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Abstract

Describing what has changed in a scene can be useful to
a user, but only if generated text focuses on what is seman-
tically relevant. It is thus important to distinguish distrac-
tors (e.g. a viewpoint change) from relevant changes (e.g.
an object has moved). We present a novel Dual Dynamic
Attention Model (DUDA) to perform robust Change Cap-
tioning. Our model learns to distinguish distractors from
semantic changes, localize the changes via Dual Attention
over “before” and “after” images, and accurately describe
them in natural language via Dynamic Speaker, by adap-
tively focusing on the necessary visual inputs (e.g. “before”
or “after” image). To study the problem in depth, we col-
lect a CLEVR-Change dataset, built off the CLEVR engine,
with 5 types of scene changes. We benchmark a number of
baselines on our dataset, and systematically study different
change types and robustness to distractors. We show the su-
periority of our DUDA model in terms of both change cap-
tioning and localization. We also show that our approach
is general, obtaining state-of-the-art results on the recent
realistic Spot-the-Diff dataset which has no distractors.

1. Introduction

We live in a dynamic world where things change all the
time. Change detection in images is a long-standing re-
search problem, with applications in a variety of domains
such as facility monitoring, medical imaging, and aerial
photography [17, 47, 51]. A key challenge in change detec-
tion is to distinguish the relevant changes from the irrelevant
ones [50] since the former are those that should likely trig-
ger a notification. Existing systems aim to sense or local-
ize a change, but typically do not convey detailed semantic
content. This is an important limitation for a realistic appli-
cation, where analysts would benefit from such knowledge,
helping them to better understand and judge the significance
of the change. Alerting a user on every detected difference
likely will lead to a frustrated operator; moreover, it is desir-
able to have a change detection system that does not output
a binary indicator of change/no-change, but instead outputs
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Figure 1: Robust Change Captioning requires semantic vi-
sual understanding in which scene change must be distin-
guished from mere viewpoint shift (top row). Not only
does it require accurate localization of a change, but it also
requires communicating the change in natural language.
Our Dual Dynamic Attention Model (DUDA) demonstrates
such capacity via a specialized attention mechanism.

a concise description of what has changed, and where.

Expressing image content in natural language is an ac-
tive area of Artificial Intelligence research, with numerous
approaches to image captioning having been recently pro-
posed [3, 12, 38, 60]. These methods have the benefit of
conveying visual content to human users in a concise and
natural way. They can be especially useful, when tailored
to a specific task or objective, such as e.g. explaining the
model’s predictions [20, 45] or generating non-ambiguous
referring expressions for specific image regions [40, 62].

In this work we investigate robust Change Captioning,
where an important scene change has to be identified and
conveyed using natural language in the presence of dis-
tractors (where only an illumination or viewpoint change
occurred). We aim to generate detailed and informative
descriptions that refer to the changed objects in complex
scenes (see Figure 1).

To distinguish an irrelevant distractor from an actual
change (e.g. an object moved), one needs to “compare” the
two images and find correspondences and disagreements.
We propose a Dual Dynamic Attention Model (DUDA) that



learns to localize the changes via a specialized attention
mechanism. It consists of two components: Dual Attention
that predicts a separate spatial attention for each image in
the “before”/“after” pair, and a Dynamic Speaker that gen-
erates a change description by semantically modulating fo-
cus among the visual features relayed from the Dual Atten-
tion. Both components are neural networks that are trained
jointly with only caption-level supervision, i.e. no informa-
tion about the change location is used during training.

In order to study Change Captioning in the presence
of distractors, we build a CLEVR-Change Dataset. We
rely on the image generation engine by [26], which al-
lows us to produce complex compositional scenes. We cre-
ate pairs of “before” and “after” images with: (a) only il-
lumination/viewpoint change (distractors), and (b) illumi-
nation/viewpoint change combined with a scene change.
We consider 5 scene change types (color/material change,
adding/dropping/moving an object), and collect almost 80K
image pairs. We augment the image pairs with automati-
cally generated change captions (see Figure 3). Note that in
the recently proposed Spot-the-Diff dataset [25], the task
also is to generate change captions for a pair of images.
However, their problem statement is different from ours in
that: 1) they assume a change in each image pair while our
goal is to be robust to distractors, 2) the images are aligned
(no viewpoint shift), 3) change localization can not be eval-
uated as ground-truth is not available in [25].

We first evaluate our novel DUDA model on the
CLEVR-Change dataset, and compare it to a number of
baselines, including a naive pixel-difference captioning
baseline. We show that our approach outperforms the base-
lines in terms of change caption correctness as well as
change localization. The most challenging change types
to describe are object movement and texture change, while
movement is also the hardest to localize. We also show
that our approach is general, applying it to the Spot-the-
Diff dataset [25]. Given the same visual inputs as [25], our
model matches or outperforms their approach.

2. Related Work

Here we discuss prior work on change detection, task-
specific image captioning, and attention mechanism.

Change detection One popular domain for image-based
change detection is aerial imagery [35, 54, 63], where
changes can be linked to disaster response scenarios (e.g.
damage detection) [ 7] or monitoring of land cover dynam-
ics [29, 55]. Prior approaches often rely on unsupervised
methods for change detection, e.g. image differencing, due
to high cost of obtaining ground-truth annotations [9]. No-
tably, [1 7] propose a semi-supervised approach with human
in the loop, relying on a hierarchical shape representation.
Another prominent domain is street scenes [1, 28]. No-

tably, [51] propose a Panoramic Change Detection Dataset,
built off Google Street View panoramic images. In their
follow-up work, [52] propose an approach to change de-
tection which relies on dense optical flow to address the
difference in viewpoints between the images. In a recent
work, [43] rely on 3D models to identify scene changes by
re-projecting images on one another. Another line of work
targets change detection in video, e.g. using a popular CD-
net benchnmark [16, 59], where background subtraction is
a successful strategy [8]. Instead of relying on costly pixel-
level video annotation, [30] propose a weakly supervised
approach, which estimates pixel-level labels with a CRF.

Other works address a more subtle, fine-grained change
detection, where an object may change its appearance over
time, e.g. for the purpose of a valuable object monitoring
[14, 24]. To tackle this problem, [53] estimate a dense flow
field between images to address viewpoint differences.

Our DUDA model relies on an attention mechanism
rather than pixel-level difference or flow. Besides, our task
is not only to detect the changes, but also to describe them in
natural language, going beyond the discussed prior works.

Task-specific caption generation While most image cap-
tioning works focus on a generic task of obtaining image
relevant descriptions [3, 12, 58], some recent works explore
pragmatic or “task-specific” captions. Some focus on gen-
erating textual explanations for deep models’ predictions
[19,20,45]. Others aim to generate a discriminative caption
for an image or image region, to disambiguate it from a dis-
tractor [4, 10,40, 39, 56, 62]. This is relevant to our work, as
part of the change caption serves as a referring expression to
put an object in context of the other objects. However, our
primary focus is to correctly describe the scene changes.

The most related to ours is the work of [25], who also
address the task of change captioning for a pair of im-
ages. While we aim to distinguish distractors from relevant
changes, they assume there is always a change between the
two images. Next, their pixel-difference based approach as-
sumes that the images are aligned, while we tackle view-
point change between images. Finally, we systematically
study different change types in our new CLEVR-Change
Dataset. We show that our approach generalizes to their
Spot-the-Diff dataset in subsection 5.3.

Attention in image captioning Attention mechanism [6]
over the visual features was first used for image captioning
by [60]. Multiple works have since adopted and extended
this approach [15, 36, 48], including performing attention
over object detections [3]. Our DUDA model relies on two
forms of attention: spatial Dual Attention used to localize
changes between two images, and semantic attention, used
by our Dynamic Speaker to adaptively focus on “before”,
“after” or “difference” visual representations.
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Figure 2: Our Dual Dynamic Attention Model (DUDA) consists of two main components: Dual Attention (subsection 3.1)

and Dynamic Speaker (subsection 3.2).

3. Dual Dynamic Attention Model (DUDA)

We propose a Dual Dynamic Attention Model (DUDA)
for change detection and captioning. Given a pair of “be-
fore” and “after” images ([ner and I, respectively), our
model first detects whether a scene change has happened,
and if so, locates the change on both I and I,5. The model
then generates a sentence that not only correctly describes
the change, but also is spatially and temporally grounded in
the image pair. To this end, our model includes a Dual At-
tention (localization) component, followed by a Dynamic
Speaker component to generate change descriptions. An
overview of our model is shown in Figure 2.

We describe the implementation details of our Dual At-
tention in subsection 3.1, and our Dynamic Speaker in sub-
section 3.2. In subsection 3.3, we detail our training proce-
dure for jointly optimizing both components using change
captions as the only supervision.

3.1. Dual Attention

Our Dual Attention acts as a change localizer between
Tver and I Formally, itis a function fioe (Xber, Xati; Oloc) =
(Ibef, lare) parameterized by 6. that takes Xper and X,p as
inputs, and outputs feature representations lper and g that
encode the change manifested in the input pairs. In our im-
plementation, Xper, Xare € RE*H*W are image features of
Tvet, Lagi, respectively, encoded by a pretrained ResNet [18].

We first subtract Xper from X,g in order to capture se-
mantic difference in the representation space. The resulting
tensor X g 1S concatenated with both Xy and X, which
are then used to generate two separate spatial attention maps
pef, Gaie € RVEXW - Following [41], we utilize element-
wise sigmoid instead of softmax for computing our attention
maps to avoid introducing any form of global normalization.
Finally, ayer and a,g are applied to the input features to do a

weighted-sum pooling over the spatial dimensions:

Xaift = Xagt — Xper (1

Xier = [Xoer 3 Xairr], Xop = [Xare 5 Xair] 2

aper = o (convg (ReLU(convy (Xie)))) 3)

aure = o(conva(ReLU(convy (X,g)))) 4)

loet = Y ber © Xper, loer € RC (5)
HW

L =Y G © Xagt, lan € RY 6)
HW

where [;], conv, o, and ® indicate concatenation, convolu-
tional layer, elementwise sigmoid, and elementwise multi-
plication, respectively. See Figure 2 for the visualization of
Dual Attention component.

This particular architectural design allows the system
to attend to images differently depending on the type of a
change and the amount of a viewpoint shift, which is a ca-
pability crucial for our task. For instance, to correctly de-
scribe that an object has moved, the model needs to localize
and match the moved object in both images; having single
attention that locates the object only in one of the images is
likely to cause confusion between e.g. moving vs. adding
an object. Even if there is an attribute change (e.g. color)
which does not involve object displacement, single atten-
tion might not be enough to correctly localize the changed
object under a viewpoint shift. Unlike [61, 42, 37, 31, 45],
DUDA utilizes Dual Attention to process multiple visual in-
puts separately and thereby addresses Change Captioning in
the presence of distractors.

3.2. Dynamic Speaker

Our Dynamic Speaker is based on the following intu-
ition: in order to successfully describe a change, the model
should not only learn where to look in each image (spatial
attention, predicted by the Dual Attention), but also when
to look at each image (semantic attention, here). Ideally, we



would like the model to exhibit dynamic reasoning, where
it learns when to focus on “before” (lyer), “after” (l,q), or
“difference” feature (lgitt = lafe — lvef) @s it generates a se-
quence of words. For example, it is necessary to look at the
“after” feature ({,¢) when referring to a new object added to
a scene. Figure 2 illustrates this behaviour.

To this end, our Dynamic Speaker predicts an attention

al(-t) over the visual features /;’s at each time step ¢, and

(t).
dyn*

o= atl; (7)

%

obtains the dynamically attended feature [

where ¢ € (bef, diff, aft). We use the attentional Recurrent
Neural Network [5] to model this formulation.

Our Dynamic Speaker consists of two modules, namely
the dynamic attention module and the caption module. Both
are recurrent models based on LSTM [21]. At each time
step ¢, the LSTM decoder in the dynamic attention module
takes as input the previous hidden state of the caption mod-

ule hgtil) and some latent projection v of the visual features
).

i

lvet, Laifr, and [yg to predict attention weights «

v = ReLU(Wq, [lver 5 Laitr ; late] + ba, ) ®)
u® = [v; hgt_l)] 9

h = LSTM4 (B [u®, n{ 1)y (10)
a® ~ Softmax(Wa,h{” + ba,) (11)

where hfit) and hgt) are LSTM outputs at decoder time step ¢

for dynamic attention module and caption module, respec-
tively, and Wy, , bg,, Wa,, and by, are learnable parame-

ters. Using the attention weights predicted from Equation

(®)

dyn 18 obtained ac-

(11), the dynamically attended feature [

cording to Equation (7). Finally, lé;?q and the embedding

of the previous word w;_1 (ground-truth word during train-
ing, predicted word during inference) are input to the LSTM
decoder of the caption module to begin generating distribu-
tions over the next word:

Y = F1,,_, (12)

¢V = [t ;) (13)

R = LSTM,(h®)|c®) | h0:t=1)) (14)
wy ~ Softmax(W,h{) + b,) (15)

where 1,,,_, is a one-hot encoding of the word w;_1, E is
an embedding layer, and W, b, are learned parameters.

| DI c T A D M All

#Img Pairs| 39,803 79,58 7,963 7,966 79,61 79,55 79,606
# Captions [199,015 58,850 58,946 59,198 58,843 588,83 493,735
- 15,916 15,926 7,966 7,961 15,910 64,679

# Bboxes

Table 1: CLEVR-Change Dataset statistics: number of im-
age pairs, captions, and bounding boxes for each change
type: DISTRACTOR (DI), COLOR (C), TEXTURE (T),
ADD (A), DROP (D), MOVE (M).

3.3. Joint Training

We jointly train the Dual Attention and the Dynamic
Speaker end-to-end by maximizing the likelihood of the ob-
served word sequence. Let § denote all the parameters in

DUDA. For a target ground-truth sequence (w7, ...,wr),
the objective is to minimize the cross entropy loss:
T
Lxp(0) ==Y log(ps(wi|w},...,w;_y))  (16)
t=1

where pg(wi|ws,...,wi—1) is given by Equation (15).
Similar to [41], we apply L; regularization to the spatial
attention masks generated by our Dual Attention in order to
minimize unnecessary activations. We also use an entropy
regularization over the attention weights generated by our
Dynamic Speaker to encourage exploration in using visual
features. The final loss function we optimize is as follows:

L(@) = LXE + )\LlLl - )\entLent (17)

where L; and L.,; are L; and entropy regularization, re-
spectively, and Az, and A.,; are hyperparameters. Note,
that the Dual Attention component receives no direct super-
vision for change localization. The only available supervi-
sion is obtained through the Dynamic Speaker, which then
directs the Dual Attention towards discovering the change.

4. CLEVR-Change Dataset

Given a lack of an appropriate dataset to study Change
Captioning in the presence of distractors, we build the
CLEVR-Change Dataset, based on the CLEVR engine [26].
We choose CLEVR, inspired by many works that use it to
build diagnostic datasets for various vision and language
tasks, e.g. visual question answering [26], referring expres-
sion comprehension [22, 34], text-to-image generation [ 3]
or visual dialog [33]. As Change Captioning is an emerg-
ing task we believe our dataset can complement existing
datasets, e.g. [25], which is small, always assumes the pres-
ence of a change and lacks localization ground-truth.

First, we generate random scenes with multiple objects
in them, which serve as “before” images. Note, that in
domains such as satellite imagery [35, 54, 63] or surveil-
lance/street scenes [, 28, 43], typical distractors include



Distractor Scene Change

Before

After

GTs: GTs:
“nothing has changed” “the small block changed its location”
“there is no difference” “the tiny gray shiny block

that is to the right of the
cyan matte object moved”

“no change was made”

Figure 3: CLEVR-Change examples: distractors vs. scene
changes, ground-truth captions and bounding boxes.

changes in camera position/zoom or illumination. Moti-
vated by these applications we approach distractor construc-
tion accordingly. For each “before” image we create two
“after” images. In the first one, we change the camera posi-
tion leading to a different angle, zoom, and/or illumination.
We have a specific allowed range for the transformation pa-
rameters: for each (z,y, z) camera location, we randomly
sample a number from the range between —2.0 and 2.0,
and jitter the original coordinates by the sampled amount.
In the second “‘after” image, we additionally introduce a
scene change. We consider the following types of scene
changes: (a) an object’s color is changed, (b) an object’s
texture is changed, (c) a new object is added, (d) an existing
object is dropped, (e) an existing object is moved. In the
following we refer to these as: COLOR, TEXTURE, ADD,
DROP, MOVE, and DISTRACTOR for no scene change.
In total, we generate 39, 803 “before” images with respec-
tively 79,606 “after” images. We make sure that the num-
ber of data points for each scene change type is balanced.
The dataset is split into 67,660, 3,976, and 7,970 train-
ing/validation/test image pairs, respectively.

In addition to generating the “before” and “after” scenes,
we generate natural language change captions. Each cap-
tion is automatically constructed from two parts: the re-
ferring part (e.g. “A large blue sphere to the left of a red
object”) and the change part (e.g. “has appeared”). Note
that for all the change types except ADD, the referring ex-
pression is generated based on the “before” image, while
for ADD, the “after” image is used. To get the change part,
we construct a set of change specific templates (e.g. “X has
been added”, “X is no longer there”, “no change was made”
see supplemental for details).

Finally, we obtain spatial locations of where each scene
change took place, so that we can evaluate the correctness of
change localization. Specifically, we obtain bounding boxes

for all the objects affected by a change, either in one im-
age or in both (“before”/“after”), depending on the change
type. The overall dataset statistics are shown in Table 1, and
some examples of distractors vs. scene changes with their
descriptions and bounding boxes are shown in Figure 3.

5. Experiments

In this section, we evaluate our DUDA model on the
Change Captioning task against a number of baselines.
First, we present quantitative results for the ablations and
discuss their implications on our new CLEVR-Change
Dataset. We also provide qualitative analysis of the gen-
erated captions, examine attention weights predicted by
DUDA, and assess its robustness to viewpoint shift. Fi-
nally, we test the general effectiveness of our approach on
the Spot-the-Diff [25], a realistic dataset with no distractors.

5.1. Experimental setup

Here, we detail our experimental setup in terms of im-
plementation and evaluation schemes.

Implementation Details. Similar to [23, 27, 49], we use
ResNet-101 [18] pretrained on ImageNet [ 1] to extract vi-
sual features from the images. We use features from the
convolutional layer right before the global average pool-
ing, obtaining features with dimensionality of 1024 x 14
x 14. The LSTMs used in the Dynamic Speaker have a
hidden state dimension of 512. The word embedding layer
is trained from scratch and each word is represented by a
300-dim vector. We train our model for 40 epochs using
the Adam Optimizer [32] with a learning rate of 0.001 and
a batch size of 128. The hyperparameters for the regular-
ization terms are A, = 2.5¢7% and A.,,; = 0.0001. Our
model is implemented using PyTorch [46], and our code and
dataset will be made publicly available.

Evaluation. To evaluate change captioning, we rely on
BLEU-4 [44], METEOR [7], CIDEr [57], and SPICE [2]
metrics which measure overall sentence fluency and simi-
larity to ground-truth. For change localization, we rely on
the Pointing Game evaluation [64]. We use bilinear interpo-
lation to upsample the attention maps to the original image
size, and check whether the point with the highest activation
“falls” in the ground-truth bounding box.

5.2. Results on CLEVR-Change Dataset

Pixel vs. representation difference [25] utilize pixel dif-
ference information when generating change captions under
the assumption that the images are aligned. To obtain in-
sights into whether a similar approach can still be effective
when a camera position changes, we introduce the follow-
ing baselines: Capt-Pix-Diff is a model that directly utilizes
pixel-wise difference in the RGB space between “before”



Total

Approach B C M S

B

Distractor
C M

Scene Change

C M S B S

302 759 237
335 879 267
42.7 106.4 32.1
43.5 108.5 32.7
47.3 112.3 33.9

Capt-Pix-Diff
Capt-Rep-Diff
Capt-Att

Capt-Dual-Att
DUDA (Ours)

17.1
19.0
232
234
24.5

21.9 36.2
26.0 51.8
38.3 87.2
38.5 89.8
429 94.6

177 79
21.1 10.1
279 18.0
28.5 182
29.7 199

43.4
49.4
535
56.3
59.8

98.2 389
105.3 41.7
106.6 43.2
108.9 44.0
110.8 45.2

26.3
27.8
28.4
28.7
29.1

Table 2: Change Captioning evaluation on our CLEVR-Change Dataset. Our proposed model outperforms all baselines on
BLEU-4 (B), CIDEr (C), METEOR (M), and SPICE (S) in each setting (i.e. Total, Scene Change, Distractor).

CIDEr METEOR SPICE
Approach C T A D M DI c T A D M DI|C T A D M DI
Capt-Pix-Diff | 4.2 16.1 30.1 27.1 18.0 982 | 74 16.0 244 209 182 389| 13 6.8 11.4 106 9.2 263
Capt-Rep-Diff | 44.5 219 50.1 49.7 265 1053|19.2 182 25.7 235 189 41.7| 82 88 12.1 120 9.6 278
Capt-Att 112.1 759 91.5 984 49.6 106.6 |30.5 254 30.2 31.2 222 432|179 163 19.0 22.3 14.5 284
Capt-Dual-Att | 115.8 82.7 85.7 103.0 52.6 108.9(32.1 26.7 29.5 31.7 224 44.0(19.8 17.6 169 219 14.7 28.7
DUDA (Ours) | 120.4 86.7 108.2 103.4 56.4 110.8|32.8 27.3 334 314 23.5 45.2|21.2 183 224 222 154 29.1

Table 3: A Detailed breakdown of Change Captioning evaluation on our CLEVR-Change Dataset by change types: Color
(O), Texture (T), Add (A), Drop (D), Move (M), and Distractor (DI).

and “after” images. We use pyramid reduce downsampling
on the RGB difference to match the spatial resolution of the
ResNet features. The downsampled tensor is concatenated
with the ResNet features on which we apply a series of con-
volutions and max-pooling. The resulting feature, which
combines “before”, “after”, and “pixel difference” informa-
tion, is input to an LSTM for sentence generation. On the
other hand, Capt-Rep-Diff relies on representation differ-
ence (i.e. Xgifr) instead of pixel difference. A series of con-
volutions and max-pooling are applied to the representation
difference and then input to an LSTM decoder. As shown
in the first two rows of Table 2, Capt-Rep-Diff outperforms
Capt-Pix-Diff in all settings, indicating that representation
difference is more informative than pixel difference when
comparing scenes under viewpoint shift. We believe this is
because visual representations are more semantic by nature,
and each activation in the representation has a larger recep-
tive field that allows the difference operation to be less sen-
sitive to the camera shift. As a result, we deliberately use
representation difference in all subsequent experiments.

Role of localization To understand the importance of local-
ization for change description, we compare models with and
without spatial attention mechanism. Capt-Att is an exten-
sion of Capt-Rep-Diff which learns a single spatial attention
which is applied to both “after” and “before” features. The
attended features are subtracted and input to an LSTM de-
coder. We observe that Capt-Att significantly outperforms
Capt-Rep-Diff, indicating that the capacity to explicitly lo-

C T A D M | Total

Capt-Att 46.68 57.90 22.84 47.80 17.57(39.37
Capt-Dual-Att [40.97 46.55 54.33 45.67 19.89(39.35
DUDA (Ours) [54.52 65.75 48.68 50.06 22.77|48.10

Table 4: Pointing game accuracy results. We report per
change-type performance (Color (C), Texture (T), Add (A),
Drop (D), Move (M)) as well as the total performance. The
numbers are in %.

calize the change has a high impact on the caption quality in
general. Note, that the improvements are more pronounced
for scene changes (i.e. C, T, A, D, M) than for distractors
(DI), see Table 3, which is intuitive since the localization
ability matters most when there actually is a scene change.

Single attention vs. dual attention Using multiple spatial
attentions has been shown to be useful for many purposes
including multi-step/hierarchical reasoning [61, 42, 37] and
model interpretability [31, 45]. To this extent, we train a
model that deploys Dual Attention and evaluate its appli-
cation to Change Captioning in the presence of distractors.
Capt-Dual-Att is an extension of Capt-Att which learns two
separate spatial attentions for the pair of images. Com-
pared to Capt-Att, Capt-Dual-Att achieves higher perfor-
mance overall according to Table 2. However, the improve-
ments are limited in the sense that the margin of increase
is small and not all change types improve (see Table 3). A
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Figure 4: Qualitative results comparing Capt-Aft and
DUDA. The blue and red attention maps are applied to “be-
fore” and “after”, respectively. The blue and red attention
maps are the same for Capr-Att whereas in DUDA they are
separately generated. The heat map on the lower-right is
the visualization of the dynamic attention weights where the
rows represent the amount of attention given to each visual
feature (e.g. loc bef, diff, loc aft) per word.

similar issue can be seen in the Pointing Game results in
Table 4. We speculate that without a proper inductive bias,
it is difficult to learn how to utilize two spatial attentions
effectively; a more complex speaker that enforces the usage
of multiple visual signals might be required.

Dual + dynamic attention Our final model with the Dy-
namic Speaker outperforms all previously discussed base-
lines not only in captioning (Table 2, Table 3) but also in
localization (Table 4), supporting our intuition above. In
Figure 4, we compare results from Capt-Att and DUDA. We
observe that a single spatial attention used in Capr-Att can-
not locate and associate the moved object in “before” and
“after” images, thus confusing the properties of the target
object (i.e. large cyan matte). On the other hand, our model
is able to locate and match the target object in both scenes
via Dual Attention, and discover that the object has moved.
Moreover, it can be seen that our Dynamic Speaker predicts
the attention weights that reveal some reasoning capacity of
our model, where it first focuses on the “before” when ad-
dressing the changed object and gradually shifts attention to
“diff” and “after” when mentioning the change.

Measuring robustness to viewpoint shift The experiments

CIDEr by loU Difficulty Pointing Game by loU Difficulty
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Figure 5: Change captioning and localization performance
breakdown by viewpoint shift (measured by IoU).

above demonstrate the general effectiveness of our model in
tackling the Change Captioning task. We now further vali-
date the robustness of our model to viewpoint shift. To mea-
sure the amount of viewpoint shift for a pair of images, we
use the following heuristics: for each object in the scene, ex-
cluding the changed object, we compute the IoU of the ob-
ject’s bounding boxes across the image pair. We assume the
more the camera changes its position, the less the bound-
ing boxes will overlap. We compute the mean of these loUs
and sort the test examples based on this (lower loU means
higher difficulty). The performance breakdown in terms of
change captioning and localization is shown in Figure 5.
Our model outperforms the baselines on both tasks, includ-
ing the more difficult samples (to the left). We see that
both captioning and localization performance degrades for
the baselines and our model (although less so) as viewpoint
shift increases, indicating that it is an important challenge
to be addressed on our dataset.

Figure 6 illustrates two examples with large viewpoint
changes, as measured by IoU. The overlaid images show
that the scale and location of the objects may change signif-
icantly. The left example is a success, where DUDA is able
to tell that the object has disappeared. Interestingly, in this
case, it rarely attends to the “difference” feature. The right
example illustrates a failure, where DUDA predicts that no
change has occured, as a viewpoint shift makes it difficult to
relate objects between the two scenes. Overall, we find that
most often the semantic changes are confused with the dis-
tractors (no change) rather than among themselves, while
MOVE suffers from such confusion the most.

5.3. Results on Spot-the-Diff Dataset

We also evaluate our DUDA model on the recent Spot-
the-Diff dataset [25] with real images and human-provided
descriptions. This dataset features mostly well aligned im-
age pairs from surveillance cameras, with one or more
changes between the images (no distractors). We evaluate
our model in a single change setting, i.e. we generate a
single change description, and use all the available human
descriptions as references, as suggested by [25].

We present our results in Table 5. The DDLA approach
of [25] relies on precomputed spatial clusters, obtained us-



Overlaid Before After Overlaid

Dual Attention

Pred: nothing has changed
GT: the large yellow cube
is in a different location

Figure 6: Qualitative examples of DUDA. The left is an example in which DUDA successfully localizes the change and
generates correct descriptions with proper modulations among “before”, “diff”, and “after” visual features. The right example
is a failure case. We observe that significant viewpoint shift leads to incorrect localization of the change, thus confusing the
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Approach ‘ B C M R
DDLA* [25] | 0.081 0.340 0.115 0.283
DUDA* 0.081 0.325 0.118 0.291

Table 5: We evaluate our approach on the Spot-the-Diff
dataset [25]. * We report results averaged over two runs,for
DDLA [25], we use the two sets of results reported by the
authors. See text for details.

ing pixel-wise difference between two images, assuming
that the images are aligned. For a fair comparison we rely
on the same information: we extract visual features from
both “before” and “after” images using the spatial clusters.
We apply Dual Attention over the extracted features to learn
which clusters should be relayed to the Dynamic Speaker.
The rest of our approach is unchanged. As can be seen from
Table 5, DUDA matches or outperforms DDLA on most
metrics. We present qualitative comparison in Figure 7. As
can be seen from the examples, our DUDA model can at-
tend to the right cluster and describe changes corresponding
to the localized cluster.

Despite the usage of natural images and human descrip-
tions, the Spot-the-Diff dataset is not the definitive test for
robust change captioning as it does not consider the pres-
ence of distractors. That is, one does not have to establish
whether the change occurred as there is always a change be-
tween each pair of images, and the images are mostly well-
aligned. We advocate for a more practical setting of robust
change captioning, where determining whether the change
is by itself relevant is an important part of the problem.

6. Conclusion

In this work, we address robust Change Captioning in the
setting that includes distractors. We propose the novel Dual
Dynamic Attention Model to jointly localize and describe
changes between images. Our dynamic attention scheme is

<Before> <After> <Before> <After>
" v i e

Rual Attention_

ere is a person walking in the parking lot”
DUDA: “the person in the parking lot is gone”
GT: “there is no one in the picture”

DDLA: “there is a person walking in the parking lot” DDLA:
DUDA: “the black car is missing”
GT: “the red car is missing”

Figure 7: Example outputs of our model on the Spot-the-
Diff dataset [25]. We visualize clusters with the maxi-
mum dual attention weights. We also show results from the
DDLA [25] and the ground-truth captions.

superior to the baselines and its visualization provides an
interpretable view on the change caption generation mecha-
nism. Our model is robust to distractors in the sense that
it can distinguish relevant scene changes from illumina-
tion/viewpoint changes. Our CLEVR-Change Dataset is
a new benchmark, where many challenges need to be ad-
dressed, e.g. establishing correspondences between the ob-
jects in the presence of viewpoint shift, resolving ambigu-
ities and correctly referring to objects in complex scenes,
and localizing the changes in the scene amidst viewpoint
shifts. Our findings inform us of important challenges in
domains like street scenes, e.g. “linking” the moved objects
in before/after images, as also noted in [25]. Our results on
Spot-the-Diff are complementary to those we have obtained
on the larger CLEVR-Change dataset. While Spot-the-Diff
is based on real images, there are minimal or no distractor
cases in the dataset. This suggests that valuable future work
will be to collect real-image datasets with images undergo-
ing significant semantic and distractor changes.
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Supplementary Material

In this supplementary material, we provide an analysis
of the performance of our Dual Dynamic Attention Model
(DUDA) in terms of what change types get confused the
most. We also provide additional details on how CLEVR-
Change Dataset was collected, especially how change de-
scriptions were generated, and how the data distribution in
terms of difficulty measured by IoU looks like given the in-
troduced random jitters in camera position.

A. Confusion Matrix of Change Types

In order to analyze the behavior of our method on dif-
ferent change types, we parse the sentences generated by
our model and categorize the type of change that is detected
based on the parsed results. We compare that to the ground-
truth change type information, and plot the confusion ma-
trix in Figure 8. As we have already shown (Table 3 in the
main paper), the most challenging change types are TEX-
TURE (73% accuracy) and MOVE (45% accuracy), which
are most often confused with the DISTRACTOR changes.
It is interesting to note that for all change types most of
the confusion comes from misidentifying scene changes as
DISTRACTORsS, and that such confusion is the most se-
vere for MOVE. This is intuitive in the sense that in or-
der to correctly distinguish MOVE from DISTRACTOR,
the model has to spatially relate every other object in the
scene whereas for other scene change types the changes are
relatively salient and do not necessarily require understand-
ing the spatial relationships between the objects. Moreover,
MOVE is also confused with ADD and DROP, as it may
be difficult to correctly establish a correspondence between
all the objects in “before” and “after” scenes. Overall, the
substantial amount of confusion with the DISTRACTORs
demonstrates the difficulty of our problem statement, as op-
posed to always assuming that a scene change is present.

B. Additional Details on CLEVR-Change
Dataset

In this section, we provide details on how the captions
are generated in our CLEVR-Change Dataset and how the
random camera position shifts manifest themselves in the
dataset distribution. Having access to all the object infor-
mation in a CLEVR-rendered scene, we can easily gen-
erate multiple different sentences describing a particular
change by using templates listed in Table 6. For instance
once the images are generated with the desired change (e.g.
COLOR), we identify the changed object in the before or af-
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Figure 8: Confusion matrix of DUDA. The horizontal axis
indicates the predicted change types of our model whereas
the vertical axis indicates the actual change types.

Type Templates

... changed to ...
... turned ...
... became ...

COLOR

... changed to ...
... turned ...
... became ...

TEXTURE

... has appeared.
... has been newly placed.
... has been added.

ADD

... has disappeared.
... is missing.

... is gone.

... is no longer there.

DROP

... moved.
MOVE ... is in a different location.
... changed its location.
DISTRACTOR ~ °© change was made.

the scene is the same as before.
the two scenes seem identical.

Table 6: For each change type we construct a few templates,
based on which the change part of the caption is obtained.

ter images, and extract its locations and attributes which are
used to generate a referring expression (e.g. the red metal-
lic cube that is to the left of a big sphere). This phrase is
then combined with a randomly selected template followed
by a description of how it has changed (i.e. ... changed to
yellow).

In section 4 of the main paper, it is described that dif-
ferent viewpoint and illumination are introduced via a ran-
dom shift in camera (x, y, z) location ranging between -2.0
to 2.0 in coordinate points. As a way to understand how
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Figure 9: Difficult and easy examples chosen via IoU-based heuristics. The examples at the top are the difficult ones, where
the viewpoint shift is noticeable. The examples at the bottom are the easy ones, where the viewpoint change is not significant.
We also show the corresponding attention and sentences generated by our model, as well as the ground-truth descriptions.
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Figure 10: Histogram of CLEVR-Change Dataset based on
IoU. The horizontal axis indicates the amount of viewpoint
shift measured by IoU whereas the vertical axis indicates
the number of data points.

this translates to an actual difference between before and
after images, we plot a histogram of the entire dataset based
on the IoU heuristics explained in the main paper. As can
be seen from Figure 10, the random camera jitters form a
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reasonable distribution of data points in terms of viewpoint
shift difficulty. To better illustrate what the IoU means, we
provide relatively difficult (i.e. low IoU of 0.17 - 0.18) and
easy (i.e. high IoU of 0.81 - 0.92) examples in Figure 9. We
notice that depending on the viewpoint shift, the task can
become significantly difficult even for a simple scene. For
instance in the top-left example of Figure 9, where there are
only three objects, we see that it becomes hard to localize
the changed object as it escapes the scene due to significant
camera movement. On the other hand, for a more complex
scene like the bottom-left example, localizing change is eas-
ier with a small viewpoint shift.
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