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Abstract—High-level synthesis (HLS) enhances digital hard-
ware design productivity through a high abstraction level. Even
if the HLS abstraction prevents fine-grained manual register-
transfer level (RTL) optimizations, it also enables automatable op-
timizations that would be unfeasible or hard to automate at RTL.
Specifically, we propose a task-level multi-pumping methodology
to reduce resource utilization, particularly digital signal proces-
sors (DSPs), while preserving the throughput of HLS kernels mod-
eled as dataflow graphs (DFGs) targeting field-programmable
gate arrays. The methodology exploits the HLS resource sharing
to automatically insert the logic for reusing the same functional
unit for different operations. In addition, it relies on multi-clock
DFGs to run the multi-pumped tasks at higher frequencies. The
methodology scales the pipeline initiation interval (II) and the
clock frequency constraints of resource-intensive tasks by a multi-
pumping factor (M ). The looser II allows sharing the same
resource among M different operations, while the tighter clock
frequency preserves the throughput. We verified that our method-
ology opens a new Pareto front in the throughput and resource
space by applying it to open-source HLS designs using state-of-
the-art commercial HLS and implementation tools by Xilinx. The
multi-pumped designs require up to 40% fewer DSP resources
at the same throughput as the original designs optimized for
performance (i.e., running at the maximum clock frequency) and
achieve up to 50% better throughput using the same DSPs as
the original designs optimized for resources with a single clock.

Index Terms—Dataflow architectures, FPGA, high-level synthe-
sis, multi-pumping, resource sharing

I. INTRODUCTION

High-level synthesis (HLS) raises the abstraction level of

electronic design automation tools to improve the digital hard-

ware designer’s productivity. The high abstraction precludes

some low-level manual optimizations, making the quality of

results (QoR) of HLS circuits inferior to those manually op-

timized at the register-transfer level (RTL), especially for the

area and maximum clock frequency [1]. On the other hand,

we deem the HLS description introduces new optimization

opportunities at a high level.

We focus on HLS designs modeled as dataflow graphs

(DFGs) (e.g., with dataflow in Xilinx Vivado/Vitis HLS [2],

hierarchy in Siemens Catapult HLS [3], or task functions in

Intel HLS compiler [4]). Modeling HLS designs as DFGs

proved its effectiveness both in industrial [5], [6] and academic

[7], [8] projects.

A DFG is a set of parallel computational tasks (C/C++

functions in HLS) communicating asynchronously through

first-in-first-out (FIFO) queues. HLS tools typically implement

DFGs as single-clock dataflow graphs (SCDFGs), where all

the tasks share the same clock signal. Many modern HLS

tools do not support multi-clock designs [2], [4]. Nevertheless,

we can generalize SCDFGs to multi-clock dataflow graphs

(MCDFGs) by assigning each task to a dedicated clock do-

main. The generalization enhances the tasks’ flexibility and

maximum frequency, limited only by the critical timing path

local to the task rather than the global one. Clock architectures

of modern field-programmable gate array (FPGA) system-on-

chips (SoCs) seamlessly support multiple clocks, and the area

overhead for safe clock domain crossing (CDC) is negligible

since the tasks already communicate through FIFOs, which

can be configured with independent read and write clocks with

comparable resource utilization [9].

Multiple clock domains allow optimizations like multi-

pumping, which reduces the area while preserving the through-

put by reusing M times a resource, usually a digital signal

processor (DSP) unit in the FPGA context, clocked at a fre-

quency M times larger than the rest of the system. Designers

typically apply the technique at RTL by manually inserting the

custom logic to share the resource and safely perform CDC.

In this work, we achieve multi-pumping at the task level by

tuning only the high-level parameters of the tasks, in partic-

ular the pipeline initiation interval (II), i.e., the clock cycles

between the start of successive pipeline executions, and the

clock constraint at the task granularity, taking advantage of the

MCDFG. The HLS resource sharing algorithm automatically

builds the logic for sharing the resource within a dataflow task.

At the same time, the inter-task FIFOs allow safe CDC. We

focused on DSPs, which are critical in compute-intensive ker-

nels and can run at high frequencies. However, the technique

can multi-pump any shareable resource, including entire sub-

functions.

For example, consider a 2D Convolution HLS kernel by

Xilinx [10], implemented as an SCDFG, as shown in Fig. 1a,
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Fig. 1. Task-level multi-pumping saves resources at equal throughput for
HLS of dataflow graphs (DFGs). The Filter2D task from a 2D Convolution
kernel [10] (a) is double-pumped (c) by doubling its clock frequency and II
to save half of the multipliers of the single-clock solution (b).

where the rectangular nodes and the arrows represent the tasks

and the FIFOs, respectively. At each iteration, the Filter2D

task processes a convolution window of up to 15 × 15 ele-

ments, which requires computing 225 multiply and accumulate

(MAC) operations bound to DSPs. Thus, an II of 1 cycle re-

quires 225 DSPs. On the other hand, scaling the II to 2 cycles
implies that a new pipeline iteration starts every two clock

cycles. Therefore, the pipeline has two cycles to compute the

225 operations. Hence, thanks to resource sharing, the HLS

binding allocates only ⌈225/2⌉ = 113 DSPs, each of which

computes two MACs. Assume that we target a throughput of

250MSa/s. With the state-of-the-art SCDFG flow (Fig. 1b),

we set the clock frequency of the whole DFG, including the

Filter2D task that allocates 225 DSPs at 250MHz. On the

other hand, with our multi-pumping approach (Fig. 1c), we

optimize the Filter2D task by scaling its II to 2 cycles, to

save half of the DSPs, and its clock frequency to 500MHz,

to preserve the throughput.

This paper proposes an area-minimization methodology that

preserves the throughput via task-level multi-pumping for

FPGA HLS designs described as DFGs. Its effectiveness is

validated on open-source designs using the workflow shown

in Fig. 2, which generates an optimized multi-pumped intellec-

tual property (IP) block from C/C++ source code using state-

of-the-art Xilinx commercial tools [11].

To the best of our knowledge, this is the first work that com-

bines multiple clock domains with resource sharing in HLS

of DFGs for task-level multi-pumping. The empirical results

show that a new Pareto front opens in the power, performance,

and area (PPA) space, with circuits that use up to 60% fewer

resources at maximum throughput or achieve up to 50% higher

throughput with the same resources.

II. RELATED WORK

Our work is mainly related to QoR improvement of HLS

designs by tuning the HLS directives (i.e., the instructions for

the HLS compiler to control hardware optimizations such as

loop pipelining), focusing on multi-clock designs.

Several works [12]–[16] optimize for performance the HLS

directives applied to plain software code not intended for

HLS via design-space exploration (DSE). However, the goals

of their works differ from ours since we optimize for re-

sources while preserving the throughput of source code al-

ready optimized for HLS. In addition, our methodology avoids

time-consuming DSEs and analytically computes the multi-

pumping factor and, consequently, the corresponding II and

clock frequency constraints. Finally, they all consider only

single clock designs, except for Liang et al. [16] (discussed

further in Section II-A).

HLS design optimizations based on multiple clock domains

work at the operation level, assigning domains at the low-level

resource (e.g., adder or multiplier) granularity, typically during

scheduling [17]–[19], or at the task level, assigning domains

at function granularity (i.e., MCDFGs) [16], [20].

A. Operation-level multi-clock in high-level synthesis

Lhairech-Lebreton et al. [17] use multiple clock domains

in HLS to reduce power consumption while preserving the

throughput by halving the operating frequency of two-cycle

operations. We instead focus on area and performance opti-

mizations because power is only a secondary quality metric

for FPGA designs after performance and area.

Canis et al. [18] and Ronak et al. [19] design double-

pumped DSP modules and use them in HLS with cus-

tom resource-sharing algorithms. Theoretically, Xilinx Vitis

HLS supports double-pumped MAC operations through user-

callable functions from the dsp_builtins library, but it is

undocumented and faulty [21]. Our approach produces similar

results when double-pumping a task. However, our task-level

solution does not require custom modules, changes to the HLS

sharing algorithm, or changes to the source code. In addition,

it can select multi-pumping factors greater than two, resulting

in larger resource savings.

B. Task-level multi-clock in high-level synthesis

Ragheb et al. [20] focus on extending the LegUp HLS tool

to support MCDFGs synthesis but leave the selection of the

clock frequencies to a suboptimal, time-consuming profiling-

based approach. Our work focuses instead on a general

methodology for exploiting the multiple clock domains. The

workflow we define for building MCDFGs, based on state-of-

the-art Xilinx tools, is just a means to apply our methodology.

Liang et al. [16] propose a DSE methodology for maximiz-

ing the throughput under area constraints for HLS of MCDFG

designs. They iteratively push for performance the HLS loop

directives applied to the bottleneck tasks. If a task is still a

bottleneck after maximally pushing the directives (e.g., when

the pipeline II constraint is 1 cycle), they relax the directives of

every task, increase the clock frequency of the bottleneck task,

and restart the procedure. The goal of our work is different

since we minimize the area while preserving the throughput.

The optimization approaches differ, too, since we optimize all

the resource-intensive tasks independently of whether they are

bottlenecks, and we never push the II constraints, which the
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Fig. 2. Given the C/C++ source code of a dataflow graph (DFG) application and its base clock frequency, the proposed workflow builds the optimized
multi-pumped IP by (a) analyzing the DFG (DFG charact.), (b) optimizing the multi-pumping factors (M opt.), and (c) synthesizing the multi-pumped IP
(MCDFG synth.).

HLS compiler may fail to meet (e.g., due to data dependen-

cies).

III. BACKGROUND

Given the DFG throughput model defined in Section III-A,

our multi-pumping methodology exploits the resource sharing

executed by the HLS binding step to build the sharing logic.

The relaxed timing mode for the HLS scheduling step ensures

that the II of the pipelines is independent of the target clock

frequency, as explained in Section III-B.

A. Dataflow graph

A DFG G(V,E) is a set of tasks v ∈ V running in parallel

and communicating asynchronously through FIFO channels

e ∈ E.

In HLS, each task is described as a C/C++ function whose

core computational part typically consists of a pipelined loop.

Given a task vi clocked at frequency fi and whose core loop

is scheduled with initiation interval II i, an approximation of

its throughput is

Φi :=
fi
II i

. (1)

The maximum external dynamic random access memory

(DRAM) bandwidth can also limit throughput. However, this

is out of the scope of our methodology since it does not

change the overall throughput and, consequently, the DRAM

bandwidth requirements.

The overall DFG throughput matches the one of the bottle-

neck task (i.e., the task with the lowest throughput)

ΦG := min
vi∈V

Φi. (2)

According to (1), the high-level knobs for tuning the

throughput of task vi are its clock frequency (fi) and initiation

interval (II i). All tasks share the same clock in single-clock

dataflow graphs (SCDFGs). Thus, fi is the same for all tasks

and is bounded by the global (i.e., among all tasks) critical

path. Therefore, only the II i can be tuned independently for

each task. In an MCDFG, on the other hand, the clock fre-

quency can be set individually for each task. This additional

degree of freedom allows for higher flexibility and tasks fre-

quencies than SCDFG since the clock frequency of a task is

limited only by its local critical path and not the one of the

whole DFG.

B. High-level synthesis

Our multi-pumping technique relies on two key concepts of

the HLS tools: (1) the minimum pipeline II is independent of

the clock frequency constraint when the scheduler works in

relaxed timing mode (i.e., the clock frequency is subordinate to

meet the II constraints), and (2) the level of resource sharing is

directly dependent on the II. Both are implemented by the HLS

back-end that generates the hardware description. The timing

model is used during scheduling and the resource sharing is

done during binding [2].

1) Scheduling: Scheduling assigns operations to specific

clock cycles; thus, it also implements loop and function

pipelining. Designers can constrain the II of the pipelines,

which is lower bound by the resource constraints and the data

dependencies. Consider the data dependence graph (DDG)

modeling the data dependencies in a kernel. Given a cycle

θ in the DDG, we define delayθ as the sum of the delays

of the operations along θ and distθ as the total loop-carried

dependence distance along θ. The lower bound of the II is

IImin := max
θ∈DDG

(

delayθ

distθ

)

. (3)

The associated cycle is called critical [22].

For example, consider the following loop to be scheduled:

for (int i = 0; i < N; i++)

a = a + b;

The read-after-write dependency on a, produced at the i-th
iteration and consumed at the i + 1-th iteration, introduces

a cycle θ in the DDG. delayθ is the latency of the adder

computing a+b. distθ is 1 since a is consumed at the iteration

after it is produced. Therefore, (3) implies that the minimum

II for this loop equals the latency of the adder.

The clock constraints determine how many operations fit

within a clock cycle, thus affecting the depth of the pipelines.

The pipeline depth determines the latencies of its operations,

impacting the critical cycle and, in turn, the II lower bound.

However, the II constraints take precedence over clock con-

straints in relaxed timing mode, yielding lower II pipelines

in exchange for potential HLS timing violations. These are

usually acceptable at HLS time since HLS timing estimations



may be overly pessimistic [1], and downstream implementa-

tion steps may resolve them.

2) Binding: Binding assigns each operation to a compatible

functional unit, depending on resource and performance (e.g.,

clock frequency, II) constraints.

Resource sharing is a crucial binding optimization that maps

operations of the same type to the same functional unit, sched-

uled on different clock cycles or under mutually exclusive

conditions (e.g., on different if-then-else branches). The II

constraints directly affect the degree of resource sharing. In

particular, if a pipeline scheduled with an II of IIi cycles com-

putes NOP
i

operations (OPs) of the same kind at each iteration,

the binding step allocates NFU
i

functional units (FUs), with

NFU
i

:=

⌈

NOP
i

IIi

⌉

. (4)

Note that the operations can be either computations or mem-

ory accesses. The functional units associated with the memory

operations are ports proportional to the partitioning factors

(i.e., the number of submemories into which a memory re-

source is divided to increase its parallelism). Therefore, larger

II values result in fewer functional units and smaller memory

partitioning factors.

Consider the Filter2D task from the 2D Convolution ker-

nel introduced in Section I, whose source code is in Fig. 3a.

Assuming a filter of size 2 × 2 (i.e., FILTER V SIZE =
FILTER H SIZE = 2), with the schedule with an II of 1 cycle
(shown in Fig. 3b, where the nodes represent the operations,

and the edges the data dependencies), at the steady-state,

four multiplications are computed in parallel on different data

within the same clock cycle (highlighted by the red rectangle),

thus requiring four DSP-mapped multipliers. With an II of

2 cycles instead (see Fig. 3c), only two multiplications are

computed per clock cycle. Therefore, the binding step allocates

only two multipliers and shares these among two multiplica-

tions.

IV. TASK-LEVEL MULTI-PUMPING

We multi-pump the resources of task vi by simultaneously

scaling by a multi-pumping factor Mi the II and the clock

frequency of vi.

The underlying principles of our approach are:

• (2) allows tuning each task independently without reduc-

ing the overall DFG throughput, as long as the throughput

of the task does not get lower than the bottleneck task one.

• As discussed in Section III-B2, scaling the II of a

pipelined loop by a factor Mi allows reusing the same

functional unit for Mi operations in different clock cycles.

• (1) implies that the task throughput is unchanged if we

scale by Mi the task clock frequency together with the II.

Assume that vi meets the timing constraints up to fmax
i

and

computes NOP
i

operations mapped to DSPs. Moreover, the non-

multi-pumped tasks are clocked at fbase (i.e., the clock con-

void Filter2D(hls::stream<window> &window_stream,

hls::stream<char> &pixel_stream)

{

for (int x = 0; x < width * height; x++) {

#pragma HLS PIPELINE II = II_Filter2D

window w = window_stream.read();

int sum = 0;

for (int row = 0; row < FILTER_V_SIZE; row++) {

for (int col = 0; col < FILTER_H_SIZE; col++)

sum += w.pix[row][col] * coeffs[row][col];

}

pixel_stream.write(sum);

}

}

(a) Source code
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Fig. 3. The pipeline initiation interval (II) directly affects the resource sharing.
For example, in the Filter2D task (a), the pipeline with II = 1 cycle (b)
computes four multiplications per clock cycle in steady state, while the one
with II = 2 cycles (c) only two. Thus, the latter datapath allocates half of the
multipliers.

straint given by the designer). The maximum multi-pumping

factor for task vi is

Mmax
i

:= min

(⌊

fmax
i

fbase

⌋

, NOP
i

)

. (5)

It is worth noting that our task-level multi-pumping changes

only the HLS directives while using the HLS tool as a black

box and without requiring manual source code restructuring.

The automation of this step will be the subject of future work.



V. MULTI-PUMPING WORKFLOW

To validate our task-level multi-pumping, we define a work-

flow from the C/C++ source code to an optimized MCDFG IP

block compatible with Xilinx tools [11], as shown in Fig. 2.

The main steps of the workflow are (A) DFG characterization

to extract the maximum clock frequency and the number of

DSP operations of each task, needed by the later steps, (B) mul-

ti-pumping factor optimization to select the multi-pumping

factor of each task, and (C) MCDFG synthesis to generate the

multi-pumped IP.

A. Dataflow graph characterization

For each task in the DFG G(V,E), we collect the number

of DSP operations (N = {NOP
i

, ∀vi ∈ V }) from the reports of

the standard SCDFG HLS. We collect the maximum frequency

meeting the timing constraints (F = {fmax
i

, ∀vi ∈ V }) from

the post-implementation reports of the SCDFG. We execute the

implementation with a tight clock constraint (e.g., 500MHz)

and at the lowest pipeline II, which is the worst case for the

critical cycle (defined in Section III-B). Indeed, when multi-

pumping increases the II, it relaxes the critical cycle, allowing

deeper pipelines and shorter critical paths, thus higher clock

frequencies.

We do not extract F from the earlier-available HLS clock

frequency estimations since they are unreliable [1]. We run the

SCDFG implementation only once, so the overhead is usually

acceptable. However, if a fast flow is required (e.g., in early

design phases), we can run only the logic synthesis step with-

out placement and routing. The timing estimations at the logic

synthesis step are more accurate than the one of the HLS com-

piler since they have access to lower-level information. When

the estimated maximum frequency is less than the actual one,

we miss chances of saving resources because of lower multi-

pumping factors, as per (5). On the contrary, if the frequency

is overestimated, the timing fails during implementation.

B. Multi-pumping factor optimization

We select the multi-pumping factors (M = {Mi, ∀vi ∈ V })

that minimize the DSP utilization. If vi contains operations

mapped to DSP, we set Mi = Mmax
i

, as defined by (5).

Otherwise, we do not apply multi-pumping to vi.

C. Multi-clock dataflow graph synthesis

Xilinx Vitis HLS cannot synthesize MCDFGs directly since

it supports only one clock domain per the design. However,

the dataflow directive generates several independent modules,

one for each task, and interconnects them in a top-level module.

Thus, we run a split HLS, synthesizing each task separately

(i.e., setting it as the top module) with its clock constraint.

The Xilinx HLS binding algorithm guarantees optimal re-

source sharing if guided by resource constraints only. There-

fore, we constrain the number of DSPs according to (4). For

instance, if we multi-pump with a factor Mi a task vi that

originally uses NDSP
i

, we constrain its DSPs to
⌈

NDSP
i

/Mi

⌉

.

In principle, we could also scale down the memory par-

titioning factors by Mi to reduce on-chip memory resource

usage, namely block random access memories (BRAMs) and

registers. However, we cannot apply this optimization to the

test cases considered in Section VI with Xilinx HLS. Indeed,

the tool ignores the coarser partitioning directives and auto-

matically partitions the memories, presumably to minimize the

pipelines II, regardless of the provided directives. We plan to

revisit the issue as a more recent version of the HLS tool is

available.

Finally, we interconnect the tasks synthesized separately

using the Vivado intellectual property integrator (IPI).

The Xilinx HLS tools use FIFOs as inter-task communica-

tion channels when data are produced and consumed in the

same order; otherwise, ping-pong buffers. Our method could

support both, but since the Xilinx IPI flow does not provide a

configurable multi-clock ping-pong buffer, we currently only

support FIFO channels using the Xilinx FIFO generator [23].

FIFOs are configured with independent clocks for read and

write ports when interconnecting tasks assigned to different

clock domains.

VI. EVALUATION

We verify the applicability and the advantages in the PPA

space of our task-level multi-pumping workflow, described in

Section V, by applying it to open-source HLS designs.

Our experiments target the embedded platform Zynq Ultra-

Scale+ FPGA SoC hosted by the Avnet Ultra96v1 board [24].

We use Vitis HLS 2022.2 [2] and Vivado HLS 2019.2 [25] for

the synthesis and Vivado 2022.2 [11] for the implementation.

We collect the resource utilization from the post-

implementation reports and the power estimations from the

post-implementation static power analysis. We verify that the

throughput (i.e., the number of output samples produced in

the unit of time) matches the theoretical one by measuring

the time for 10 000 executions in auto-restart mode [2] (to

make the time overhead for control negligible) of the kernels

in hardware, using the PYNQ application programming inter-

faces [26].

We apply our flow to some open-source HLS designs, in-

cluding (a) the 2D Convolution from the Vitis Tutorials [10]

already introduced in Section I, (b) the Optical Flow from the

Rosetta suite [8], and (c) the virtual molecule screening (VMS)

[27], a drug discovery accelerator.

For each design, we compare the multi-pumped implemen-

tations (M-Pump) with the original ones (Base) and with the

best SCDFG implementations without source code changes (S-

Pump). For the S-Pump implementations, we apply our flow

without the generalization to MCDFG. Thus, if task vi is

“single-pumped” by a factor Si, we scale by Si its II, as with

our original workflow, and the clock frequency of the whole

kernel. The maximum “single-pumping” factor for each task is

lower than the corresponding maximum multi-pumping factor

(defined by (5)) since it is at most

Smax
i

:=









min
∀vi∈V

fmax
i

fbase







 . (6)
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Fig. 4. Digital signal processors (DSPs) allocated for a given throughput. The M-Pump designs are optimized using the proposed task-level multi-pumping
technique. The M-Pump designs are Pareto-optimal compared to the Base designs, whose DSP utilization is constant since they are optimized by tuning the
clock frequency only, and to the S-Pump designs, which are optimized for area by changing both the II and the global clock frequency of the tasks. The
dashed lines represent the theoretical throughputs achievable with the allocated DSPs, which are unreachable in practice due to memory bandwidth limitations.
The dots show the design points implemented in hardware.

Figure 4 shows the tradeoffs between the DSP utilization

and the throughput obtained by varying the base clock fre-

quency within the range allowed by the critical path of the de-

signs. The dashed lines represent computation throughputs that

exceed the memory throughput. Thus, the effective through-

puts are, in practice, clipped to the maximum non-dashed

value, corresponding to the maximum memory throughput.

The number of DSPs used by Base designs is independent

of the clock frequency. The plots of the Pump designs are char-

acterized by a step shape, whose discontinuities correspond to

the IIs changes, which only assume integer values. The Pump

solutions provide different tradeoffs in the throughput versus

DSP space, thanks to the tuning of the pipelines’ II. The addi-

tional degree of freedom of the M-Pump implementations (i.e.,

the task clock frequency) makes them always Pareto optimal.

Both M-Pump and S-Pump designs degenerate to Base de-

signs (i.e., all the pumping factors to one and no resource

savings) at the highest throughputs since they need the lowest

IIs to reach the best performance. Note that the M-Pump

designs consistently degenerate to Base at throughputs higher

than S-Pump since the multiple clock domains let the multi-

pumped tasks run at the maximum frequency their local crit-

ical path allows. Therefore, the M-Pump designs achieve up

to 52% higher throughput than S-Pump with the same DSPs

in the 2D Convolution test case. Moreover, with the Optical

Flow benchmark, the M-Pump reaches the maximum effective

throughput using 40% fewer DSPs than the Base.

Table I reports the post-implementation PPA data for the

design points marked with the dots in Fig. 4. We select those

points since their throughputs are the upper extremes of the

last steps of M-Pump and S-Pump within the memory bound.

Comparing the M-Pump designs with the Base ones, the

consistent DSP saving (54% on average) implies power and

flip-flops (FFs) overheads. The additional power (24% on

average) is because the multi-pumped tasks are characterized

by greater switching activity due to higher resource reuse and

clock frequencies. The additional FFs (33% on average) are

inserted by the HLS tool in the multi-pumped tasks to build

deeper pipelines and reach higher clock frequencies.

As expected [9], the PPA overhead for CDC in M-Pump

is negligible. The overhead for routing multiple clocks is also

marginal, as each additional clock domain allocates only 1.4%
of the available clock routing resources.

In general, the M-Pump solutions Pareto dominate the S-

Pump ones. In fact, at the same throughput, they allocate

fewer DSPs, similar look-up tables (LUTs) and FFs, and con-

sume less power. This is because the M-Pump designs take

advantage of the multiple clock domains to increase the clock

frequency of the multi-pumped tasks only, thus reaching higher

multi-pumping factors and avoiding power and FF overheads

in the non-multi-pumped tasks. The VMS test case is the only

exception because only a small fraction of its logic runs at the

base clock frequency, while the rest is double or triple-pumped;

thus, the lower-frequency tasks are not enough to balance the

power and FF overhead for the multi-pumped tasks.

VII. CONCLUSION

We propose a task-level multi-pumping technique for saving

hardware resources while maintaining the original throughput

for HLS dataflow designs for FPGAs.

Given a state-of-the-art single-clock DFG, our approach first

generalizes it to a multi-clock DFG. Secondly, it tunes the

tasks’ high-level parameters (i.e., clock frequency and pipeline

II) to multi-pump their functional units. The overhead for gen-

eralization is negligible, thanks to the DFGs structure, which

consists of independent blocks communicating via FIFOs, al-

lowing for safe CDC, and modern FPGA clock architectures,

which seamlessly handle multiple clock domains even if cur-

rent HLS tools do not exploit them.



TABLE I
POWER, PERFORMANCE, AND AREA OF THE BENCHMARKS TARGETING A ZYNQ ULTRASCALE+ SOC

LUT Power
Throughput

Base
clock

Pump

factors
DSP

Logic Memory
FF BRAM

Static Dynamic

Clock
routingDesign

(MSa/s)
Implem.

(MHz) (1) (%) (%) (%) (%) (%) (W) (W) (%)

Base 165 – 64 14 12 9 4 0.3 1.8 1.0
165 S-Pump 330 2 33 15 12 18 4 0.3 2.3 1.0

M-Pump 165 3 23 14 12 18 4 0.3 2.2 2.4

Base 250 – 64 13 12 10 4 0.3 2.0 1.0

2D Convolution
[10]

250
M-Pump 250 2 33 15 12 19 4 0.3 2.8 2.4

Base 150 – 55 36 65 23 20 0.3 2.5 1.0
150 S-Pump 300 2 29 37 65 26 20 0.3 3.2 1.0

M-Pump 150 2, 3 21 37 64 27 20 0.3 3.0 3.8

Base 175 – 55 36 65 23 20 0.3 2.5 1.0

Optical Flow

[8]
175

M-Pump 175 2 33 38 65 27 20 0.3 2.9 2.4

Base 110 – 89 32 23 31 67 0.3 2.0 1.0
28 S-Pump 220 2 44 30 23 31 67 0.3 2.4 1.0

VMS
[27]

M-Pump 110 2, 3 42 32 23 37 67 0.3 2.9 3.8

The experimental results reported in Section VI prove that

our method opens a new Pareto front in the performance

versus DSPs space, saving up to 40% of resources at maxi-

mum throughput. Moreover, our method does not require any

manual architecture changes from the designer, since it acts

only on the high-level parameters of the tasks and uses the

HLS binding algorithm to automatically generate the resource

sharing logic. Finally, the generalization to multi-clock DFGs

simply requires replacing single-clock with multi-clock FIFOs.

Therefore, our technique is well suited for a fully automated

HLS optimization pass, which will be the subject of future

work.
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