
Automated Runtime-Aware Scheduling
for Multi-Tenant DNN Inference on GPU

Fuxun Yu1, Shawn Bray2, Di Wang3, Longfei Shangguan3, Xulong Tang4, Chenchen Liu2 and Xiang Chen1
1George Mason University, Fairfax, VA, USA

2University of Maryland, Baltimore County, Baltimore, MD, USA
3Microsoft, Redmond, WA, USA

4University of Pittsburgh, Pittsburgh, PA, USA
1{fyu2, xchen26}@gmu.edu, 2{shawnb2, ccliu}@umbc.edu

3{wangdi, longfei.shangguan}@microsoft.com, 4tax6@pitt.edu

Abstract—With the fast development of deep neural networks
(DNNs), many real-world applications are adopting multiple
models to conduct compound tasks, such as co-running clas-
sification, detection, and segmentation models on autonomous
vehicles. Such multi-tenant DNN inference cases greatly exacer-
bate the computational complexity and call for comprehensive
collaboration for graph-level operator scheduling, runtime-level
resource awareness, as well as hardware scheduler support.
However, the current scheduling support for such multi-tenant
inference is still relatively backward. In this work, we propose a
resource-aware scheduling framework for efficient multi-tenant
DNN inference on GPU, which automatically coordinates DNN
computing in different execution levels. Leveraging the unified
scheduling intermediate representation and the automated ML-
based searching algorithm, optimal schedules could be generated
to wisely adjust model concurrency and interleave DNN model
operators, maintaining a continuously balanced resource utiliza-
tion across the entire inference process, and eventually improving
the runtime efficiency. Experiments show that we could consis-
tently achieve 1.3×∼1.7× speed-up, comparing to regular DNN
runtime libraries (e.g., CuDNN, TVM) and particular concurrent
scheduling methods (e.g., NVIDIA Multi-Stream).

I. INTRODUCTION

As deep neural networks (DNNs) have demonstrated supe-
rior performance in vast cognitive tasks [1–3], the expecta-
tions for DNN-powered intelligence have grown rapidly over
the past few years. In addition to the real-time needs of
DNN optimization regarding its deep structures and heavy
workloads [4–6], recent real-world applications further require
multi-tenant DNN computation for even compound tasks [7–
9]. For example, it is critical for an autonomous driving system
to inference multiple DNN models simultaneously on the same
hardware for segmentation [10], detection [11], and classi-
fication [12]. And for larger-scale cases, such multi-tenant
computing necessity also emerges in cloud computing clus-
ters and industrial-level data centers for resource utilization
improvement, drawing significant attention from intelligence
services providers, such as Microsoft and NVIDIA [13–15].

The multi-tenant DNN inference exacerbates the com-
putational complexity on top of existing DNN problems.
However, the corresponding computing support is still rela-
tively backward. As the major platform for the multi-tenant
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Fig. 1. Scheduling for Multi-tenant DNN Inference on a Single GPU

inference — current GPUs’ computing strategies are still
limited to traditional approaches of sequential execution (e.g.,
MPI-processing [16]) and parallel/concurrent execution1 (e.g.,
NVIDIA multi-Stream execution [17]).

As demonstrated in Fig. 1, these limited strategies cannot
achieve satisfying performance for multi-tenant DNN infer-
ence: (a) Although the sequential execution dedicates the
entire GPU’s resource to each model and achieves the shortest
per-model inference latency as shown in Fig. 1 (a), continuous
resource under-utilization is inevitable due to the single-
operator execution (e.g., conv, pooling), not to mention the
cumulative overall runtime latency. (b) For the concurrent
execution in Fig. 1 (b), though indispensable parallelism for
multiple models earns latency optimization to a certain degree,
it hasn’t touched the particular computing complexity in multi-
tenant DNN inference. Taking the first round of convolution
from the three DNN models (i.e., A1, B1, C1) as an example,
simple parallelism would introduce considerable contention
overhead as operators can compete for computing resources
simultaneously. While looking into later stages of this concur-

1We treat “parallel” and “concurrent” as the same meaning in our work,
according to the definition of “concurrency” in the NVIDIA document [17].
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rent execution, GPU under-utilization strikes back due to the
unbalanced scheduling for different model depths.

Thus, to strive for optimal runtime latency and resource
utilization, the multi-tenant DNN inference raises particular
GPU scheduling requirements not only for analyzing and
relieving local operator contention, but also for managing
global model concurrency balance as per model structure
divergence. Bringing this “local-global” need into the existing
DNN execution stack as shown in Fig. 2, we can see that, it
calls for comprehensive collaboration from the graph-level
operator scheduling, the runtime-level resource awareness,
as well as the hardware scheduler support. However, most
existing DNN scheduling methods are limited in a single-level
optimization scope. For example, many works are proposed
singularly for low-level intra-operator optimization, such as
loop tiling and unrolling [18–20]; Similarly, many graph-based
scheduling works focus only on high-level inter-operator fu-
sion/substitution optimization [21–23]. As a result, neglecting
one or the other, these methods fail to meet the cross-level
scheduling requirement by the multi-tenant DNN inference.

In this work, we propose a runtime-aware scheduling
framework for efficient multi-tenant DNN inference on GPU,
which automatically coordinates concurrent DNN computing
in different execution levels. As shown in Fig. 1 (c), the
proposed method could take both the local operator contention
and the global model structural divergence into consideration.
The final scheduling method wisely adjusts model concurrency
by interleaving operators for less contention overhead, main-
taining a continuously balanced resource utilization across the
entire inference process, and eventually improving the runtime
efficiency. To achieve such a scheduling target, we make the
following contributions:

• We first abstract the multi-tenant DNN inference schedul-
ing as a fine-grained concurrency control problem. In-
corporating the GPU multi-stream and synchronization
mechanisms, multiple concurrency control levels are
identified in the GPU inference flow to provide the
fundamental support for the scheduling optimization;

• Based on the problem abstraction, a unified scheduling
Intermediate Representation (IR) is specified to formulate
the scheduling factors by taking both graph-level and the
runtime-level execution mechanism into consideration,
and eventually build a structural search space for the final
scheduling optimization;

• In the established scheduling search space, we transform
multi-tenant scheduling into an optimization problem and
propose an automated ML-based searching algorithm to
find the optimal scheduling strategy on GPU. Specifically,
the GPU runtime resource is profiled and adopted as the
searching cost, granting the whole solution with expected
runtime awareness.

We conduct extensive experiments across a wide range
of multi-tenant inference scenarios. The results show that
our method could consistently achieve 1.3×∼1.7× accelera-
tion than the common deep learning runtime libraries (e.g.,

Deep Learning Frameworks

Graph Optimization

Runtime Optimization

Operator Optimization

Layer, Data Flow Definition

Op Fusion, Graph Substitution

Op Dispatch, Kernel Invoke

Tiling, Unrolling, Reordering 

VGG ResNets InceptionV3…

Op1

Op2

Op3 s
c
h

e
d

u
le

r

Fig. 2. DNN execution stack. Our work proposes a graph- and runtime-level
cross-layer scheduling framework for multi-tenant inference optimization.

CuDNN, TVM) and other concurrent scheduling methods
(e.g., NVIDIA Multi-Stream). Meanwhile, benefited from the
end-to-end search method design, our method could be eas-
ily applied onto 10s of multi-tenant combinations and GPU
platforms with short search time (∼2mins), demonstrating the
great scalability of our automated scheduling framework.

II. BACKGROUNDS AND MOTIVATION

A. Cross-Level Scheduling through DNN Execution Stack

We first expand the backgrounds of DNN execution stack
as shown in Fig. 2, that is composed of multiple architecture
levels [18]: (a) The top framework level includes different
deep learning development frameworks, such as TensorFlow
and PyTorch, that define various DNN model structures.
(b) The graph level untangles model structures to abstract
individual operators and identify the data processing flow as
directed acyclic graphs (DAG) [21]. Graph-based optimization
is thus introduced into this level to achieve operator fusion
and sub-graph substitution, and therefore reduce memory ac-
cess/operator invoking overheads, etc. (c) Down to the runtime
level, it controls when and how operators are dispatched
onto physical computing units and is critical in our balanced
resource utilization. This is usually done by the native black-
box GPU scheduler, but we could leverage certain APIs
to adjust the dispatching results. In our work, we use the
“stream” [17] and “synchronization” [24] APIs to achieve fine-
grained operator concurrency control as we will show later. (d)
The operator level is the bottom level that conduct per-operator
execution, such as tiling, unrolling, reordering, etc., to improve
the computing efficiency. Such intra-operator optimization has
a distinct scope and is orthogonal to the concurrent operator
scheduling, and thus is not considered in this work.

Motivation: As existing single-level works (e.g., graph-
alone, operator-alone) can hardly offer comprehensive solu-
tion, we aim to bridge different levels in this work and build a
cross-level scheduling framework to improve the multi-tenant
inference performance from graph to runtime.
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Fig. 3. Overview of Our Proposed Automated Scheduling Strategy Search Framework.

B. Resource Contention in Multi-Tenant DNN Inference

Resource contention is a specific challenge emerging in the
multi-tenant inference. Different from single-model inference
which usually faces under-utilization issues, resource con-
tention reflects the operator competition for limited hardware
resources. Specifically, there are two types of contention that
are commonly known: computing contention and memory con-
tention. Generally, convolutional operators tend to be compute-
bound as it involves mostly FLOPs-intensive computing, while
the operators like pooling/residual connections are usually
memory-bound. When executed concurrently, same type of
operators can saturate the corresponding resources, and cause
slower execution speed due to the limited size of shared
memory and L1 cache, memory bandwidth, etc.

Motivation: Thus, multi-tenant scheduling is a finer con-
currency control problem, which not only concerns under-
utilization but also contention issues.

C. Scheduling Complexity in Multi-Tenant DNN Inference

Moreover, multi-tenant inference optimization have a much
larger complexity: (a) From a spatial perspective for inference
parallelism, on each single execution stage, the overall amount
of operators from different models is much more significant
than a single-model scheduling scope. (b) From a temporal
perspective, through the whole execution process, different
model structures and depths also raise considerable schedul-
ing challenges to maintain consistent and balanced resource
utilization and improve the runtime latency. Therefore the
design/search space of the scheduling strategy for multi-tenant
DNN inference becomes ever complex, and conventional man-
ual tuning or heuristic-based methods are hard to scale and
reach satisfying performance.

Motivation: In addition to other design motivations, we
will eventually solve this problem by proposing an efficient
search space representation and leverage automated ML-based
methodologies to coordinate massive operators for optimal
resource utilization and runtime latency.

III. THE SCHEDULING FRAMEWORK

A. Fine-grained Scheduling Problem Abstraction

This work targets at efficient multi-tenant DNN inference
on GPUs. Considering the applications such as autonomous
driving systems, we specify it as a compound task consisting
of N independent DNN models sharing the same input for
different inference sub-tasks. Demonstrated as Fig. 3 (a), each
DNN inference sub-task consists of a series of operators, such
as conv, bn, relu, pooling, etc, which must be performed in
certain order according to the data flow dependency. While
across DNN models, operators are independent and thus could
be flexibly scheduled with certain degrees of concurrency. Our
optimization objective is to minimize the overall latency of N
inference sub-tasks, which is the overall time from the earliest
starting time of the tasks to the latest ending time.

The key of multi-tenant scheduling is to manage the concur-
rency for consistent and balanced resource utilization. There-
fore, we abstract the multi-tenant DNN inference scheduling
as a fine-grained concurrency control problem through the
following steps: (a) Achieving the stream-level concurrency:
We allocate one GPU processing stream for each model to
achieve the concurrency (Fig. 3 (b)). However, even with
certain concurrency, native GPU stream-based scheduling dis-
patches operators without dedicated scheduling management.
(b) Finer-grained stage splitting: To achieve finer-grained
operator-level concurrency control, we insert synchronization
barriers, namely pointers, to split each stream’s operator
sequence into several shorter stages (Fig. 3 (c)). Such stage
splittings ensure the operators to only share the assigned
resources in the same stage, thus supporting the stage-level
concurrency control. (c) Stage-level concurrency control: By
adjusting where the pointers are inserted, we could control how
many operators are assigned in each stage. This enable us to
reduce or increase the concurrency in a fine-grained manner
to manage the resource utilization (Fig. 3 (d)). (d) Intra-stage
operator invoking optimization: After deciding the scheduling
strategy, our final step is the scheduling deployment. During



this implementation, we also optimize the operator invoking
logic to prevent the invoking overhead of early streams from
stalling later ones (3-e), as we will introduce later.

B. Unified Intermediate Representation Design

As a multi-tenant DNN inference task consists of N par-
allelable models: M1,M2, ...,MN . We represent each DNN
model by one stand-alone operator sequence2:

M1 : [1, 2, ..., a],

M2 : [1, 2, ..., b],

MN : [1, 2, ..., c],

(1)

where M indicates a DNN model, each number in one list
indicates one operator’s index, and a (or b, c) is the largest
index of the DNN’s operators.
Stream: To satisfy the sequential dependency per model, we
assign each model to one stand-alone GPU processing stream:

Si ← Mi, i ∈ (1, 2, ..., N), (2)

where Si indicates the i-th stream. An example with three
streams is shown in Fig. 3 (b). Operators in one stream can
only be launched sequentially, while operators in different
streams could be executed concurrently.

The multi-stream mechanism enables the maximum con-
currency of DNN inference streams. However, as aforemen-
tioned, scheduling by streams alone can only have stream-level
concurrency control, which is still coarse-grained and does
not suffice to manage each operator’s associated concurrency
during its life span. To control the concurrency in a finer
granularity, we then use synchronization barriers to split each
stream’s full sequence into several shorter stages.

Pointer: We use pointers to annotate the appropriate posi-
tions where we insert synchronization barriers. An illustrated
pointer-based stage splitting is shown in Fig. 3 (c)(d). Taking
the first stream as an example, a pointer set with three pointers
divides the first stream sequence into four shorter ones:

ρ1 : (3, 5, 7) + S1 : [1, 2, 3, ..., 9, 10] =

S
′

1 : [1, 2, 3], [4, 5], [6, 7], [8, 9, 10],
(3)

where ρ1 is the pointer indexes, S1 is the original operator
sequence, and S

′

1 is the split sequence with synchronization
barriers inserted. Each pointer set splits one stream sequence
into several shorter ones, thus enabling a finer-grained concur-
rency scheduling.

Stage: Between each two pointers, the launched operators form
a stage. Due to the sync barriers, all operators in the same
stage must all finish so as to step into the next stage. Thus, by
controlling how many operators are launched in each stage,
we could precisely manage the concurrency in the most fine-
grained operator level. An example is given in Fig. 3 (d). By

2For multi-branch models like ResNets, we also serialize the operators into
one sequential sequence as their intra-model concurrency is limited. Such a
representation enables us to better optimize the inter-model concurrency in
the multi-tenant inference scenario.

inserting the first synchronization barrier, we could enable six
operators to concurrently execute in the first stage:

Stage 1 : [S1(1, 2, 3), S2(1), S3(1, 2)]. (4)

By contrast, we could also reduce the concurrency in the
second stage by assigning no operators in the third stream:

Stage 2 : [S1(4, 5), S2(2), S3(None)]. (5)

Similarly, all stages can be generated with a desired concur-
rency, thus enabling operator-level concurrency control.

Schedule: The final scheduling strategy is composed of mul-
tiple stages in the synchronization barriers’ ordering, which is
represented as a multi-stage nested list:

Schedule τ : [Stage 1, Stage 2, Stage 3, ...], (6)

where τ indicate the composed scheduling strategy, which can
have multiple stages, depending on the number of synchro-
nization barriers (i.e., pointers) we used to split each stream
sequence. Fig. 3 (d) shows an example that uses three sync
pointers for four stages. More synchronization enables finer-
grained concurrency control, but at the price of potentially
higher synchronization overhead.

C. Automated Scheduling Search

The IR design explicitly defines the scheduling factor and
the corresponding strategy for multi-tenant GPU inference.
However, it is still challenging to identify the particular
scheduling controls given various compound tasks with un-
certain DNN structures. As aforementioned, considering the
complexity, manual schedule tuning can take considerable
efforts and also cannot scale with more complicated models’
combination and varied GPU platforms. Therefore, we propose
to use an ML-based search approach to solve the scheduling
problem in an automated manner.

Formulation: Formally, our primary search target is to find an
optimal scheduling strategy that yields the lowest latency:

τ∗ = argmin
τ

f(τ), for τ ∈ Dτ , (7)

where τ∗ is the optimal scheduling strategy, f is the cost model
that evaluates the latency of the current schedule τ , and Dτ

is the search space of all potential schedules. Specifically, to
solve this search problem, three basic components need to be
clarified, namely, the search space, the cost model and the
searching algorithm.
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Fig. 4. The automated scheduling search framework overview.



Search Space is supposed to enumerate all possible scheduling
strategy candidates. To represent such a search space, we
adopt the scheduling factors from the proposed IR design (i.e.,
streams, pointers and stages).

As defined in Eq. 6, τ can be formulated as a nested list and
can be treated as a graph-level scheduling strategy. Although
such a nested list is easy to understand and facilitates the
deployment process onto GPU, the list-based search space
Dτ is non-structural with varied list lengths and can be hard
to directly optimize. To solve this problem, we leverage the
one-to-one mapping property between pointer indexes ρ and
the schedule lists τ , and shrink the search space to a lower-
dimensional pointer index matrix by building an 1:1 schedule
mapping function, as shown in Fig. 4:

ρ∗ = argmin
ρ

f(τ),

s.t. τ = T (G, ρ), for ρ ∈ Dρ.
(8)

Here the scheduling generation function T (·) generates one
schedule τ based on two inputs: the graph G and the pointer
matrix ρ. As G is usually fixed in a given task, the schedule
generation function T (·) maps each pointer matrix to one
schedule. Thus, searching schedule could be transformed to
searching the pointer index matrix, the latter of which has a
much more structural input space. By such transformation, we
could thus greatly reduce the optimization difficulty.

Cost Model: With the search space defined, we then require a
cost model f(τ) to evaluate the performance of each schedule
candidate. There are two major ways to construct the cost
model: modeling-based or profile-based. The modeling-based
method [22] builds hardware-specific modeling to estimate the
real runtime performance, which is efficient but can be inaccu-
rate in complex scenarios. The profiling-based method [18] is
more accurate but requires physical hardware execution, which
can be more time-consuming if the search space is very large.

Algorithm 1 Coordinate Descent Search Algorithm.
1: Input: The IR of N models M [N ], the number of pointers

in each model P , the rounds of search R.
2: Output: The optimal pointer matrix ρ [N,P ].
3: Initialize a dictionary D{schedule:cost} to store records.
4: for rounds r = 1 to R do
5: for model i = 1 to N do
6: Sample M candidates ρ1:M [i] for the i-th row.
7: for the m-th candidate ρm[i] do
8: Profile the latency latm by multiple runs.
9: Append {ρm : latm} to the records D.

10: end for
11: Update the i-th row ρ[i] of pointer matrix to the one

with the lowest latency by argmin(latm).
12: end for
13: end for
14: Sort the global records D by the profiled latency.
15: Return the schedule ρ with the globally lowest latency.

In this work, we use the profiling-based cost model since
our empirical case study shows that, our searching time can
be maintained at small scale (∼mins) benefited from our ded-
icated search space abstraction. Therefore, the profiling-based
model can give accurate runtime-aware performance cost and
lead to better search performance in our case. For the cost
model implementation, we leverage our built infrastructure,
which could efficiently generate and deploy each candidate
schedule onto the target GPU and obtained the profiled latency
during multiple averaged runs. The averaged latency is then
used as the cost of each candidate schedule.

Search Algorithm: With the input space and cost model
defined, we could then use ML-based methods to search for
the optimal schedule with the minimal latency.

In this work, we mainly implement two search algorithms,
the random search and the coordinate descent search. The
random search method samples scheduling solutions (different
pointer matrices) randomly from the search space and profiles
their latency as the cost. A memory module will record all
schedules and costs, and after certain rounds of search, the
algorithm will return the schedule with the lowest latency. As
we will show later, though the random search algorithm is
simple, it could greatly reduce the multi-tenant runtime latency
by large margins, highlighting the advantages of our problem
abstraction and the search framework design.

Based on a similar process, the coordinate descent search
algorithm improves the sampling efficiency by adopting a
coordinate-alternated search philosophy. The overview of the
coordinate descent search algorithm is shown in Algorithm 1.
It treats different streams’ pointer index vectors (rows in the
pointer matrix) as different coordinates. Then it alternatively
finds the optimal pointer index vector for each coordinate,
during when other coordinates’ solution are kept as the pre-
vious optimal one. The optimal pointer index vectors for all
streams are updated for each round, and after certain rounds,
the algorithm returns the optimal schedule from all previously
searched schedules. Generally, the coordinate descent search
algorithm could yield slightly performance than random search
algorithm. But both methods could yield near optimal schedule
solutions within short time, as we will evaluate later.

D. Implementation Optimization

After determining the optimal schedule, we can deploy
the schedule onto the GPUs. This is done by invoking the

Stream 0: [1, 2, 3], Stream 1: [4, 5, 6], Stream 2: [7, 8, 9]

Issuing Order = [1 -> 2 -> 3 -> 4 -> 5 -> 6 -> 7 -> 8 -> 9]

Stream 0: [1, 2, 3], Stream 1: [4, 5, 6], Stream 2: [7, 8, 9]

Issuing Order = [1 -> 4 -> 7 -> 2 -> 5 -> 8 -> 3 -> 6 -> 9]
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Fig. 5. Long-sequence operator invoking by DFS can significantly stall other
streams. We optimize the scheduler logic to BFS issuing to reduce such stall.
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GPU kernels according to each stage’s IR. In multi-stream
execution, the operator invoking is controlled by a main
thread and invoking each operator takes a small duration of
time. Although individually small, an inappropriate invoking
sequence can also influence the latency, especially in high-
concurrency stages with many operators.

Fig. 5 (a) showcase one example of operator invoking-
caused stall. The default scheduler utilizes a depth-first (DFS)
issue logic that issues all operator sequentially in one stream to
ensure the operator dependency is maintained, and then iterates
overall all streams. However, when there are multiple operators
in the beginning streams, operators in the later streams can be
significantly stalled due to the accumulated operator invoking
overhead. To relieve such stall, we optimize the default DFS
logic into a breadth-first (BFS) strategy. Fig. 5 (b) illustrates
the BFS logic, which issues one operator from each stream
interleavingly, and then iterates until all operators are issued.
In such cases, all streams get similar invoking priority, and
the operator dependency is also maintained in each stream.
As a result, we could greatly reduce the operator invoking
overhead for the later streams. Fig. 5 shows an example
which we could reduce the stall from 102.75→ 51.23us and
177.27→ 51.23us for Stream-1 and Stream-2.

IV. EXPERIMENTAL EVALUATION

A. Experiment Setup

Model Zoo for Multi-Tenant Combination: We construct var-
ious multi-tenant scenarios by leveraging the following neural
network models: AlexNet (Alex), VGG16 (V GG), ResNet18
(R18), ResNet34 (R34), ResNet50 (R50) and ResNet101
(R101). These models have distinctive model depths with
operator numbers varying from 7 ∼ 20 to 86 ∼ 216. In
addition, operators from different models also have particular
computing and memory requirements. For example, the convo-
lution operators have a wide range of computing complexity,
e.g., from 32 ∼ 64 filters per layer to 256 ∼ 512 filters per
layer. Therefore, each different multi-tenant combination based
on the above models will pose its unique resource utilization
imbalance challenges and has distinctive optimal scheduling
strategies, mimicking the varied and complex multi-tenant
scenarios of real-world applications.

Evaluation and Comparison Baselines: Three popular base-
line scheduling strategies are considered.

• CuDNN-Seq [25]: The default strategy supported by the
NVIDIA CuDNN library, which runs the multi-tenant
inference sequentially;

• TVM-Seq [18]: A operator-level optimization method
that adopts the TVM library [18] to search for the opti-
mal kernel for each operator. However, without runtime
support, it can only run these kernels sequentially;

• Stream-Parallel [17]: The concurrent execution strategy
from native GPU multi-stream support [17]. It assigns
models to different streams and leverages the default GPU
scheduler to schedule the execution sequence.

Inference Setup: We conduct neural network inference on
ImageNet [1] that has an image scale of 224x224x3 with single
batch size to mimic the inference in practical applications
such as autonomous driving. Two NVIDIA GPU platforms
are utilized: Titan V of Volta architecture, P6000 of Pascal
architecture. For all latency measurement, we record the
averaged latency (ms) by profiling the same number of runs
for our method and the baselines.

B. Speed-Up Evaluation

We first compare the inference latency of the baselines and
our methods. The results are shown in Fig. 6. All methods’
latency is normalized by the CuDNN-Seq baseline to show the
relative acceleration ratio. Five multi-tenant settings, which
cover a wide range of multi-tenant combinations are built
up. For example, Alex + V GG + R18 which is a relatively
simple ones (10∼30 operators), and R18+R50+R101 whose
operator numbers can over 200 is the most complex one, etc.
For our method, we show both search algorithms’ performance
in our framework – the random search (Ours-Random) and
coordinate descent search (Ours-Coor).

Overall Speed-up: It can be observed that our scheduling
framework could consistently yield 1.3× ∼ 1.6× speed-up
compared to the sequential baselines across all five model
combinations. Although the Stream-Parallel solution also
yields a certain speed-up than CuDNN-Seq, its acceleration
ratio is only 1.1× ∼ 1.3×, which is much less than ours.

Higher Speed-up in Highly Non-balanced Scenarios: It is
worth noting that our method achieves the highest acceleration
ratio, i.e., 1.5× and 1.6×, on the two most challenging
scenarios R18 + R34 + R101 and R18 + R50 + R101.



TABLE I
SCALABILITY EVALUATION (BS=1, 224X224, GPU: TITAN-V W/ VOLTA ARCH, LATENCY: MS)

#Models Names CuDNN-Seq TVM-Seq Stream-Parallel Ours-R Ours-C
2×

m
od

el
s VGG + R18 3.989 3.898 3.638 3.096 (1.29×) 2.912 (1.37×)

R18 - R34 4.673 3.453 3.743 3.382 (1.38×) 3.128 (1.49×)

R34 + R50 6.688 5.785 5.449 4.725 (1.41×) 4.478 (1.49×)

R50 + R101 10.75 10.435 8.588 8.385 (1.28×) 8.203 (1.31×)

3×

VGG + R18 + R50 7.674 7.637 6.522 5.639 (1.36×) 5.587 (1.37×)

R18 + R34 +R50 8.344 6.949 6.301 5.404 (1.54×) 5.096 (1.63×)

5× VGG + R18 + R34 +R50 + R101 17.962 16.742 12.848 10.91 (1.65×) 10.42 (1.72×)

However, the Stream-Parallel performs poorly (only 1.1×) in
these two settings. The reason is that such two multi-tenant
combinations introduce extremely distinctive model lengths
from 29 operators (ResNet18) to 200 operators (ResNet101),
which brings significant resource imbalance between early and
later stages across the entire processing. The native hardware
scheduler in Stream-Parallel cannot take this into consideration
and push all operators into the beginning stages, and thus
cannot balance the resource utilization effectively. Therefore,
it can only reach limited acceleration ratio.

Illustration of our Resource Balance Mechanism: In contrast
to the hardware scheduler in Stream-Parallel, our method
could effectively find a better scheduling solution via our
pointer-based barrier insertion and automated search algorithm
and hence achieves higher speed-up in the highly unbalanced
scenarios. We visualize the kernel invoke timeline of our
scheduling strategy on the R18 + R50 + R101 scenario, as
is depicted in Fig. 7, to reveal the mechanism. The number
of operators issued in each stage is symbolically denoted
by the length of each colored block. The results show that
our searched scheduling could effectively reduce the number
of operators in the early stages to avoid potential resource
contention and leave more operators into the later stages to
enhance resource utilization. As such, our scheduling enables
optimal resource utilization and finally achieves significantly
lower latency performance than the Stream-Parallel solution.

Analysis on GPU Utilization Enhancement: We further pro-
filed and checked the GPU runtime statistics to analyze and
compare the overall GPU utilization with different scheduling
strategies. Fig. 8 demonstrates the utilization statistics com-
parison between CuDNN-Sequential, Stream-Parallel, and Our
scheduling strategy. We use the number of active warps per
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Enhanced Utilization
in Later Stages

Stream-1

Stream-2

Stream-3

0 25 50 75 100 Time Stamp

Fig. 7. Illustration of our Resource Balance Mechanism: Our method could
find a balanced schedule to avoid both contention and under-utilization, thus
achieving better performance than sequential and native parallel solutions.

second as an indicator of GPU utilization information [26]. As
is observed, our scheduling strategy averagely obtains 1.5×
utilization enhancement than the sequential schedule, which
is consistent with our speed-up performance.

C. Scalability and Generality Performance

In this section, the scalability and generality of our auto-
mated scheduling framework are evaluated.

Scalability with Varied Number of Tenants: We evaluate the
scalability of our scheduling framework with varied number
of model inference on one single GPU. Specifically, we test
on three settings: 2× models, 3× models, and 5× models with
seven multi-tenant combinations in total.

The overall latency is shown in Table I, which reveals that
our framework could scale well with the different number
of tenants. Our framework could consistently obtain 1.3×
to 1.7× acceleration than the sequential baseline across all
benchmarks. Especially, in the five-model combination setting,
we achieve the lowest runtime latency 10.42 ms, which is 7.5
ms lower than CuDNN-Seq (17.96 ms), and 2.4 ms lower than
Stream-Parallel (12.85 ms), demonstrating the huge potential
of our framework in accelerating practical applications.

Generality with Different GPUs: We then evaluate the gen-
erality of our scheduling framework with different GPU
platforms. We test five multi-tenant settings on a different
GPU: NVIDIA P6000 of Pascal architecture. The P6000 GPU
is the last version before Titan-V and has slightly lower
peak computing performance (12.6 vs. 14.9 TFLOPS). As
the overall performance in Table II shows, our scheduling
framework also yield significant performance gain (1.25× to
1.47× acceleration) on the different GPU platform.
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Fig. 8. Enhanced GPU Utilization Statistics. The number of active warps per
second shows that our schedule could yield continuously better SM utilization.



TABLE II
GENERALITY EVALUATION (BS=1, 224X224, GPU: P6000 W/ PASCAL ARCH, LATENCY: MS)

Models CuDNN-Seq TVM-Seq Stream-Parallel Ours-Rand Ours-Coor

Alex + VGG + R18 5.754 5.523 4.694 4.225 (1.36×) 4.126 (1.39×)

VGG + R18 + R50 9.687 8.978 8.524 7.739 (1.25×) 7.425 (1.30×)

R18 + R34 +R50 9.884 9.352 7.714 7.031 (1.41×) 6.727 (1.47×)

R18 + R34 + R101 14.278 13.256 11.833 11.08 (1.29×) 10.463 (1.36×)

R18 + R50 + R101 15.785 14.631 12.32 11.246 (1.40×) 10.711 (1.47×)

Advantage of Automated Searching: The above evaluations
demonstrate that our framework could produce an optimal
scheduling with better resource utilization and higher runtime
speed. In addition, the experiments results also reflect one
of the most promising advantage of our framework – easy-
to-scale. With the automated search algorithm design, our
framework could automatically find the optimal scheduling
strategies for varied number of tenants, distinct multi-model
combinations, and different GPU platforms, significantly re-
lieving the scheduling complexity and manual tuning efforts.

D. Search Algorithm Comparison and Overhead Analysis

In this section, we compare the search algorithms and
analyze their introduced off-line running cost.

Search Algorithm Comparison: Fig. 9 compares two search
algorithms’ performance through their searching latency. The
blue line (Naive-Parallel) illustrates the native stream-based
scheduling performance. The green line (Ours-Coor) denotes
the scheduling latency with coordinate descent search while
the red line (Ours-Rand) shows the random search results.
The same search rounds are conducted in the evaluations.
The results indicate that the coordinate search generally has
better performance than random search in the four multi-
tenant conditions. Especially, in complex scenarios like Fig. 9
(d), random search may generate infeasible solutions that
are filtered out and leave only few solutions, and thus have
slightly worse performance than coordinate descent search.
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Fig. 9. The Search Algorithm Comparison.

TABLE III
THE FRAMEWORK RUNNING OVERHEAD (TITAN-V).

#Search Rounds 100 300 500 1000

Alex + VGG + R18 ∼9.8s ∼28.9s ∼51.4s ∼1min35s

VGG + R18 + R50 ∼10.3s ∼27.1s ∼48.9s ∼1min28s

R18 + R50 + R101 ∼16.2s ∼45.3s ∼1min32s ∼2min42s

Nevertheless, both our search methods outperform the stream-
based parallel solution by a large margin across all cases.

Framework Overhead Analysis: Our framework could usually
yield near optimal schedule solutions within short search time.
The framework’s running time is demonstrated in Table III.
We profile the coordinate descent search with different search
rounds from 100 to 1000, which are general settings for most
aforementioned multi-tenant scenarios. As the results show,
our framework’s running overhead maintains in the range
of ten seconds to several minutes at most. Meanwhile, as
such automated schedule can be pre-conducted offline given a
defined multi-tenant scenario, we consider such offline tuning
overhead is highly acceptable.

V. CONCLUSION

In this work, we tackle the multi-tenant inference opti-
mization problem on GPU. Differently from single-model
inference optimization, multi-tenant computation brings sig-
nificantly higher compute complexity. To solve such compute
complexity, we build an automated scheduling framework
for multi-tenant inference optimization. Specifically, We first
abstract the multi-tenant DNN inference scheduling as a
fine-grained concurrency control problem, and implement the
concurrency control by utilizing stream and synchronization
based mechanisms. Based on the problem abstraction, we then
formulate the DNN compute graphs and the scheduling factors
with a unified IR design. Based on that, we formally define the
scheduling search space. In the established scheduling search
space, we transform multi-tenant scheduling into an optimiza-
tion problem and propose an automated ML-based searching
algorithm to find the optimal scheduling strategy. Experiments
demonstrate our method could yield near optimal performance
within short time, and meanwhile surpass previous scheduling
method by 1.3× ∼ 1.7× acceleration.
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