translation, duplication, defor-
mation) on objects to configure a new scene. With the tem-
plate feature patches, group editing is enabled for scenes
with many recurring items to avoid repetitive work on ob-
ject individuals. We show that AssetField not only achieves
competitive performance for novel-view synthesis but also
generates realistic renderings for new scene configurations.

1. Introduction
The demand for bringing our living environment into a

virtual realm continuous to increase these days, with exam-
ple cases ranging from indoor scenes such as rooms and
restaurants, to outdoor ones like streets and neighborhoods.
Apart from the realistic 3D rendering, real-world applica-
tions also require flexible and user-friendly editing of the
scene. Use cases can be commonly found in interior de-
sign, urban planning etc. To save human labor and expense,
users need to frequently visualize different scene configu-
rations before finalizing a plan and bringing it to reality,
like shown in Fig.1. For their interests, a virtual environ-
ment offering versatile editing choices and high rendering
quality is always preferable. In these scenarios, objects are
primarily located on a horizontal plane like ground, and can
be inserted to/deleted from the scene. Translation along the
plane and rotation around the vertical axis are also common
operations. Furthermore, group editing becomes essential
when scenes are populated with recurring items (e.g. sub-
stitute all chairs with stools and remove all sofas in a bar).
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While recent advances in neural rendering [27, 3, 44, 28]
offer promising solutions to producing realistic visuals,
they struggle to meet the aforementioned editing demands.
Specifically, traditional neural radiance field (NeRF)-based
methods such as [47, 26, 3] encode an entire scene into a
single neural network, making it difficult to manipulate and
composite due to its implicit nature and limited network
capacity. Some follow-up works [41, 16] tackle object-
aware scene rendering in a bottom-up fashion by learn-
ing one model per object and then performing joint ren-
dering. Another branch of methods learn object radiance
fields using instance masks [42], object motions [46], and
image features [39, 21] as clues but are scene-specific, lim-
iting their applicable scenarios. Recently, some approaches
have attempted to combine voxel grids with neural radiance
fields [23, 44, 28] to explicitly model the scene. Previous
work [23] showed local shape editing and scene composi-
tion abilities of the hybrid representation. However, since
the learned scene representation is not object-aware, users
must specify which voxels are affected to achieve certain
editing requirements, which is cumbersome, especially for
group editing. Traditional graphical workflows build upon
an asset library that stores template objects, whose copies
are deployed onto a ‘canvas’ by designers, then rendered
by some professional software (e.g. interior designers ar-
range furniture according to floorplans). This practice sig-
nificantly saves memory for large scene development and
offers users versatile editing choices, which inspires us to
resemble this characteristic in neural rendering.

To this end, we present AssetField, a novel neural rep-
resentation that bears the editing flexibility of traditional
graphical workflows. Our method factorizes a 3D neural
field into a ground feature plane and a vertical feature axis.
As illustrated in Fig. 1, the learned ground feature plane is
a 2D feature plane that is visually aligned with the bird-eye
view (BEV) of the scene, allowing intuitive manipulation of
individual objects. It is also able to embed multiple scenes
into scene-specific ground feature planes with a shared ver-
tical feature axis, rendered using a shared MLP. The learned
ground feature planes encode scene density, color and se-
mantics, providing rich clues for object detection and cate-
gorization. We show that assets mining and categorization,
and scene layout estimation can be directly performed on
the ground feature planes. By maintaining a cross-scene
asset library that stores template objects’ ground feature
patches, our method enables versatile editing at object-level,
category-level, and scene-level.

In summary, AssetField 1) learns a set of explicit ground
feature planes that are intuitive and user-friendly for scene
manipulation; 2) offers a novel way to discover assets and
scene layout on the informative ground feature planes, from
which one can construct an asset library storing feature
patches of object templates from multiple scenes; 3) im-

proves group editing efficiency and enables versatile scene
composition and reconfiguration and 4) provides realistic
renderings on new scene configurations.

2. Related Works

Neural Implicit Representations and Semantic Fields.
Since the introduction of neural radiance fields [27], many
advanced scene representations have been proposed[24, 44,
28, 11, 24, 10, 28], demonstrating superior performance in
terms of quality and speed for neural renderings. However,
most of these methods are semantic and content agnostic,
and many assume sparsity to design a more compact struc-
ture for rendering acceleration [24, 11, 28]. We notice that
the compositional nature of a scene and the occurrence of
repetitive objects within can be further utilized, where we
can extract a reusable asset library for more scalable usages,
similar to those adopted in the classical modeling pipeline.

A line of recent neural rendering works has explored the
jointly learning a semantic fields along with the original ra-
diance field. Earlier works use available semantic labels
[50] or existing 2D detectors for supervision [22]. The real-
ized semantic field can enable category or object-level con-
trol. More recently, [39, 21] explore the potential of distill-
ing self-supervised 2D image feature extractors [8, 2, 14]
into NeRF, and showcasing their usages of support local
editing. In this work, we target an orthogonal editing goal
where the accurate control of high-level scene configuration
and easy editing on object instances is desired.

Object Manipulation and Scene Composition. Tradi-
tional modeling and rendering pipelines [5, 7, 33, 34, 35,
17] are vastly adopted for scene editing and novel view syn-
thesis in early approaches. For example, Karsch et al. [17]
propose to realistically insert synthetic objects into legacy
images by creating a physical model of the scene from user
annotations of geometry and lighting conditions, then com-
pose and render the edited scene. Cossairt et al. [12] con-
sider synthetic and real objects compositions from the per-
spective of light field, where objects are captured by a spe-
cific hardware system. [49, 19, 18] consider the problem of
manipulating existing 3D scenes by matching the objects to
cuboid proxies/pre-captured 3D models.

These days, several works propose to tackle object-
decomposite rendering under the context of newly emerged
neural implicit representations [27]. Ost et al. [31] target
dynamic scenes and learn a scene graph representation that
encodes object transformation and radiance at each node,
which further allows rendering novel views and re-arranged
scenes. Kundu et al. [22] resort to existing 3D object detec-
tors for foreground object extraction. Sharma et al. [36]
disentangles static and movable scene contents, leverag-
ing object motion as a cue. Guo et al. [16] propose to
learn object-centric neural scattering functions to implicitly



model per-object light transportation, enabling scene ren-
dering with moving objects and lights. Neural Rendering
in a Room [41] targets indoor scenes by learning a radi-
ance field for each pre-captured object and putting objects
into a panoramic image for optimization. While these meth-
ods need to infer object from motion, or require one model
per object, ObjectNeRF [43] learns a decompositional neu-
ral radiance field, utilizing semantic masks to separate ob-
jects from the background to allow editable scene render-
ing. uORF [45] performs unsupervised discovery of object
radiance fields without the need for semantic masks, but re-
quires cross-scene training and is only tested on simple syn-
thetic objects without textures.

3. AssetField
In this work, we primarily consider a branch of real-

world application scenarios that require fast and high-
quality rendering of scenes whose configuration is subject
to change, such as interior design, urban planning and traf-
fic simulation. In these cases, objects are mainly placed on
some dominant horizontal plane, and is commonly manip-
ulated with insertion, deletion, translation on the horizontal
plane, and rotation around the vetical axis, etc.

We first introduce our ground feature plane representa-
tion in Sec. 3.1 to model each neural field. Sec. 3.2 de-
scribes the process of assets mining with the inferred the
ground feature plane. We further leverage the color and
semantic feature planes to categorize objects in an unsu-
pervised manner, which is illustrated in Sec. 3.3. Finally,
Sec. 3.4 demonstrates the construction of a cross-scene as-
set library that enables versatile scene editing.

3.1. Ground Feature Plane Representation

Ground plan has been commonly used for indoor and
outdoor scene modeling [36, 13, 32]. We adopt a similar
representation to parameterize a 3D neural field with a 2D
ground feature planeM of shapeL×W×N , and a globally
encoded vertical feature axis H of shape H × N , where
N is the feature dimension. A query point at coordinate
(x, y, z) is projected ontoM(plane) andH(axis) to retrieve
its feature values m and h via bilinear/linear interpolation:

m = Interp(M, (x, y)), h = Interp(H, z), (1)

which are then combined and decoded into the 3D scene
feature via a MLP decoder. Concretely, a 3D radiance
field is parameterized by a set of ground feature planes
M=(Mσ,Mc), and vertical feature axesH=(Hσ,Hc), for
the density and color fields respectively. The retrieved fea-
ture valuesm=(mσ,mc) and h=(hσ, hc) are then combined
and decoded into point density σ and view-dependent color
c values by two decoders Decσ , Decrgb. Points along a ray
r are volumetrically integrated following [27]:
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Figure 2: TensoRF with full 3D factorization produces noisy
feature planes; our ground plane representation yields informa-
tive features that clearly illustrated scene contents and layout after
discretization, especially in the density field. Red boxes: two spa-
tially close objects can be clearly separated on the density plane
but not the RGB plane. Blue boxes: objects with similar geometry
but different appearance can be distinguished on the RGB plane
but not the density plane.

Ĉ(r) =

N∑
i=1

Ti (1− exp (−σiδi)) ci, (2)

where Ti = exp(−
∑i−1
j=1 σjδj), and supervised by the 2D

image reconstruction loss with
∑

r(‖Ĉ(r)−C(r)‖22), where
C(r) is the ground truth pixel color.

Such neural representation are beneficial to our scenario.
Firstly, the ground feature planes are naturally aligned with
the BEV of the scene, mirroring the human approach to
high-level editing and graphic design, where artists and de-
signers mainly sketch on 2D canvas to reflect a 3D scene.
Secondly, the globally encoded vertical feature axis encour-
ages the ground feature plane to encode more scene infor-
mation, which aligns better with scene contents. Thirdly,
this compact representation is more robust when trained
with sparse view images, where the full 3D feature grids
are easy to overfit under insufficient supervision, producing
noisy values, as depicted in Fig. 2.

3.2. Assets Mining on Ground Feature Plane

For the ease of demonstration, let us first consider a sim-
plified case where objects are scattered on an invisible hori-
zontal plane, as in Fig. 3 (a). On scenes with a background,
a pre-filtering step can be performed on the learned ground
feature plane as illustrated in Fig. 4. We start from model-
ing the radiance field, where a set of ground features planes
M=(Mσ,Mc) describing scene density and color are in-
ferred following the formulation in Sec. 3.1. It can be ob-
served thatMσ tends to exhibit sharper object boundaries
compared to the color feature plane, as shown in the red
boxes in Fig. 2. This could be attributed to the mechanism
of neural rendering (Eq. 2), where the model firstly learns a
clean and accurate density field to guide the learning of the
color field. We therefore prefer to useMσ for assets min-
ing. In the example scene, the feature plane is segmented
into two clusters with K-means [25] to obtain a binary mask
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Nested

Stacked

(a)

(b) (d) Mask table surfaces

(c)

RGB Ground Feature Plane Background Mask via Clustering Filtered Ground Feature Plane

Background removal on Synthetic Scenes

Processing Nested/Stacked Structure

Figure 4: Top: Simple scene background can be filtered on the
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Bottom: (a) Nested structure can be separated by (c) firstly identify
the enclosed chair, then set its value to background feature for table
patch. (b) Items placed on top of a surface can be detected by (d)
another round of filtering that treats table surface as background.

of the objects. Contour detection [37, 6] is then applied to
locate each object, resulting in a set of bounding box. Note
that the number of clusters can be customized according to
the objects users want to highlight. In more complex sce-

narios where objects are arranged in a hierarchical struc-
ture, (e.g. computer - table - floor), the clustering step can
be repeated to gradually unpack the scene, as illustrated in
Fig. 4. With the bounding boxes, a collection of object neu-
ral representationsP={(pσ, pc)} can be obtained, which are
the enclosed feature patches onMσ andMrgb. To address
complex real-world scenes, we take inspiration from previ-
ous works [21, 39] that models a DINO [9] field to guide
the learning a semantic-aware radiance field. Similarly, we
can learn a separate DINO ground feature planeMdino to
provide more explicit indications of object presence. As
AssetField models a set of separate fields, object discovery
can be conducted on any field that offers the most distinctive
features in a scene dependent manner.

At this point, users can intuitively edit the scene with ob-
ject feature patches P , e.g.,“paste” (piσ , pic) ∈ P to the des-
ignated location on Mσ and Mrgb to insert object i. The
edited ground feature planes M′=(M′σ,M′c) get paired
with the original vertical feature axes H=(Hσ,Hc) to de-
code 3D information using the original Decσ and Decrgb.

3.3. Unsupervised Asset Grouping

Despite being versatile, users can only interact with in-
dividual instances in P from the learned ground planes,
whereas group editing is also a desirable feature in real-
world applications, especially when objects of the same cat-



egory need to be altered together. While the definition of
object category can be narrow or broad, here we assume
that objects with close appearance and semantics are ana-
logues and use RGB and semantic feature plane for assets
grouping. A case where the density features fail to distin-
guish two visually different objects is highlight in Fig. 2.
Occupancy-Guided RGB-DINO field. As our goal is
to “self-discover” assets from neural scene representation,
there is no extra prior on object category to regularize scene
features. 3D voxel-based methods such as those described
in [24, 44], may learn different sets of features to express
the same objects, as grid features are independently opti-
mized. Such issue can be alleviated by our proposed neural
representation, where the ground feature plane M is con-
strained by the globally shared vertical feature axisH. Con-
cretely, given two identical objects i, j placed on a horizon-
tal flat surface, the same feature chunk onH will be queried
during training, which constraints their corresponding fea-
ture patches pi and pj to be as similar as possible so that
they can be decoded into the same set of 3D features. How-
ever, such constraint no longer holds when there is a vertical
displacement among identical objects (e.g. one the ground
and one on the table), where different feature chunks on H
are queried, leading to divergent pi and pj .

To learn a more object-centric ground feature plane rich
in color and semantics clues, we propose to integrate the
color and semantic fields by letting them share the same set
of ground feature planes, denoted byMrgb-dino. Instead of
appending a vertical feature axis, here we use scene den-
sity features to guide the decoding of Mrgb-dino into 3D-
aware features, as illustrated in Fig. 3(c). It can be inter-
preted as Mσ and Hσ fully capture the scene geometry,
whileMrgb-dino captures the ‘floorplan’ of scene semantics
layouts and appearances. For a query point at (x, y, z), its
retrieved density feature mσ and hσ are mapped to a color
feature vrgb and a semantic feature vdino via two MLPs,
which are then decoded into scene color c and semantic
fdino along with the RGB-DINO plane featuremrgb-dino =
Interp(Mrgb-dino, (x, y)) via Decrgb and Decdino.

Assets Grouping and Template Matching. On the in-
ferred RGB-DINO ground feature plane, we then categorize
the discovered objects by comparing their RGB-DINO fea-
ture patches enclosed in bounding boxes. However, due to
the absence of object pose information, pixel-wise compar-
ison is not ideal. Instead, we compare the distributions of
color and semantic features among patches. To do this, we
first discretize Mrgb-dino with clustering (e.g. K-means),
which results in a set of labeled object feature patches K.
The similarity between two object patches ki, kj ∈ K are
measured by the Jensen-Shannon Divergence over the dis-
tribution of labels, denoted by JSD(ki||kj). Agglomerative
clustering [29] is then performed using JS-divergence as the
distance metric. The number of clusters can be set by in-

specting training views, and can be flexibly adjusted to fit
users’ desired categorization granularity.

With scene assets grouped into categories, a template ob-
ject can be selected from each cluster either randomly or in
a user-defined manner. We can further extract scene layout
in BEV by computing the relative pose between the tem-
plate object and its copies, i.e. to optimize a rotation an-
gle θ that minimizes the pixel-wise loss between the RGB-
DINO feature patches of the template and each copy with
θ∗ = argminθ

∑N
i ||p̂i − Rθ(p)i||22 for p ∈ Prgb-dino,

where p̂ is the template RGB-DINO feature patch, Rθ ro-
tates the input feature patch by θ.

3.4. Cross-scene Asset Library

Following the proposed framework, a scene can be
represented with (1) a set of template feature patches
P={(pσ, prgb)}, (2) a layout describing object position and
pose in the BEV, (3) the shared vertical feature axes H =
(Hσ,Hrgb), and (4) MLP decoders Decσ , Decrgb, which
enables versatile scene editing at object-, category-, and
scene-level. The newly configured scenes can be directly
rendered without retraining. An optional template refine-
ment step is also allowed. Examples are given in Sec. 4.

Previous work [24] demonstrates that voxel-based neural
representations support multi-scene modeling by learning
different voxel embeddings for each scene whilst sharing
the same MLP renderer. However, it does not support cross-
scene analogue discovery due to the aforementioned lack of
constraints issue, whereas in reality, objects are not exclu-
sive to a scene. Our proposed neural representation has such
potential to discover cross-scene analogues by also sharing
the vertical feature axes among different scenes. Conse-
quently, we can construct a cross-scene asset library storing
template feature patches, and continuously expand it to ac-
commodate new ones.

4. Experiment

In this section, we first describe our experiment setup,
then evaluate AssetField on novel view synthesis both
quantitatively and qualitatively, demonstrating its advan-
tages in asset mining, categorization, and editing flexibil-
ity. More training details and ablating results of hyper-
parameters (e.g. the number of clusters, the pairing of plane
feature, and axis feature) are provided in supplementary.

4.1. Experimental Setup

Dataset. A synthetic dataset is created for evaluation. We
compose 10 scenes resembling common man-made envi-
ronments such as conference room, living room, dining hall
and office. Each scene contains objects from 3∼12 cate-
gories with a fixed light source. For each scene, we ren-
der 50 views with viewpoints sampled on a half-sphere,



Scene1 Scene2 Scene3 Scene4
PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

NeRF 32.977 0.969 0.067 35.743 0.967 0.051 32.521 0.959 0.058 34.212 0.964 0.072
TensoRF 35.751 0.990 0.057 38.184 0.995 0.027 36.933 0.994 0.034 37.795 0.993 0.059

S-AssetField 36.471 0.992 0.049 36.856 0.993 0.037 36.753 0.994 0.038 37.445 0.990 0.065
I-AssetField 36.526 0.992 0.047 37.271 0.994 0.035 37.249 0.995 0.032 37.716 0.991 0.060

Table 1: Quantitative comparison on test views for the 4 scenes
in Fig. 7. We report PSNR(↑), SSIM(↑) [40] and LPIPS(↓) [48]
for evalution. The best and second best results are highlighted.

among which 40 are used for training and the rest for test-
ing. We demonstrate flexible scene manipulation with As-
setField on both the synthetic and real-world data, including
scenes from Mip-NeRF 360 [4], DONeRF [30], and Ob-
jectNeRF [42]. We also show manipulation results on city
scenes collected from Google Earth Studio [1].
Implementation. We use NeRF [27] and TensoRF [11]
as baselines to evaluate the rendering quality of the orig-
inal scenes. For a fair comparison, all methods are im-
plemented to model an additional DINO field. Specifi-
cally, (1) NeRF is extended with an extra head to pre-
dict view-independent DINO feature [2] in parallel with
density. (2) For TensoRF, we additionally construct the
DINO field which is factorized along 3 directions the same
as its radiance field. (3) S(tandard)-AssetField sepa-
rately models the density, RGB, and DINO fields. (4)
I(ntegrated)-AssetField models the density field the same
as S-AssetField, and an integrated RGB-DINO ground fea-
ture plane. Both S-AssetField and I-AssetField adopt outer-
product to combine ground plane features and vertical axis
features, following [11]. The resolution of feature planes
in TensoRF baseline and AssetField are set to 300×300.
Detailed model adaptation can be found in the supplemen-
tary. We train NeRF for 200k iterations, and 50k iterations
for TensoRF and AssetField using Adam [20] optimization
with a learning rate set to 5e−4 for NeRF and 0.02 for Ten-
soRF and AssetField.

4.2. Results

Novel View Rendering. We compare S-AssetField and I-
AssetField with the adapted NeRF [27] and TensoRF [11] as
described above. Quantitative results are provided in Tab. 1.
It is noticeable that AssetField’s ground feature plane repre-
sentation (i.e. xy-z) achieves comparable performance with
TensoRF’s 3-mode factorization (i.e. xy-z, xz-y,yz-x), in-
dicating the suitability of adopting ground plane represen-
tations for such scenes. Our method also inherits the merit
of efficient training and rendering from grid-based meth-
ods. Compared to NeRF, our model converges 40x faster at
training and renders 30x faster at inference.
Object Detection and Categorization. In Fig. 2 we al-
ready showed an example of the ground feature planes
learned by AssetField compared to the xy-planes learned by
TensoRF. While TensoRF produces noisy and less informa-
tive feature planes that is unfriendly for object discovery in
the first place, AssetField is able to identify and categorize

Synth-Scene1 with 
vertical displacement RGB plane DINO plane RGB-DINO plane

S(tandard)-AssetField I(ntegrated)-AssetField

Figure 5: The RGB-DINO ground feature plane from I-
AssetField yields consistent features for analogues with vertical
displacement, whereas S-AssetField infers different set of features
due to the lack of constraints.

toydesk1 toydesk2

Object mask Object mask

Masked RGB Masked DINO Masked RGB-DINO

S-AssetField I-AssetField

density density

RGB

DINO RGB-DINO

Figure 6: Multi-scene learning on the Toydesk dataset [42]. As
real-world scenes usually exhibit noisier color and density fea-
tures, we apply the object mask obtained from the density plane
before categorization. The common object between scenes (yel-
low) can be correctly clustered with I-AssetField’s occupancy-
guided RGB-DINO plane features (green) whilst the indepen-
dently modeled neural planes by S-AssetField fails (red).

most of the scene contents, as shown in Fig. 7 (b). Further-
more, I-AssetField is more robust to vertical displacement,
as shown in Fig. 5. On this scene variation, TensoRF/S-
AssetField/I-AssetField achieves 35.873/36.358/36.452 in
PSNR metric respectively on the test set.

Recall that I-AssetField is able to identify object ana-
logues across different scenes, to demonstrate such ability,
we jointly model the two toy desk scenes from [42] by let-
ting them share the same vertical feature axes and MLPs
as described in Sec. 3.4. The inferred feature planes are
showed in Fig. 6. Since the coordinate systems of these
two scenes are not aligned with the physical world, we per-
form PCA [15] on camera poses such that the xy-plane is
expanded along the ground/table-top. However, we cannot
guarantee their table surfaces are at the same height, mean-
ing that vertical displacement among objects is inevitable.
I-AssetField is able to infer similar RGB-DINO feature val-
ues for the common cube plush (yellow circle), whilst the
independently learned RGB/DINO planes in S-AssetField
are affected by the height difference.
Scene Editing. Techniques on 2D image manipulation can
be directly applied to ground feature planes. Fig. 7 shows
that AssetField supports a variety of operations, such as ob-
ject removal, insertion, translation and rescaling. Scene-
level reconfiguration is also intuitive by composing ob-
jects’ density and color ground feature patches. In par-
ticular, I-AssetField associates the RGB-DINO field with
space occupancy, producing more plausible warping results.
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Figure 7: Results of assets mining and scene editing with I-AssetField on synthetic scenes. (a) Our approach learns informative density
and RGB-DINO ground feature planes that support object detection and categorization. (b) With joint training, an asset library can be
constructed by storing ground feature plane patches of the radiance field (we show label patches here for easy visualization). (c) The
proposed ground plane representation provides an explicit visualization of the scene configuration, which can be directly manipulated by
users. The altered ground feature planes are then fed to the global MLP renderer along with the shared vertical feature axes to render the
novel scenes. Operations such as object removal, translation, rotation and rescaling are demonstrated on the right.

Original View
Edited with

S(tandard)-AssetField
Edited with

I(ntegrated)-AssetField

Figure 8: Density warping from the blue bottle to the region of the
brown one. S-AssetField loses the structure of the brown bottle in
terms of part semantics, while I-AssetField gives plausible editing
result with appropriate structure transfer.

Original Rendering
Rendering from the
Edited Scene

Remove ceiling lights

Figure 9: Expanding the 2D ground plane back to 3D feature
grids, explicit control on full 3D space is allowed. We remove the
ceiling light by setting the density grids as zero at the target region.

Fig. 8 demonstrates a case of topology deformation, where
the blue bottle’s density field is warped to the region of
the brown bottle, while keeping their RGB(-DINO) fea-

Rendering with Manipulated AssetsGT References

DINO feature plane Example assetsCounter Scene

Figure 10: Example editings on real-world scenes [4] and indoor
scenarios [30]. We use RGB-DINO plane for assets discovery.

ture unchanged. Results show that I-AssetField success-
fully preserves object structure and part semantics, whereas
S-AssetField fails to render the cork correctly.

Despite the convenience of ground feature plane repre-
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Figure 11: Editing two city scenes collected from Google
Earth ©2023 Google. AssetField is versatile where users can di-
rectly operate on the ground feature plane, supporting both within-
scene and cross-scene editing with realistic rendering results.

category-wise
color manipulation

Reference GT Views of Original Scene Novel View Renderings of the Edited Scene

Figure 12: We apply batch-wise color changing for all instances
of the chair, by replacing the template RGB feature map solely.

Extended asset
(cross-scene finetune)

Original Scene

Figure 13: We expand the asset library from the living room with
the newly included assets mics from [27]. The template of mics
is in the shared latent space with the living room and can thus
naturally composed together for rendering.

Joint Learning w/ Template Learning w/o TemplateTraining Views
(view 1) (view 2)

Figure 14: Feature plane refinement. The object template, when
trained among all instances within the scene, produces more accu-
rate feature map compared to the isolated ones.

sentation, it does not directly support manipulating overlap-
ping/stacked objects. However, one can expand the ground
feature plane back to 3D feature grids with its pairing ver-
tical feature axis, and control the scene in the conventional
way as described in [24]. An example is given in Fig. 9.

Fig. 10 shows AssetField’s editing capability on real-
world datasets [4, 42, 30]. Additionally, on a self-collected
city scene from Google Earth, we find a construction site
and complete it with different nearby buildings (within-
scene editing), even borrow Colosseum from Rome (cross-
scene editing). Results are shown in Fig 11. The test
view PSNR for the original scene is NeRF/TensoRF/S-
AssetField/I-AssetField: 24.55/27.61/ 27.54/ 27.95.
Group Editing and Scene Reconfiguration. Recall that

a template object can be selected for each asset category
to substitute all its instances in the scene (on the ground
feature planes). Consequently, we are allowed to perform
group editing like changing the color of a specific category
as depicted in Fig. 12. Scene-level reconfiguration is also
intuitive, where users can freely compose objects from the
asset library on a neural ‘canvas’ to obtain a set of new
ground feature planes, as demonstrated in Fig. 13. The en-
vironments or containers (e.g. the floor or an empty house)
can also be considered as a special asset category, where
small objects (e.g. furniture) can be placed into the con-
tainer to deliver immersive experience. The final scene can
be composited with summed density value and weighted
color, as has been discussed in [38].
Template Refinement. Grid-based neural fields are sen-
sitive to training views with insufficient point supervision,
leading to noisy and inaccurate feature values. Appearance
differences caused by lighting variation, occlusion, etc., in-
terferes the obtaining of a clean template feature patch. An
example can be found in Fig. 14. Due to imbalanced train-
ing view distribution, the chair in the corner receives less
supervision, resulting in inconsistent object feature patch
within a category. Such issue can be alleviated with a
following-up template refinement step. With the inferred
scene layout and the selected object templates (Sec. 3.3).
We propose to replace all instances p ∈ P with their repre-
sentative category template p̂ and optimize this set of feature
patches to reconstruct the scene instead of the full ground
planes. Consequently, the template feature patch integrates
supervisions from all instances in the scene to overcome ap-
pearance variations and sparse views.

5. Discussion and Conclusion
We present AssetField, a novel framework that mines as-

sets from neural fields. We adopt a ground feature plane
representation to model scene density, color and semantic
fields, on which assets mining and grouping can be directly
conducted. The novel occupancy-guided RGB-DINO fea-
ture plane enables cross-scene asset grouping and the con-
struction of an expandable neural asset library, enabling a
variety of intuitive scene editing at object-, category- and
scene-level. Extensive experiments are conducted to show
the easy control over multiple scenes and the realistic ren-
dering results given novel scene configurations. However,
AssetField still suffer from limitations like: separating con-
nected objects in the scene; handling stacked/overlapped
objects; and performing vertical translations. Rendering
quality might also be compromised due to complex scene
background in real-world. More limitations are discussed in
the supplementary. We believe the proposed representation
can be further explored for the manipulation and construc-
tion of large-scale scenes, e.g., by following floorplans or
via a programmable scheme like procedural modeling.

https://www.google.com/help/terms_maps/
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