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Abstract

The first main contribution of this paper is a novel method for representing images based on a 

dictionary of shape epitomes. These shape epitomes represent the local edge structure of the image 

and include hidden variables to encode shift and rotations. They are learnt in an unsupervised 

manner from groundtruth edges. This dictionary is compact but is also able to capture the typical 

shapes of edges in natural images. In this paper, we illustrate the shape epitomes by applying them 

to the image labeling task. In other work, described in the supplementary material, we apply them 

to edge detection and image modeling.

We apply shape epitomes to image labeling by using Conditional Random Field (CRF) Models. 

They are alternatives to the superpixel or pixel representations used in most CRFs. In our 

approach, the shape of an image patch is encoded by a shape epitome from the dictionary. Unlike 

the superpixel representation, our method avoids making early decisions which cannot be 

reversed. Our resulting hierarchical CRFs efficiently capture both local and global class co-

occurrence properties. We demonstrate its quantitative and qualitative properties of our approach 

with image labeling experiments on two standard datasets: MSRC-21 and Stanford Background.

1. Introduction

In this paper, we propose a novel representation for local edge structure based on a 

dictionary of shape epitomes, which were inspired by [12]. This dictionary is learnt from 

annotated edges and captures the mid-level shape structures. By explicitly encoding shift 

and rotation invariance into the epitomes, we are able to accurately capture object shapes 

using a compact dictionary of only five shape epitomes. In this paper, we explore the 

potential of shape epitomes by applying them to the task of image labeling. Most modern 

image labeling systems are based on Conditional Random Fields (CRFs) [18, 20] for 

integrating local cues with neighborhood constraints. Image segments are typically 

represented in the pixel domain [9, 17, 26], or in the domain of superpixels (a region of 

pixels with uniform statistics) [6, 7, 10, 11, 21, 23].

One motivation for shape epitomes was the success of segmentation templates for image 

labeling [27]. These templates also represent the local edge structure but differ from pixels 
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and superpixels because they represent typical edges structures, such as L-junctions, and 

hence provide a prior model for edge structures. Each patch in the image was encoded by a 

particular segmentation template with semantic labels assigned to the regions specified by 

the template, as illustrated in Fig. 1. Segmentation templates, like superpixels, have 

computational advantages over pixel-based approaches by constraining the search process 

and also allow enforcing label consistency over large regions. Compared to superpixels, 

segmentation templates do not make early decisions based on unsupervised over-

segmentation and, more importantly, explicitly enumerate the possible spatial configurations 

of labels making it easier to capture local relations between object classes. See Table 1 for a 

comparison summary.

But those segmentation-templates [27] have limitations. Firstly, they were hand-specified. 

Secondly, there were not invariant to shift and rotation which implies that a very large 

number of them would be needed to give an accurate representation of edge structures in the 

images (Zhu et al [27] used only thirty segmentation-templates which meant that they could 

only represent the edges very roughly).

Each shape epitome can be thought of a set of segmentation-templates which are indexed by 

hidden variable corresponding to shift and rotation. More precisely, a shape epitome consists 

of two square regions one inside the other. The hidden variable allows the inner square 

region to shift and rotate within the the bigger square, as shown in Fig. 1. The hidden 

variable specifies the shift and rotation. In the current paper, each shape epitome 

corresponds to 81 × 4 = 324 segmentation-templates. Hence, as we will show, a small 

dictionary of shape epitomes is able to accurately represent the edge structures (see Sec. 

4.3.1). Intuitively the learned dictionary captures generic mid-level shape-structures, hence 

making it transferable across datasets. By explicitly encoding shift and rotation invariance, 

our learned epitomic dictionary is compact and only uses five shape epitomes. We also show 

that shape epitomes can be generalized to allow the inner square to expand which allow the 

representation to deal with scale (see Sec. 4.3.4).

We propose shape epitomes as a general purpose representation for edge structures (i.e. a 

mid-level image description). In this paper we illustrate them by applying them to the image 

labeling task. In the supplementary material we show how they can be also used for edge 

detection and for local appearance modeling. For image labeling, we consider three 

increasingly more complex models, which adapt current CRF techniques for shape epitomes. 

We use patches at a single fine resolution whose shape is encoded by a segmentation 

template (i.e. a shape epitome with hidden variable specified). The patches are overlapping, 

thus allowing neighbors to directly communicate with each other and find configurations 

which are consistent in their area of overlap (Model-1). We explore two enhancements of 

this basic model: Adding global nodes to enforce image-level consistency (Model-2) and 

also further adding an auxiliary node to encourage sparsity among active global nodes, i.e., 

encourage that only few object classes occur within an image (Model-3). We conduct 

experiments on two standard datasets, MSRC-21 and Stanford Background, obtaining 

promising results.
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Related work

Our model is based on the success of several works. First, the ability to generate an image 

from a condensed epitomic representation [12]. We leverage on this idea to learn a 

dictionary of shape epitomes. Each segmentation template is generated within a shape 

epitome. This encodes the shift-invariance into the dictionary, since a segmentation template 

is able to move within a shape epitome. Besides, we encode rotation invariance by allowing 

the shape epitome to rotate by 0, 90, 180, and 270 degrees.

Second, the potential of using template-based representation and overlapped patches. It has 

been shown that learning the generic patterns capturing statistics over large neighborhoods 

can be beneficial for image denoising [24] and image labeling [15]. Besides, finding the 

mutual consensus between neighboring nodes by using overlapped patches [28] has shown 

to be effective. Similar ideas have been applied to image labeling [16]. However, they did 

not learn a dictionary for object shapes.

Third, the power of introducing simple global nodes for image labeling. Ladicky et al. [19] 

introduced global nodes that can take values from the predefined label set L and a “free” 

label. There is no energy cost, when the global node takes the free label. Gonfaus et al. [8] 

proposed a harmony model to generalize the idea by allowing the global node to take labels 

from the power set of L. However, it is computationally challenging to find the most 

probable state for the global node from the power set. Then, Lucchi et al. [22] proposed the 

Class Independent Model (CIM) to decompose the global node into |L| global nodes. Our 

model moves further based on the CIM by encoding the image-level co-occurrence, and 

adding an auxiliary node to encourage the sparsity of active global nodes, similar to [4].

Structure

Sec. 2 describes our method of learning a dictionary of shape epitomes, and Sec. 3 describes 

our model based on CRF. Experimental results are discussed in Sec. 4.

2. Learning a dictionary of shape epitomes

In this section, we present our algorithm for learning the dictionary of shape epitomes from 

annotated images.

To learn the generic dictionary, we use the BSDS500 dataset [1], which provides ground 

truth of object boundaries. Given that, we extract M × M patches around the shape 

boundaries (called shape patches). We cluster these shape patches using affinity propagation 

[5] to build our shape epitomes (note that the size of shape patches is the same as that of 

shape epitomes). The segmentation templates are of smaller size m × m (m < M) than the 

shape epitomes, and are generated as sub-windows of them. By generating the segmentation 

template from a larger shape epitome, we are able to explicitly encode shift-invariance into 

the dictionary, as illustrated in Fig. 1. Therefore, one shape epitome compactly groups many 

segmentation templates which are shifted versions of each other.

Clustering by affinity propagation requires a similarity measure F (P1, P2) between two M × 

M shape patches P1 and P2. We induce F (P1, P2) from another similarity measure FT (T1, 
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T2) between two m × m segmentation templates T1 and T2 extracted from P1 and P2, 

respectively. Specifically, let T (i, j) denote the segmentation template extracted from P and 

centered at (i, j), with (0, 0) being the center of P. We define the similarity between the two 

shape patches P1 and P2 to be

(1)

as illustrated in Fig. 2. We employ the covering of the template T1 by the template T2 [1] as 

the similarity measure FT (T1, T2) between them:

where r1 and r2 are the regions in templates T1 and T2, respectively, and |r| is the area of 

region r. Note that FT (T1, T2) and consequently F (P1, P2) range from 0 (no similarity) to 1 

(full similarity).

Directly applying affinity propagation results in many similar shape epitomes because 

simple horizontal or vertical boundaries are over-represented in the training set. We follow 

[13] and grow the dictionary incrementally, ensuring that each newly added shape epitome 

is separated from previous ones by at least distance t, as follows:

1. Clustering. Apply affinity propagation to find one shape epitome that contains the 

most members (i.e., the largest cluster) in current training set.

2. Assigning. For each shape patch in training set, assign it to the shape epitome found 

in step 1, if their distance, defined as 1 − F (P1, P2), is smaller than t.

3. Update. Remove the shape patches that are assigned to the shape epitome from the 

current training set.

4. Repeat until no shape patch is left in the training set.

3. Adapting CRFs for segmentation templates

Having learned the dictionary of shape epitomes, we now proceed to show how we can build 

models for image labeling on top of it. We propose three models by adapting current CRF 

models to the template-based representation.

The problem of image labeling in this context can be formulated as follows. Given an image 

I, we represent it by a set of overlapped m × m patches. The goal is to encode each patch by 

a segmentation template, and by assigning labels (from a categorical set L) to each region in 

the segmentation template. Specifically, the labeling assignment x is represented by both 

segmentation template and labels. That is, x = {xi}i∈  with xi = {si, li}, where  is the set 

of patches, si and li denote the type of segmentation template and object labeling, 

respectively. Note that li is a vector, whose length is the number of regions within the 

segmentation template. For example, li = (cow, grass) means that label cow and label grass 
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are assigned to the first region and second region within segmentation template si. We call 

our models SeCRF, short for Shape epitome CRF.

3.1. Model 1: One-level SeCRF

We first introduce a flat model, which is represented by a graph with a single layer  = { l, 

ℰl}, as shown in Fig. 3(a). Each node corresponds to a patch region, and it is encoded by 

both the type of segmentation template and the labels assigned to it. The image region 

represented by node i (i.e., i-th patch) is denoted by R (i).

The energy of x given image I is given by:

(2)

where α is the model parameters. Note we suppress the dependency on the image I in 

subsequent equations. Each energy term is defined below.

The first term E1 (x; α1) is the data term which accumulates the pixel features with respect 

to certain type of segmentation template and labels assigned to the corresponding regions. 

We set E1 (x; α1) = −α1 ∑i∈ l ψ1 (xi), and

where we define  as the labeling of pixel p in the region of segmentation template si. The 

value  is computed by a strong classifier with features (e.g., filter bank responses) 

extracted within a region centered at position p.

The second term is used to encourage the consistency between neighboring nodes in their 

area of overlap. For a pixel that is covered by both node i and j, we encourage node i to 

assign the same label to it as node j. The consistency is defined by using the Hamming 

distance:

where

where O (i, j) is the overlapped region between nodes i and j, and  if , 

and zero, otherwise. In our experiments, we use 4-neighborhood.
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The third term encodes the generic prior of segmentation templates. Specifically, we 

binarize the type of si to be either 1, meaning that it contains some type of shapes, or 0, 

meaning that it contains no shape.

The fourth term E4 (x; α4) is used to model the co-occurrence of two object classes within a 

segmentation template. Note that parameter α4 is a 2-D matrix, indexed by u and υ, ranging 

over the label set L.

where |L| is the total number of object classes, and ψ4 (u, υ, li) is an indicator function which 

equals one when both object classes u and υ belong to li.

The fifth term E5 (x; α5) models the spatial relationship between two classes within a 

segmentation template. We model only the ”above” relationship. For example, we 

encourage sky to appear above road, but not vice versa.

where ψ5 (u, υ, xi) is an indicator function which equals one when object class m is above 

class n within a certain segmentation template. Note that for some segmentation template 

that does not have the ”above” relationship (e.g., a template with vertical boundary), this 

term is not used.

3.2. Model 2: Two-level SeCRF

Motivated by the Class Independent Model (CIM) in [22], we add |L| independent global 

nodes { g} to enforce image-level consistency, as shown in Fig. 3(b). A global node 

encodes the absence or presence of a object class in the image (i.e., yi ∈ {0, 1}, ∀i ∈ g), 

and it is densely connected to every local node. We denote the set of edges connecting 

global nodes and local nodes as {ℰlg}, and then labeling assignment x = {{xi}i∈ l ∪ 

{yi}i∈ g}. An extra global-local energy term is added to Equation 2 with each global node 

yj having a 2-D matrix parameter :

where
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Note that our Model 2 differs from CIM in two parts. First, the value of function ψ6 is 

proportional to the number of pixels whose labels are u in the node xi. This formulation is 

different from the energy cost used in the original CIM, which is either zero or one (i.e., a 

hard value). On the contrary, we formulate this energy cost as a soft value between zero and 

one. Second, our local nodes are based on overlapped segmentation templates (not 

superpixels) so that neighbors can directly communicate with each other. Furthermore, 

unlike the robust Pn model [14], our penalty depends on the region area within a 

segmentation template, and thus it is a function of the segmentation template type.

3.3. Model 3: Three-level SeCRF

We further refine Model 2 by adding image-level classification scores to the unary term of 

global nodes [25]. Specifically, we train |L| SVM classifiers to predict the presence or 

absence of object classes, following the pipeline of [2]. The unary energy for global nodes is 

then defined as follows.

where C (yi|I) is the output of i-th classifier.

The independency among global nodes in Model 2 ignores the co-occurrence between object 

classes in the image level. Hence, we add edges {ℰg} to connect every pair of global nodes, 

and define an energy term on them:

where  depends on the specific edge e = {i, j} that connects two different global nodes, yi 

and yj.

As shown in Fig. 3(c), we also add an auxiliary node a (then, x = {{xi}i∈ l ∪ {yi}i∈ g ∪ 

{zi}i= a}). This node favors sparsity among global nodes (similar to [4]) by introducing a 

set of edges {ℰga} from { g} to a. Specifically, a is a dummy node, which can take only 

one meaningless state. We define an energy term on {ℰga} to encourage only few global 

nodes to be active as follows.
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where δ (yi = 0) equals one when the global node yi is off. This energy term has the effect of 

biasing the global nodes.

4. Experiments

In this section, we first show the results of learning a dictionary of shape epitomes following 

the methods described in Sec. 2. We then use this dictionary for image labeling using the 

SeCRF models of Sec. 3.

4.1. Learned dictionary of shape epitomes

We learn the dictionary of shape epitomes from shape patches extracted from the BSDS500 

dataset [1]. In the experiment, we fix the size of a shape patch to be 25 × 25, and the size of 

segmentation template 17 × 17, namely M = 25 and m = 17. After applying affinity 

propagation incrementally with distance t = 0.05, the first 10 shape epitomes are shown at 

the top of Fig. 4.

For computational and modeling purposes it is desirable to have a compact dictionary 

consisting of only few shape epitomes. We have found that the first 5 shape epitomes 

contain most of the shape patches in the training set of BSDS500, and the cluster size 

decreases very quickly.

In our setting, a segmentation template is allowed to move within a shape epitome for each 

horizontal and vertical displacement up to ±4 pixels. We define stride as the step-size for 

horizontal/vertical displacement. For example, if stride = 4, we can generate 9 templates 

from each shape epitome, only considering the nine templates T (i, j) ∀i, j ∈ {−4, 0, 4} at all 

four possible orientations (0, 90, 180 and 270 degrees), ending up with 45 = 9 × 5 templates 

per epitome. In total, there are 181 (5 × 45 + 1) segmentation templates, including the flat 

one that contains no shape. On the other hand, if stride = 1, we use every template within a 

shape epitome, resulting in 1621 (81 × 5 × 4 + 1) segmentation templates.

Using this compact dictionary of 5 shape epitomes suffices to accurately encode the ground 

truth segmentations in our datasets, as demonstrated in Sec. 4.3.1. As one can observe in 

Fig. 4, our generated segmentation templates cover the common boundary shapes, such as 

vertical/horizontal edges, L-junctions, and U-shapes. The learned dictionary thus captures 

generic mid-level shape-structures and can be used across datasets. We emphasize that we 

learn it on the BSDS500 dataset and use it unadapted for image labeling on MSRC-21 and 

Stanford Background datasets.

4.2. Implementation details for image labeling

MAP Inference—We use loopy belief propagation (LBP) to minimize the energy function 

in Equation 2. We prune the unpromising states by rejecting the unlikely proposals whose 

E1 data terms are too high, similar to [27]. We fix the number of states per node to be 100, 

since in our experiments adding more states only improve the performance marginally at the 

sacrifice of computation time.
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Learning the parameters—We use the same structure-perceptron algorithm [3] as HIM 

[27], because we would like to have a direct comparison with it by emphasizing on the 

representation part of our model, not learning.

Fusion of predicted labels—The traditional Conditional Random Field models directly 

assign an object class label to each pixel in the image. On the contrary, our model uses 

overlapped patches, and each patch is encoded by a segmentation template and by labels 

assigned to the regions in the template. The number of patches that will cover the same pixel 

depends on the size of overlap between patches. We set the overlap size to be (m − 1)/2 

pixels in all experiments. To find the labels for every pixel, we fuse the predicted labels for 

each pixel by letting the patch having the minimal unary energy (E1 + E3 + E4 + E5) 

determine the final result of the covered pixel, since the pairwise term E2 already encourages 

consistency.

4.3. Results

For image labeling, we experiment on two datasets: (1) The MSRC-21 with 591 images and 

|L| = 21 classes, using the original splitting (45% for training, 10% for validation, and 45% 

for testing) from [26]. (2) The Stanford Background dataset [10] consisting of 715 images 

and |L| = 8 classes, which we randomly partition into training set (572 images) and test set 

(143 images). Note in all the experiments, we fix M = 25, and m = 17 except in Sec. 4.3.4.

4.3.1. Encoding the ground truth—The ground truth provided by the datasets contains 

the true labeling for each pixel, not the true states of segmentation template type with 

regions labeled. This experiment is designed to see if our learned dictionary of shape 

epitomes can accurately encode the ground truth. We estimate the true states of the local 

nodes by selecting the pairs of segmentation template type and labeling (i.e., find true xi = 

(si, li)) that have maximum overlap with the true pixel labels. For MSRC-21 dataset, our 

result shows that this encoding of ground truth results in 0.27% error in labeling image 

pixels, while HIM [27] reported 2% error. This shows that our learned dictionary of shape 

epitomes is flexible enough to more accurately encode the MSRC ground truth than the 

hand-crafted dictionary of [27].

Here, we show the advantage of using our learned dictionary of shape epitomes over directly 

learning a dictionary of segmentation templates (in the latter case, the training shape patches 

have size m × m instead of M × M) by conducting experiments on the Stanford Background 

dataset, which provides more detailed object boundaries. We propose to compare those two 

dictionaries in terms of the error of encoding the ground truth, when given the same covered 

areas, which is equivalent to learning the same number of parameters. Suppose the size of 

the dictionary of shape epitomes is KE, and the size of the dictionary of segmentation 

templates is KT. Given KE, to cover the same areas, we select KT = 252/172KE. As shown in 

Fig. 5, our learned dictionary of shape epitomes attains better performance than the 

dictionary of segmentation templates when given the same number of parameters.

4.3.2. Image labeling: MSRC-21 dataset—We generate 9 segmentation templates from 

each of the 5 shape epitomes in the labeling experiments (i.e., 181 templates totally). In a 
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first set of experiments we directly compare our models with HIM [27]. We use the same 

boosting-based data term as HIM, provided by the authors, the main difference between 

HIM and our model lying in the representation part. As shown in Fig.7, our learned 

dictionary encodes the object shapes better than the hand-crafted dictionary used by HIM. 

Furthermore, both our Model 2 and Model 3 attain better performance than HIM (see Table 

3).

We also compare our model with the recent method of [9] which incorporates powerful non-

local patch similarity. We have used the same boosting-based data term as [9], as 

implemented in the Darwin software library1. As shown in Table 3, our Model 3 attains 

similar performance to [9], although we do not use non-local cues at the patch level.

4.3.3. Image labeling: Stanford background dataset—In this experiment, we use 

the data term provided by the Darwin software library. The results for the Stanford 

Background dataset are shown in Fig. 8. We achieve comparable results with other state-of-

the-art models. Specifically, our segmentation template-based Model 3 performs better than 

the more complicated model of [10], which builds on a dynamic superpixel representation 

and incorporates both semantic and geometric constraints in a slow iterative inference 

procedure. We also perform better than the hierarchical semantic region labeling method of 

[23]. Our models perform somewhat worse than the long-range model of [9] (unlike the 

MSRC case), and the segmentation tree model of [21], which however employs different 

image features.

4.3.4. Scaling the segmentation templates—Here, we show that our learned 

dictionary can generate different sizes of segmentation templates, while attaining good 

performance on the Stanford Background dataset. Specifically, we explore the effect of 

varying the size of generated segmentation templates as the dictionary of shape epitomes is 

fixed. First, we explore the effect by encoding the ground truth. The size varies from m = 

{13, 17, 21, 25}. The stride variable is also changed to generate different number of 

segmentation templates from the dictionary. As shown in Fig. 6, the error is consistently 

decreased when m or stride is smaller. Second, we extract spatially equally 9 segmentation 

templates from the dictionary for different m (all resulting in 181 templates), and apply our 

Model 1 based on these templates to label the test images, as shown in Table 2. These results 

show that our proposed representation: shape epitomes is also able to handle scale effects 

without relearning the dictionary.

5. Conclusion

In this paper, we introduced shape epitomes and showed that they could efficiently encode 

the edge structures in the MSRC and Stanford Background datasets. This efficient encoding 

is due to their ability to represent local shifts and rotations explicitly. The dictionary of 

shape epitomes were learnt from BSDS500 dataset. Next we explored the use of shape 

epitomes for CRF models of image labeling. The proposed SeCRF model can attain 

1http://drwn.anu.edu.au, version 1.2
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comparable results with other state-of-the-art models. Our supplementary material shows 

other applications of shape epitomes to edge detection and local appearance modeling.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

This work was supported by ONR N00014-12-1-0883, ONR N000014-10-1-0933, and NIH Grant 
5R01EY022247-03.

References

1. Arbelaez P, Maire M, Fowlkes C, Malik J. Contour detection and hierarchical image segmentation. 
PAMI. 2011

2. Chatfield K, Lempitsky V, Vedaldi A, Zisserman A. The devil is in the details: an evaluation of 
recent feature encoding methods. BMVC. 2011

3. Collins M. Discriminative training methods for hidden markov models: Theory and experiments 
with perceptron algorithms. ACL. 2002

4. Delong A, Osokin A, Isack HN, Boykov Y. Fast approximate energy minimization with label costs. 
International Journal of Computer Vision. 2012

5. Frey B, Dueck D. Clustering by passing messages between data points. Science. 2007

6. Fulkerson B, Vedaldi A, Soatto S. Class segmentation and object localization with superpixel 
neighborhoods. ICCV. 2009

7. Galleguillos C, Rabinovich A, Belongie S. Object categorization using co-occurrence, location and 
appearance. CVPR. 2008

8. Gonfaus J, Boix X, Van De Weijer J, Bagdanov A, Serrat J, Gonzalez J. Harmony potentials for 
joint classification and segmentation. CVPR. 2010

9. Gould S. Multiclass pixel labeling with non-local matching constraints. CVPR. 2012

10. Gould S, Fulton R, Koller D. Decomposing a scene into geometric and semantically consistent 
regions. ICCV. 2009

11. He X, Zemel R, Ray D. Learning and incorporating top-down cues in image segmentation. ECCV. 
2006

12. Jojic N, Frey B, Kannan A. Epitomic analysis of appearance and shape. ICCV. 2003

13. Jurie F, Triggs B. Creating efficient codebooks for visual recognition. ICCV. 2005

14. Kohli P, Ladicky L, Torr P. Robust higher order potentials for enforcing label consistency. IJCV. 
2009

15. Komodakis N, Paragios N. Beyond pairwise energies: Efficient optimization for higher-order mrfs. 
CVPR. 2009

16. Kontschieder P, Buló S, Bischof H, Pelillo M. Structured class-labels in random forests for 
semantic image labelling. ICCV. 2011

17. Krähenbühl P, Koltun V. Efficient inference in fully connected CRFs with gaussian edge 
potentials. NIPS. 2011

18. Kumar S, Hebert M. Discriminative random fields. IJCV. 2006

19. Ladicky L, Russell C, Kohli P, Torr P. Associative hierarchical CRFs for object class image 
segmentation. ICCV. 2009

20. Lafferty J, McCallum A, Pereira F. Conditional random fields: Probabilistic models for segmenting 
and labeling sequence data. ICML. 2001

21. Lempitsky V, Vedaldi A, Zisserman A. A pylon model for semantic segmentation. NIPS. 2011

22. Lucchi A, Li Y, Boix X, Smith K, Fua P. Are spatial and global constraints really necessary for 
segmentation? ICCV. 2011

Chen et al. Page 11

Proc IEEE Int Conf Comput Vis. Author manuscript; available in PMC 2015 August 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



23. Munoz D, Bagnell J, Hebert M. Stacked hierarchical labeling. ECCV. 2010

24. Roth S, Black M. Fields of experts. IJCV. 2009

25. Shotton J, Johnson M, Cipolla R. Semantic texton forests for image categorization and 
segmentation. CVPR. 2008

26. Shotton J, Winn J, Rother C, Criminisi A. Textonboost for image understanding: Multi-class object 
recognition and segmentation by jointly modeling texture, layout, and context. IJCV. 2009

27. Zhu L, Chen Y, Lin Y, Lin C, Yuille A. Recursive segmentation and recognition templates for 
image parsing. PAMI. 2012

28. Zoran D, Weiss Y. From learning models of natural image patches to whole image restoration. 
ICCV. 2011

Chen et al. Page 12

Proc IEEE Int Conf Comput Vis. Author manuscript; available in PMC 2015 August 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Proposed dictionary of Shape Epitomes in the context of image labeling. Segmentation 

templates are generated from the shape epitomes, by specifying the values of the hidden 

variables. Image labels are assigned to the regions within the templates, and thus the local 

relationship between object classes is explicitly modeled. Note the rotation and shift-

invariance illustrated in the second and third shape epitome, respectively.
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Figure 2. 
The similarity measure between two shape patches. The optimal value of shift variables (i, j) 

is shown for this example.
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Figure 3. 
Adapting CRFs for segmentation templates. (a) Model 1 uses only a single layer of local 

nodes. (b) Model 2 adds global nodes to encode global consistency, similar to [22] (but the 

energy value is soft in our model). (c) Model 3 encodes the pairwise co-occurrence between 

global nodes, and adds an auxiliary node to encourage the sparsity of active global nodes.
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Figure 4. 
Top row: first 10 shape epitomes learned by our method. Bottom: a flat segmentation 

template (i.e., no shape) and some others generated from the first 5 shape epitomes. Note 

that some of them are generated from the rotated shape epitomes.
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Figure 5. 
Error (%) of encoding ground truth of Stanford Background dataset, when using a dictionary 

of KE shape epitomes or a dictionary of KT segmentation templates.
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Figure 6. 
Error (%) of encoding ground truth of Stanford Background dataset. The dictionary of shape 

epitomes is fixed. The size of generated templates is different, and so is the stride.
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Figure 7. 
Qualitative results for the MSRC dataset. (a) Original image. (b) Ground truth. (c) Model 1. 

(d) Model 2. (e) Model 3. (f) HIM (excerpted from [27]). Note that our models capture 

object shapes more accurately than the HIM.
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Figure 8. 
Qualitative and quantitative results on the Stanford Background dataset.
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Table 1

General comparison between representations from the aspects of Computation, Flexibility (better align with 

object shapes), Long-Range consistency, and ability to Explicitly model the local configuration of objects. We 

improve the flexibility of template-based representation by learning a dictionary of shape epitomes.

Pixel Superpixel Template

Computation − + +

Flexibility + + +

Long-Range − + +

Explicit Configuration − − +
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Chen et al. Page 22

Table 2

Reuse the dictionary of shape epitomes with different size of generated templates on Stanford Background 

dataset.

Template size 13 × 13 17 × 17 21 × 21

Global 76.9 76.7 76.3
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