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Abstract—An adversary can exploit side-channel information
such as power consumption, electromagnetic (EM) emanations,
acoustic vibrations or the timing of encryption operations to
derive the secret key from an electronic device. Signature
aTtenuation Embedded CRYPTO with Low-Level metAl Routing
(STELLAR) is a technique to mitigate power and EM-based
attacks, however, it incurs 50% power overhead. This work
presents iSTELLAR, which reduces the power overhead by oper-
ating STELLAR intermittently utilizing an intelligent scheduling
algorithm. The proposed scheduling algorithm for iSTELLAR

determines the optimal locations during the crypto operation to
turn STELLAR ON, and thereby reduces the power overhead
by >30% compared to the normal STELLAR operation, while
eliminating the information leakage.

I. INTRODUCTION

The development of devices containing greater amounts

of sensitive information has sparked the creation of many

strong, mathematically secure cryptographic algorithms. Un-

fortunately, side channel analysis (SCA) attacks bypass these

algorithms by monitoring the effects of the algorithm on a

physical platform through power consumption, electromag-

netic emanations (EM), timing of operations, or acoustic

vibrations. By measuring these aspects of the physical com-

putations, an attacker is able to discover sensitive information,

e.g., extracting the secret key from a cryptographic algorithm.

Signature aTtenuation Embedded CRYPTO with Low-Level

metAl Routing (STELLAR) mitigates power and EM SCA by

routing the cryptographic core through the lower metal layers,

and then embedding the crypto core locally within a signature

attenuation hardware, which suppresses the critical correlated

crypto signature significantly before passing it through to

the higher metal layers to connect to the external pins [1].

STELLAR, proposed in 2019 [1], was shown to be secure

against EM and power SCA even after 1M encryptions for an

AES-128 [2]. However, STELLAR incurs a 50% power over-

head to actively suppress the crypto power signature (when

compared to the unprotected crypto core). To address this

issue, we propose iSTELLAR – a programmable technique to

implement STELLAR intermittently based on the side-channel

leakage, thereby providing security while reducing the power

overhead.

Fig. 1: STELLAR provides high resilience to side channel attacks but
requires 50% power overhead. iSTELLAR performs STELLAR intermittently
to reduce overhead in two stages. In the first stage we generate joint mutual
information (JMI) rankings to determine which parts of the algorithm’s
execution reveal information about the key. In the second stage, we generate
an iSTELLAR schedule to determine when STELLAR should be turned ON
(shown in red) or OFF (shown in green).

The goal of iSTELLAR is to minimize the power con-

sumption while maximizing the security of the crypto imple-

mentations against SCA attacks. Unfortunately, iSTELLAR

cannot instantly turn ON and OFF, as it requires a turn ON

delay of a few cycles. In this paper, we study those start-

up constraints and propose scheduling algorithms to only

turn ON iSTELLAR at critical time points to minimize both

power overhead and information leakage (i.e., maximize SCA

security).

In order to maximize the SCA security, we determine which

periods of time to turn STELLAR ON based on information

leakage as shown in figure 1. We develop an information

leakage model by selecting an algorithm and performing an

implementation of the selected algorithm in SimAVR [3].

Using our information leakage model, we rank the information

leakage of the implementation cycle by cycle based on its use-



fulness to an attacker in a side channel attack. Utilizing these

information leakage rankings and iSTELLAR’s constraints,

the iSTELLAR scheduling algorithm decides the cycles in

which to turn STELLAR ON or turn it OFF.

The major contributions of this paper are:

• Analysis of how to operate STELLAR intermittently.

• A careful accounting of a specific trade-off space to

maximize security and minimize power consumption.

• Analysis of algorithms to minimize information leakage

under specific power thresholds.

The remainder of this paper is organized as follows. Sec-

tion II defines the threat model, describes STELLAR, and

motivates the use of iSTELLAR. Section III outlines the

security evaluation. Section IV presents iSTELLAR schedul-

ing algorithms, which aim to minimize power overhead and

information leakage. Section V describes the results of per-

forming iSTELLAR algorithms on three implementations of

cryptographic algorithms. Section VI discusses related work

and Section VII provides concluding remarks.

II. BACKGROUND

A. Threat Model

We assume the attacker has physical possession of the

target device, is able to run security critical programs with

arbitrary inputs, and is capable of collecting detailed power

or EM traces. Our experimental results target the attack of

cryptographic algorithms running on a microcontroller. Our

analysis can be extended to other scenarios given appropriate

attacks and power/EM models. We assume the attacker is

aware of when the computation of the cryptographic algorithm

begins with microsecond level precision (e.g., by using simple

power analysis) and is able to collect multiple traces. We

make no assumptions about the equipment the attacker uses

to collect traces.

B. STELLAR

The concept of STELLAR is shown in figure. 2(a). The

STELLAR technique proposes routing the crypto core within

the lower metal layers and then embedding it within a sig-

nature attenuation hardware (SAH) which suppresses the cor-

related critical crypto signature significantly before it reaches

to the higher metal layers. figure 2(b) shows the design of

the SAH, which ensures that the current from the top current

source (CS) remains almost equal to the average crypto current

independent of the crypto core switching. STELLAR prevents

against both EM as well as power SCA attacks. For EM SCA

protection, STELLAR is placed locally within the lower-level

metal layers embedding the crypto core, which is also routed in

the lower metals. It has been shown that the higher metal layers

leak more EM radiation compared to the lower metals due to

its larger dimensions. Hence, STELLAR uses the SAH circuit

to attenuate the critical signature within the lower metal layers

before it goes through the higher metals to prevent against

EM SCA. The SAH reduces the correlated signal to noise

ratio (SNR) significantly and hence provides high power SCA

immunity as well [1], [4].

a)

b)
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Fig. 2: (a) STELLAR technique; and (b) design of the Signature Attenuation
Hardware (SAH). (c) Time-domain measurements of the unprotected and
protected AES with the SAH (STELLAR) shows > 350× current-domain
signature attenuation.

As shown in figure 2(b), the SAH is designed with a CS

on top which provides a high output impedance ensuring that

the voltage fluctuations across the entire execution of AES

are significantly suppressed before the critical information

reaches the supply pin. Now, as the top CS current cannot

be exactly equal to the average crypto current, it is set to

the closest quantization level, and the quantization error (∆)

is bypassed through a shunt bleed path. Also, to compensate

for process, voltage and temperature (PVT), a switched mode

digital control loop with a guard band is used which turns

ON or OFF the required number of CS slices to maintain an

average crypto current from the top. Recently, in 2021 [5],

a fully-synthesizable implementation of the STELLAR has

also been proposed. iSTELLAR aims to intermittently turn

ON the STELLAR countermeasure – only protecting the most

sensitive computations. Hence, it is important to analyze the

start-up constraints involved with the SAH design.
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Fig. 3: The joint mutual information (JMI) of a subset of a power trace collected from an AES-128 implementation from DPA Contest v4.2 [6]. The x-axis
shows the time (cycle number) and the y-axis the JMI, which corresponds to the amount of information leakage. Cycles that have larger JMI reveal more
information about the key.

C. Motivation

Figure 3 provides an example of why STELLAR incurs

larger than necessary overhead by protecting all portions of

the computation. It shows information leakage of a software

implementation of AES-128 (obtained from the DPA Contest

v4.2 [6]) running on an AVR microcontroller. The leakage is

computed using joint mutual information (JMI)(JMI explained

in detail in section III). Samples of the power trace that have

larger JMI values reveal more information about the secret key.

While some cycles have very high information leakage (noted

by the high peaks in JMI), other cycles have low leakage or

zero leakage. Given this, we can turn STELLAR ON for the

cycles with high leakage (shown in red), and turn STELLAR

OFF for the cycles with low or no leakage to minimize the

power consumption (shown in green).

III. SECURITY EVALUATION

iSTELLAR requires security evaluation in order to deter-

mine when it is most beneficial to turn STELLAR ON and

how effective STELLAR will be when turned ON. We choose

to use joint mutual information(JMI) as a quantitative metric

to determine the most vulnerable points in the algorithm’s

execution and use minimum traces to disclosure (MTD) [7]

as a qualitative metric to determine how effective STELLAR

will in mitigating SCA.

A. Joint Mutual Information (JMI)

1) Usage: We use JMI to rank time periods within the

traces and these rankings are used to determine when we turn

STELLAR ON/OFF [8], [9]. We calculate JMI using equation

1.

JMIi =
∑

j∈B

I(f(ti, m̂, ŝ) ⌢ f(tj , m̂, ŝ); ŝ). (1)

a ⌢ b calculates the concatenation between a and b, and

f is a function used to represent a trace. The trace takes an

independently and uniformly random message and the secret

key from vectors m̂ and ŝ. I(C; D) determines the mutual

information for a and b which determines how much we can

learn about C based on how it is related to D. It is calculated

using equation 2 where H(C) is the entropy of C and H(C|D)
is the conditional entropy of C given D. B is the set of indices

(i) that we have chosen to turn STELLAR ON.

I(C;D) = H(C)−H(C|D). (2)

As indices are added to B, they are given a ranking based

on their JMI. The index with the greatest mutual information

with the key will be ranked highest and would be selected

first. The algorithm repeats this process with successive time

indices ranked according to how much easier they would make

it for an attacker to recover the key. Once the time indices have

been ranked, the JMI scores are normalized so that the sum

of all the JMI rankings is 1.

We determine JMI during design time to ensure we perform

iSTELLAR in a manner that is consistent across any and all

executions of the cryptographic algorithm. The iSTELLAR

schedule is determined before the execution starts, and is the

same regardless of the data that is being computed. Thus, this

does not introduce a timing channel.

2) Reasoning: One reason we choose joint mutual informa-

tion (JMI) as a metric is because it considers how each point

in an algorithm’s execution is related to all the other points

[10], [11]. Consider a scenario where x1 ⊕ x2 = y under

the assumption that x1 and x2 are statistically independent

Boolean variables [12]. In this scenario, the mutual informa-

tion between x1 and y =0 and the mutual information between

x2 and y is 0. However, if we concatenate x1 and x2 ,the

mutual information between the concatenation of x1, x2 and

y is greater than 0 because the information from these Boolean

3
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Fig. 4: (a) Timing diagram of the iSTELLAR operation: At start-up, for the first time (only for one-time calibration), the delay is contributed by the digital
control loop settling delay, which takes ∼ 3 cycles to settle to the number of CS slices to ensure average crypto current from the top CS and the digital
loop runs at a 10× lower frequency than the crypto core. In steady state, the main delay is caused due to the settling time of the analog biases to set the
top CS stage in saturation to ensure a high output impedance and maximize the signature attenuation of the current source. (b) Output of the digital control
loop determines the number of CS slices to be turned ON. (c) CS current with the iSTELLAR operation, showing ∼ 40ns turn ON delays for all different
conditions. The steady state delay constraint (circled in blue) is also illustrated in figure 5 which needs to be accounted for in the iSTELLAR scheduling
algorithm.

variables completely determines y. Similarly, a SCA security

evaluation metric such as the Test Vector Leakage Assessment

(TVLA) may determine the time index of a security-sensitive

algorithm has low vulnerability by considering just that index.

However, combining functions or multivariate histograms with

a few time indices, it may still be attractive to an adversary

if considered alongside additional time indices. While metrics

that only consider one point in an algorithm’s execution at

a time are very effective for determining vulnerability to a

number of powerful attacks [13]–[16], an implementation may

still be vulnerable to attacks which consider multiple points

in an algorithm’s execution at a time [17]–[19].

Another reason we choose joint mutual information as a

metric is because it provides a numeric score [10]. Having

a numeric score allows us to precisely compare each cycle

in an algorithm’s execution to other cycles and precisely

compare one potential iSTELLAR schedule to any other

potential iSTELLAR schedules. We assume that each cycle

in an algorithm’s execution that handles sensitive information

has the potential to reveal it if left unprotected and this is

indicated by a non-zero JMI value. However, different cycles

may reveal differing amounts of information to an adversary.

Time periods with high JMI values indicate high vulnerability

to SCA attacks and similarly time periods with low JMI values

indicate low vulnerability to SCA attacks.

While we performed our analysis using JMI, our method-

ology can easily use other leakage assessment metrics. Any

metric capable of providing a numeric score to compare one

cycle in an algorithm’s execution to another could be used in

place of JMI to rank and determine the time points that are

most vulnerable to SCA.

B. Minimum Traces to Disclosure (MTD)
1) Usage: MTD is defined as the number of measurements

necessary to distinguish the correct secret key guess from

other incorrect secret key guesses in a side channel attack [7].

Figure 2(c) shows that the signature in case of the protected

implementation is significantly suppressed by > 350× com-

pared to the unprotected implementation, thereby promising a

> 3502× improvement in the MTD. Recently, STELLAR has

been fabricated in TSMC 65nm process using AES256 as the

crypto core [20]. Embracing signature attenuation and local

lower metal routing, the countermeasure achieved a MTD of

> 1B, which to the best of our knowledge is the best reported

result to date. Due to the efficiency of STELLAR, we assume

that if STELLAR is turned ON, then the cycles it protects

will not leak sufficient information for an adversary to launch

a SCA attack and these cycles will assume a JMI value of 0.

2) Reasoning: We chose minimum traces to disclosure

(MTD) as a metric because it models the time and effort

it would take for an adversary to successfully launch an

SCA attack in a practical scenario.We did not use MTD to

compare each cycle in algorithm’s execution to the others

because it is computationally expensive when considering

how each point in an algorithm’s execution is related to

all other points. If we need to consider how each point is

related to all other points we must calculate the MTD for (n:1),

(n:2), (n:3)...(n:m) where m is the number of time points an

adversary uses for their attack and m < n. This increases the

time complexity to O(n:m).

IV. ISTELLAR

STELLAR can remain ON for any amount of time. How-

ever, if we turn STELLAR OFF to conserve power during

cycles with low or no leakage, we must wait a certain amount

of time for STELLAR to complete its start-up process. As a
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result, we must determine when to turn STELLAR ON/OFF

while allowing it the necessary time to start back up after

being turned OFF.

A. Constraints

The timing diagram for the iSTELLAR operation is shown

in figure 4. At start-up, the signature attenuation hardware

(SAH) requires a few cycles for the digital switched mode

control (SMC) loop to set the CS current at the average

crypto current. The SMC, which runs at 10× lower frequency

compared to the crypto core, requires ∼ 2− 3 cycles to reach

steady state, which is ∼ 20−30 crypto clock cycles. In steady

state, the scheduling algorithms for iSTELLAR intermittently

turn the SAH ON and OFF depending on the information

leakage content in the traces. Once the digital loop is stable

and the STELLAR operates in steady-state, the iSTELLAR

algorithm may want to turn STELLAR OFF after a certain

time point. With STELLAR turned OFF, once iSTELLAR

turns it ON again, the CS biases need to settle to the correct

bias voltages to ensure the transistors remain in saturation for

a high output impedance thereby leading to a high signature

attenuation.

Figure 5(a) shows that one of the 32 bits of the SMC

output (S16) switches from zero to one, which means that the

corresponding CS slice should be turned ON. Now, to turn ON

a CS slice, the bias voltage at the gate of the PMOS needs

to transition from the supply voltage (1.1V) to the CS bias

voltage (VCS). With the AES operating at 50MHz, the settling

time for the PMOS bias is ∼ 40ns. This implies that, we need

to wait for ∼ 40ns once we turn OFF STELLAR to turn it

back ON. For the purpose of our calculations in sections IV-C

and V-B we conservatively estimate this analog settling time to

have a turn ON delay of 3 cycles in our digital loop to account

for a broad range of clock speeds. This analog settling time as

shown in figure 5 is ∼ 40ns, and this is the typical steady state

delay the iSTELLAR needs to handle each time the STELLAR

SAH circuit is turned ON and OFF. Note that this delay is due

to the settling of the analog bias voltages to turn ON the PMOS

CS slice, and is equal to the RC time constant for the node,

where R is the on resistance and C is the gate capacitance

of the PMOS. Now, if the frequency of the crypto core is

increased, the size of the PMOS CS slice can be increased

accordingly so that the RC time constant remains the same (R

reduces, C increases due to larger size). Hence, iSTELLAR

only needs to deal with the analog bias settling delay of 40ns

as it turns OFF and ON the PMOS CS (figure 5). While this

is typically the only delay, iSTELLAR may require up to 10

crypto clock cycles (equivalent to 1 cycle of the SMC loop)

to account for the PVT(process/voltage/temperature) variations

and settle to the optimal number of CS slices, as illustrated in

figure 4.

1) Overheads & Performance of iSTELLAR: As discussed,

in steady state operation of the STELLAR, the only constraint

for turning it ON and OFF is the turn ON delay for the analog

bias to bring the top current source stage into saturation region.

Our scheduling algorithm for iSTELLAR ensures that at the

end of its OFF time, it turns ON the STELLAR circuit for

the bias settling. Hence, there are no performance overheads

associated with the turn ON or OFF of the STELLAR hard-

ware.

Overall, the area overhead for STELLAR is ∼ 40% and the

power overhead is ∼ 50% [1], which is drastically reduced

using the proposed iSTELLAR technique without incurring

any performance penalty.

B. iSTELLAR Lower Bound

To determine the best times to turn STELLAR ON, we

began by developing a best-case scenario algorithm to min-

imize power consumption and maximize security to establish

iSTELLAR’s lower bound for power consumption. In this

algorithm, we assume we can turn STELLAR back ON

immediately after turning it OFF.

First, we determine the total information leakage for a trace

according to each cycle’s JMI. Next, we find the highest

leakage cycle and mark it as a cycle where we would like

to turn STELLAR ON. After this, we add it to a list of

cycles we plan to turn STELLAR ON for and determine the

new total information leakage and power overhead for turning

STELLAR ON. We continue this process for every cycle that

has a JMI greater than zero or until we reach a power overhead

threshold selected by the designer. For example, in figure 6a,

we would mark cycles in the following order: 239, 230, 225,

242, 238, 237, 243, 240, 235, 219, 241,222, 232, 226, 211,

221, 220, 215, 227, 231, 216. After marking these cycles we

would choose to turn STELLAR ON for the cycles we selected

(shown in red) and OFF for the cycles we did not select (shown

in green).
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(a) iSTELLAR Lower Bound

(b) Challenge

(c) iSTELLAR

Fig. 6: (a) By turning ON STELLAR (shown in red), we can hide parts of
the trace, which effectively eliminates the information leakage, that is, JMI =
0. (b) However, if we turn it OFF for cycles where there is no information
leakage, we must wait for a set amount of cycles (shown in green) for it
to start back up . (c) If we keep STELLAR ON for some cycles that have
no information leakage, then we are able to hide nearby cycles with high
information leakage.

C. iSTELLAR Scheduling

Using the lower bound algorithm under realistic constraints

presents an interesting challenge due to the turn ON delay

required after turning STELLAR OFF. In most circumstances,

this will be the 40 ns turn ON delay which we conserva-

tively estimate to be 3 crypto clock cycles to account for a

broad range of clock speeds. This means that after we turn

STELLAR OFF, we must wait 3 clock cycles before turning

STELLAR back ON. As a result, if any cycle we plan to select

is within 3 cycles of a cycle we have already selected, we will

have to ignore it because it would violate the 3 cycle turn ON

delay. Similarly, if we want to account for the 10 cycle turn

ON delay due to PVT variations, we ignore cycles that would

violate the 10 cycle turn ON delay

In figure 6b, the lower bound algorithm would mark cycles

230 and 239 because they have the highest JMI. Next, it would

mark cycle 225 rather than cycle 236 because it is within 3

cycles of another cycle we have already marked. For the same

reason, cycles 216-218, 220-224, 226-229, 231-234,236-238,

and 240-242 would be ignored and cycles 215, 219, 235 and

243 would be marked.

To further decrease information leakage, we chose to check

for and address cycles that occur during the turn ON delay

between STELLAR being turned OFF and being turned back

ON. If a new cycle we plan to mark would violate the turn

ON delay of a cycle we have already marked, we will keep

STELLAR ON between the cycle we plan to mark and the

cycle we have already marked.

Figure 6c shows how using this approach addresses the

challenge from our first approach. Using this approach, the

lower bound algorithm would still mark cycles 230 and 239

because they have the highest JMI. Next, it would mark cycle

236 and realize that it would violate the turn ON delay if

we turned STELLAR OFF then tried to turn it ON again for

cycle 239. As a result, we would also mark cycles 237 and

238 even though they do not have the next highest JMI. This

process continues until we have marked all of the cycles that

have a JMI value greater than 0. It will also mark cycles 216-

217, 223-224, 228-229 and 233-234 even though they have a

JMI value of 0 to ensure STELLAR stays ON between cycles

that would violate each others’ turn ON delay. However, it

will not mark cycles 212-214 because no surrounding cycles

violate each others’ turn ON delay time. Even though we use

power to turn STELLAR ON for cycles where STELLAR is

unnecessary, we are able to achieve higher security at a lower

power overhead.

V. RESULTS

Using iSTELLAR’s constraints, the JMI rankings for each

cycle, iSTELLAR’s power overhead lower bound and an

iSTELLAR scheduling algorithm, we are able to develop an

iSTELLAR schedule to minimize information leakage and

power overhead. We can choose to keep STELLAR OFF for as

many cycles as we choose, to make tradeoffs between power

and security. This section evaluates these tradeoffs.

A. Experimental Setup

We develop power traces using SimAVR to simulate an

Atmel ATmega328 chip [3]. SimAVR is capable of executing

binaries compiled by the avr-gcc toolchain as they would

be run on an AVR microcontroller and we use it to collect

power traces using a Hamming distance leakage model [13].

6



(a)

(b)

(c)

Fig. 7: (a) Considering the 3 cycle turn ON delay, iSTELLAR achieves
38.14% less power overhead on AES(avr), (b) 36.78% less power overhead
on PRESENT(avr), and (c) 30.18% less power overhead than STELLAR on
AES(DPA)

Although we evaluate power traces, a similar experimental

setup could be performed to use EM traces.

To perform our evaluation, we collect power traces for

214 experimental plaintext and secret key vectors on an

implementation of AES-128 from DPA Contest v4.2 [6], an

implementation of PRESENT [21] from the avr library and

an implementation of AES from the avr library. Under this

model, each time point in a trace consists of the difference in

Hamming distance between an opcode and its predecessor for

different experimental plaintext and secret key vectors [12].

For our information leakage model we assume that toggling

a bit consumes one bit of power and leaving a bit unchanged

consumes no power. Our information leakage evaluation is

independent of the instruction type or the type of the data.

(a)

(b)

(c)

Fig. 8: (a) Considering the process/voltage/temperature (PVT) variations,
iSTELLAR achieves 24.98% less power overhead on AES (avr), (b) 25.80%
less power overhead on PRESENT (avr), (c) and 23.93% less power overhead
than STELLAR on AES (DPA).

B. Power vs Security

Since STELLAR is responsible for eliminating informa-

tion leakage, we consider any decision to keep STELLAR

ON/OFF as a tradeoff between power and security. We can

choose to maximize security by ensuring STELLAR is ON

for every cycle that leaks information or we can minimize

power overhead by having the designer select a specific power

threshold and only turning STELLAR ON for cycles the

iSTELLAR scheduling algorithm has marked up to that point.

Once we establish an iSTELLAR schedule, the schedule will

be constant for all executions of the algorithm regardless of

the input data to avoid introducing a timing channel.

Figure 7a shows the power and security for using

iSTELLAR on an implementation of AES-128 from the avr

library. The red square labeled STELLAR is representative

7



TABLE I: Power Overhead for iSTELLAR

Algorithm AES(avr) PRESENT(avr) AES(DPA)

STELLAR 50% 50% 50%
Lower Bound 11.87% 12.67% 19.82%

3 cycle turn ON delay 13.14% 13.22% 20.05%
10 cycle PVT delay 24.20% 25.02% 26.07%

of the baseline STELLAR technique. This assumes that no

iSTELLAR scheduling algorithm is used and STELLAR

remains ON for the entire algorithm’s execution. Under these

conditions, STELLAR incurs a 50% power overhead, but is

able to eliminate power and EM leakage to reduce the sum of

JMI rankings to 0. This means it is not possible to launch an

SCA attack because an adversary will not be able to differ-

entiate between different secret key hypotheses by measuring

the power consumption or electromagnetic emanations.

The yellow line in figure 7a labeled Lower Bound as-

sumes the scenario outlined in section IV-B which ignores

iSTELLAR’s turn ON delay constraint to establish a best-case

scenario for minimizing power consumption and maximizing

security. Under these conditions, the sum of JMI rankings

starts at 1 which means power and EM leakage is completely

unmitigated and vulnerable to attack. If we choose to turn

STELLAR on, only for cycles that have a JMI value great

than 0, we are able to reduce the sum of JMI rankings to 0

for 11.87% power overhead. Additionally, if 11.87% power

overhead is still too high, the designer can establish a power

threshold, and the iSTELLAR scheduling algorithm is able to

maximize security for that threshold.

The blue line in figure 7a labeled 3 cycle turn on delay

assumes the scenario outlined in section IV-C which requires

a 3 cycle turn ON delay to turn STELLAR back ON after

it has been turned OFF. Under these conditions, we are able

to reduce the sum of JMI rankings to 0 for 13.14% power

overhead, only 1.27% higher than the Lower Bound scenario.

Furthermore, we are also able to maximize security within a

power threshold for around the same power overhead as the

Lower Bound scenario.

Figure 7b shows the power and security for using

iSTELLAR on an implementation of PRESENT from the avr

library and 7c shows the power and security for using an

implementation of AES-128 from DPA Contest v4.2. Figure 8

repeats the scenarios for 7 with the a 10 cycle PVT turn ON

delay rather than the typical 3 cycle turn ON delay to account

for worst case conditions. These results are summarized in

table I.

C. Discussion

We believe that the efficiency of iSTELLAR may be de-

pendent on the leakage distribution in the implementations

of the different algorithms. The implementation of AES-

128 from DPA Contest v4.2 may have the power overhead

closest to the Lower Bound scenario because its leakage is

distributed over fewer cycles. While 28.71% of the cycles

in this implementation of AES-128 have a JMI value of 0,

only 14.06% of the cycles in the AES-128 implementation

from the avr library have a JMI value of 0, and only 13.57%

of the cycles in the PRESENT from the avr library have a

JMI value of 0. We further note that the implementations of

PRESENT and AES-128 from the avr library have similar

leakage distributions and similar power overheads necessary

to turn STELLAR ON for.

VI. RELATED WORK

Power side-channel countermeasures attempt to modify the

power trace signal to hide any information related to the key.

Some techniques add active equalization circuitry to diminish

power variations during execution and keep the power supply

constant [22], [23]. Other techniques use signal attenuation

hardware to reduce the power cost of noise injection [24]

or use a suppression circuit to reduce low frequency power

variations and a low-pass filter to reduce high frequency power

variations [25]. There are some ideas to use internal power

sources which an adversary cannot modify e.g., a charge-

pump circuit using on-chip capacitors [26] and a switched

capacitor circuit to isolate an AES core from the power supply

line [27]. The disadvantage to these works is that they were

not applied selectively in order to allow designers to make

trade-offs between performance, area, and security. While

computational blinking [12] also identifies non-uniformity in

information leakage, it implements a switched capacitor circuit

rather than using signal attenuation hardware. As a result,

applying the different techniques intermittently has different

accommodations and requires different constraints. STELLAR

is one of the most recent proposals as a signature attenuation-

based countermeasure and has been demonstrated to achieve

the highest security (MTD of 1B traces) with only ∼ 50%
power and ∼ 40% area overheads [4], [5]. Moreover, it is

a generic countermeasure (agnostic to any crypto algorithm)

without any performance degradation.

VII. CONCLUSION

Although STELLAR provides protection from power and

EM SCA, it incurs larger than necessary power overhead

because many of the cycles it protects do not have any

information leakage. By turning STELLAR ON and OFF, we

are able to to eliminate all information leakage with minimal

power overhead. However, turning STELLAR OFF, we must

give it a set amount of cycles to turn back ON. Utilizing our

proposed scheduling algorithm for iSTELLAR, we address

this issue by turning STELLAR ON for all cycles with high

information leakage as well as some of prior cycles with low

information leakage to avoid violating startup constraints. We

were able to eliminate information leakage with 38.14% lower

power overhead.
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