A DataFlow Fault CoverageMetric For Validationof
Behavioral HDL Descriptions

QiushuangZhangandlan G. Harris
Departmentf ElectricalandComputerEngineering
Universityof Massachusetts
Ambherst,MA 01003
gzhang@ecs.umass.ethayris@ecs.umass.edu

Abstract—

Behavioral HDL descriptions are commonly usedto capture
the high-level functionality of a hardware circuit for simulation
and synthesis. The manual processof creating a behavioral
description is error prone, so significant effort must be madeto
verify the correctnessof behavioral descriptions. Simulation-
based validation and formal verification are both techniques
used to verify correctness. We investigate validation because
formal verification techniquesare fr equently intractable for large
designs. The first steptoward a behavioral validation technique
is the developmentof a validation fault coverage metricwhich can
be usedto evaluate the lik elihood of designdefectdetectionwith
a given testsequence.

We proposea validation fault coverage metric which is based
on an analysisof the control data flow description associatedwvith
the behavior. The proposedmetric identifies a subsetof paths
through the data flow which must be traversed during testing
to detectfaults. The proposedmetric is a tractable compromise
betweenthe statementcoverage metric which requiresonly that
eachstatementbe executed,and the path coveragemetric which
requiresthat all data flow paths be executed. Data flow paths
are identified basedon the relative code locations of definitions
and usesof variables which may be assignedincorrectly dueto a
designerror. We proposean efficient method to computeall data
flow paths which must be traversed, and we generate coverage
resultsfor several benchmark VHDL circuits for comparisonto
other approaches.

I. INTRODUCTION

Design validation by simulation-basedechniquesis the most
commonapproacho verificationdueto thecomputationatompleity
of formal techniques. Validation entails the generationof a test
patternsequencevhich is appliedto the designduring simulationto
trigger erroneousbehaior. A key problemin behaioral validation
is how to measurethe quality of testvectors. Unlike in the area
of manufcturing testing, there doesnot yet exist a metric which
is widely acceptableby the validation community Some metrics
aretaken from softwaretesting,suchas statementoverage,branch
coverageandpathcoverage Statementoverageandbranchcoverage
metricsareoverly simplisticandcannotrevealsophisticatedhardware
descriptionlanguaggHDL) faults. Pathcoverageis a morestringent
metric, however the requirementthat all control pathsbe explored
malkesthis metricvery pessimistic.

A validation fault model has been developed at the finite state
machindevel [1] whichassumethateacherroraffectseitherasingle
statetransitionor a singletransitionoutput. A behaioral level fault
modelhasbeenproposedn [2] and[3] whichassumethatary single
variable assignmenin a behaioral descriptionmay be incorrect.

Mutation analysishasbeenusedfor hardware validation previously
in [4] by corvertinga VHDL programinto a functionally equialent
Fortranprogramandthenusingthe Mothratool for softwaremutation
analysig5].

Complex hardware systems are commonly described by a
behaioral hardwaredescriptiorasafirst stepin thesynthesigprocess.
A designerror in a behaioral descriptionmust be activated and
propagatedo a primary output by a test sequencen order to be
detectedTheactivationandpropagatiorof a behaioral designerror
is associatewvith asubpathof thecontroldataflow graphwhichstarts
with the nodewherethefaultis activated,andendsata nodeleading
to a primary output. A major difficulty in behaioral validationis
theidentificationof a minimal setof subpath®of the dataflow which
must be executedto detectall validationfaults. Several validation
fault coveragemetrics have beenproposedpreviously in the area
of software testingwhich identify pathsbasedon their length. For
example statementoveragerequireshatall statementareexecuted,
effectively executingall pathsof lengthl. At anotherextreme,path
coveragerequireshatall pathsof maximumlengthbeexecuted.Path
lengthhasbeerusedpreviously becausé limits thecompleity of the
validationprocesshut it is only grosslycorrelatedo fault detection.
Informationembeddedh thedataflow graphcanbeusedo screerout
alargenumberof unnecessargubpathsindependenof pathlength.

A large body of researchn software testinghas studiedthe use
of dataflow analysisin this contet. The primary goal of dataflow
analysisis the identificationof pathsin which a variableis assigned
to a value which may be faulty, and that variableis then usedto
perform an operation. Several testadequayg criteria basedon data
flow analysishave beendeveloped[6], [7], [8], [9], [10] basedon
theseideas. The basiccriteria include all definitions criterion, all
usescriterion and all definition-use-pathgriterion. Thesecriteria
are concernedmainly with the simplesttype of data flow paths
that start with a definition of a variable and end with a use of
the samevariable. We have adaptedsome of thesetechniques
for the validation fault coverage analysisof behaioral hardware
descriptions. The mostsignificantdifferencebetweensoftware and
hardwaredescriptiongs the needto modelthepassagef realtimein
hardware. This is performedin a behaioral HDL throughthe useof
time-varying signalsandconcurreng constructssuchasthe process
in VHDL. Dataflow analysisfor hardware must considerthe data
flow relationshipsetweermultiple processesandbetweendifferent
instantiationof the sameprocess.

We proposea validation fault coverage metric for behaioral
VHDL basedon dataflow analysiswhich evaluatesthe data flow
coverageachieved by usinga giventestpatternsequenceDataflow
analysisis an efficient methodto reveal designfaults. Our approach
consistsof threesteps:First, we generatehe flow graphof anHDL
description.Secondwe selecta subsebf dataflow pathswhich are
requiredto be executed. Third, the HDL descriptionis simulated

with the candidateestpatternsto determinethe fraction of required
subpathsvhich areexecuted.

The remainderof this paperis organizedas follows: Section2
introducesour dataflow metric for HDL descriptionsand presents
our approacho evaluatedataflow coverage.Section3 and4 presents
theresultsandconclusiongespectiely.

1. DATA FLOW ANALYSISFOR HDL DESCRIPTIONS
A. Definition

Data flow analysisfor HDL descriptionsis concernedwith the
occurrence®f signalsand variablesin a HDL description. Each
signal or variable occurrencein a VHDL descriptionis classified
as either a definition occurrenceor a use occurrenceaccordingthe
classificationn softwaretesting. A definitionoccurenceof a signal
or variabledescribes statementvherea valueis boundto the signal
or variable. A useoccurrenceof a signal or variable describesa
statementwvhich refersto the value of the signal or variable. This
occurrenceinformation is addedto the flow graph representation
as a preprocessingtepto facilitate dataflow analysis. A number
of corventionsof flow graph modelscan be used. In the flow
graph model we use, each node representsa single statementin
the descriptionand edgesrepresenstatemenexecutionorder The
flow graph representsnot only the computationinformation, but
alsorelative timing and concurreng information using the process
statement.

Concurreng addscomplity to dataflow analysisof hardware
whencomparedo dataflow analysisof sequentiasoftwareprograms.
In general, an HDL description has both concurrentstatements
(e.g. signal assignmentland sequentialstatementge.g. variable
assignment)fiming information (e.g. X <='1' after 1 ns), and
suspendingnd resumingcontrol (e.g. "wait” statementsensitvity
list). Thesefeaturesallow complec relationshipshetweenoperation
executiontimes. For example,a sequentiaktatemenexecutesand
finishesinstantly an assignmento a signal X (X <=' 1’ after 1
ns;) takes 1 ns to finish, a "wait until” statementakes a variable
amountof time to finish. This timing informationis uniquein an
HDL descriptionand must be representedn the flow graph. In a
multiple processeslescription,inter-processcommunicatiorfurther
complicatesthe dataflow. Sincethe execution of a processmay
resumeotherprocessesgynamically adu pair canlie in two different
processesand definition occurrenceand use occurrencecan take
place simultaneously etc.. All this timing information which is
uniqueto anHDL descriptionrmustberepresenteth theflow graph.

Examplel: This example shawvs the flow graph of a VHDL
descriptionwith simple timing information. A signal assignment
statementoesnot finish instantly it takes sometime to complete
the assignmentln this example,sinceno delaytime specifiedin the
statementgheassignmenwill finishattheendof simulationcyclein
which eachprocessxecuteauntil next "wait” statementThe VHDL
descriptionis asfollows:

PROCESS BEG N

1 wait until clock’ event and clock = '1";
2 if(B="0) then

3 Zout <= P + Q

4 el se

5 Zout <= P - Q

6 end if;

7 if(A="0") then

8 P <=C+ D

9 el se

10 P<=C- D
11 end if;
END PROCESS;

Figure 1 shavs the dataflow representatiomwith timing information
of thedescription.The occurrencesf signalsareomittedexceptthat
of signalP. The signalsA, B, Q andclodk are primary inputsand
Zou is primaryoutput. Therearetwo typesof nodesandtwo typesof
edgesn thegraph.Thesquarenodesrepresents time pointatwhich
statementdinish, so we refer squarenodesas timing nodeswhich
executeandfinish instantly like sequentiaktatementsThe circular
nodesarereferredascomputatiomnodes eachof which corresponds
to a statementn the description. The solid edgesin the flow graph
represensequentiaéxecutionorder;theheadnodeof theedgebegins
to executeafter the tail nodecompletelyfinishes. The dashededges
representconcurrentexecution sequencethe headnode begins to
executejust after the tail nodebegins to executeanddoesnot finish
immediately In this example,no delayinformationis givento the
assignmenstatementsso the executionof assignmentéinish at the
endof the currentsimulationcycle, thengoto next "wait” statement.
Thenode”End SimulationCycle” is atiming node.

NNV

\\ / End
Simulation
End Process Cycle

Fig. 1. Flow graphin examplel.

Basedontheflow graphmodelintroducedaborve, adefinitionclear
path with respecto signalor variable X is a pathin the flow graph
without definition occurrenceof X. A definition-use(du) pair of
signalor variable X consistsof a definition anda useof variable X
which areconnectedy adefinitionclearpathwith respecto X, from
thedefinitionto the use.If adu pairis exercisedn the definition-use
sequenceéy sometestpatternsthenwe saythis du pair is covered
by the testpatterns.All definition-usgdu) pairs metric[6] requires
thatall du pairsbecoveredby thetestpatternsj.e. every definitionto
every useof thatdefinitionshouldbe exercised.In Figurel, thereare
four du pairsof variableP, (8 — 3), (8 — 5), (10— 3) and(10— 5),
andthesedu pairsarerequiredto be executedby all du pairsmetric.

Comparedo the path coveragemetric, all du pairs coveragehas
wealer fault detectionability, but requiresmuch smallernumberof
testcaseshecausealu pairsare not redundantlyexecuted. Compared
to branchandstatementoverage all du pairscoveragehasstronger

Process(clock)
variable X, Zout: integer;

begin

1 if A="0"then

2 X:=in1; -- good version X := 2*in{;

3 else

4 X:=in2;

5 endif;

6 ifZ="0"then

7 if X =0 then

8 Zout:=1;

9 else

10 Zout :=2;

11 endif;

12 else

13 if X > 2 then

14 Zout = 3;

15 else

16 Zout ;= 4;

17 end if;

18 endif;

end process;

Fig. 2. VHDL descriptionandtheflow graphin example2.

fault detectionability, but requires more test casesthan branch
and statementoveragebecause du pair may consistsof multiple
branchesindstatementsAll du pairscoveragerepresents tractable
tradeof betweertestcompleity andeffectiveness.

B. Validation Fault Assumption

Any validationfault coveragemetricmusttargetsomesetto design
faults for detection. The targetedfault setimpactsthe compleity
of the fault metric, as well as the accurag of the fault metric.
Statementoverageassumeshe faults occur at a single statement,
branchcoverageassumeshe faultsoccurat a single branch. In the
dataflow graphmodelof aHDL descriptionafaultcanbeassociated
with a setof pathswhich allow thefaultto be detected All du pairs
metric assumes fault effect occurringat a variable definition may
only by propagatecby a subsetof usenodes. In orderto ensure
propagatiorof all faults,all du pairsmustbe executed.

Example2 is shawvn in Figure2. ThevariableX hasfour du pairs,
2—7),(2— 13),(4 — 7) and(4 — 13). A faultis injectedat node
2, wherethe correctversionof node2 is "X := 2xinl;". This fault
will affect only du pair (2 — 13), so it canbe detectedonly by the
executionof the specificdu pair (2 — 13) via the highlightedpathin
theflow graphin Figure2. Executionof the otherthreedu pairscan
cover all statemenandall branchesbut cannotdetectthe fault. This
examplealsoillustratesthatall du pairsmetricis strongetthanbranch
coverageandstatementoverage.

C. Appmoad to all du pairs coverage.

Ourapproacho all du pairscoverageconsistf threesteps:
1. Data flow representation. This stepis to generatethe dataflow
representationf a HDL description. Timing informationshouldbe
representedn the flow graph. At this stage,our implementation
canonly dealwith a subsetof VHDL language suchasIF, CASE,

LOOP statementssignalandvariableassignmentsvithout delayand
sensitvity lists. Flow graphsof a singleprocessiescriptionis similar
to the graphin Figure 1 exceptthe 'wait’ nodeis at the end of the
processA concurrenstatementvill have asolid edgedirectedto the
'End SimulationCycle’ nodeanda dashededgepointing to the next
statementvithout finishing the currentstatement.'wait’ statements
are the points at which processesuspendand resume,and act as
inter-processcontrol points. Sensitvity lists of multiple processes
controlthe executionsequencdetweerthe processeslf a signalon
thesensitvity list of process is assignedn process, theexecution
of processA will causethe executionof process.

2. du pairs identification. After generationof the flow graphof a
descriptionall du pairsareidentified. Thereareno du pairsinvolving
input andoutputsignalssinceinputscannotbe assigned valueand
outputscan not be usedinside descriptions. In a single processf
thereis a definition clear path betweena du pair, thenthis du pair
is valid. Note that the outgoingedgeof definition node mustbe a
solid edgewhich meanghatthe definitionis complete.ln a multiple
processe$low graph,a du pair may lie betweentwo processesTo
identify theseinter-processiu pairs,we first find the synchronization
pointsbetweenprocessesncludinga commonsignalsin sensitvity
lists. The searchfor du pairs continuesin a similar mannerto the
singleprocess/ersionby treatingthe synchronizatiompointsasedges
betweerthe dataflow graphsof the communicatingprocesses.

3. Coverage determination The behaioral descriptionis simulated
with candidatdestpatterngo determinavhich du pairsareexercised.
Timing information adds difficulties to this step becausefirst
executiondoesnot necessarilymply first completion. A du pair is
coveredonly if thedefinitionis completebeforeits use.

| benchmark

| #of statements | # of du pairs | du pairs cov. | statementcov. |

ARMS_COUNTER 32 69 0.87 1

BARCODE 44 68 0.69 0.95
TLC 38 a7 1 1
BUS_ARBITER 24 45 0.78 1
FIFO 59 92 0.86 1

TABLE |
EXPERIMENTAL RESULTS OF ALL-USES METRIC COMPARED WITH STATEMENT COVERAGE

I11. EXPERIMENT RESULTS

We have evaluatedour data-flav fault model by computingthe
all du pairs coverage of several behaioral VHDL descriptions
and comparing the coverage to statementcoverage. The first
three examples are ARMS_COUNTER, BARCODE and TLC
from the HISynth92 benchmarksuite. FIFO comes from web
site of www.vhdl-online.desponsoredby University of Erlangen-
Nurnbeg. ARMS_COUNTER, BUS ARBITER and FIFO are
multiple processeslescriptions. The coverageresultsare shavn in
tablel. Columns2 and 3 containthe numberof statementsvhich
containssignalsor variablesdefinitionsor usesandthenumberof du
pairsrespectiely. All du pairsmetricresultsarelistedin column4
andstatementoverageresultsarelistedin column5.

To comparestatementoverageandall du pairscoveragewe select
sufficient pseudo-randortestpatterngdo make thestatementoverage
closeto 1. In the ARMS_COUNTER,BARCODE, BUS ARBITER
andFIFO examplestheall du pairscoverageis lower thanstatement
coveragewhich meanssome test casesare not exercisedby test
patterns. If faultsarein theseun-exercisedflows, thenthey cannot
be detectedby thetestpatterns.n the TLC example,the coverageof
both metricsare 1. Thisis a specialcasein which mostsignalsare
usedonly in onestatementso the numberof du pairsis closeto the
numberof statementsThereforewhenall statementsre exercised,
theall du pairsareexercisedaswell.

Theaverageall du pairscoverageover five examplesis 0.84while
averagestatementoverageis 0.99,which meanshatafter statement
coveragegoal achiered, approximately16% du pairs are left un-
executed.Examiningtheseexampleswe find thattheseun-executed
dupairsareprimarily cornercasesassociategvith hard-to-testlesign
faults. For example,in the FIFO benchmarkthe casein which the
readsignalis assertedhfterthe resetsignalis asserteds ignoredby
the statementoveragemetric. Sincethis cases associateavith adu
pair, theall du pair metricreflectsthatthis caseis executed.

V. SUMMARY

We use data flow testing techniquesto define a fault coverage
metric which enables efficient evaluation of test patterns for
behaioral hardware validation. The useof the all du pairsmetricis
basedon dataflow analysisandshavs strongpotentialin examining
dataflow faults. However, more investigationis neededo identify
infeasibledu pairs,andto considerobserability issueson long data
flow paths.We provide all dupairscoverageresultsfor severalVHDL
benchmarkso demonstratéhe utility of theapproach.

REFERENCES

[1] A Gupta, S. Malik, and P. Ashar “Toward formalizing a
validationmethodologyusingsimulationcoverage”, in Design
AutomationConfeence pp.740-7451997.

[2] F Fallah, P. Ashar and S. Devadas, “Simulation vector

(3]

[4]

5]

[6]

[7]

(8]

9]

[10]

generationfrom hdl descriptionsfor obserability enhanced-
statementcoverage”, in Proceedingsof the 36th Design
AutomationConfeence pp.666—671,1999.

S. Devadas,A. Ghosh,and K. Keutzer “An obsenrability-

basedcode coverage metric for functional simulation”, in

InternationalConfeenceon ComputerAidedDesign pp.418—
425,1996.

G. Al Hayekand C. Robach, “From specificationvalidation

to hardware testing: a unified method”, in International Test
Confeence pp. 885-8931996.

K. N. King and A. J. Offutt, “A fortran languagesystem
for mutation-basedoftware testing”, Softwae Practice and

Engineeringvol. 21, pp.685-718,1991.

S RappsandE. J. Weyuker, “Selectingsoftwaretestdatausing

dataflow information”, IEEE Trans.on Softwae Engineering

vol. SE-11,pp.367-375April 1985.

P. G. FranklandJ. E. Weyuker, “An applicablefamily of data
flow testingcriteria”, |EEE Trans.on Softwae Engineering

vol. SE-14,pp. 1483-1498(ct. 1988.

S. C. Ntafos, “A comparisonof some structural testing
stratgies”, IEEE Trans.on Softwae Engineering vol. SE-14,
pp.868-874,1988.

J. Laski andB. Korel, “A dataflow orientedprogramtesting
stratgy”, |IEEE Trans.on Softwae Engineeringvol. SE-9,pp.

33-43,1983.

L. A. Clarke, A. PodgurskiD. J. RichardsonandS. J. Zeil, “A

formal evaluation of dataflow path selectioncriteria”, IEEE

Trans. on Softwae Engineering vol. SE-15, pp. 1318-1332,
1989.

	Main Page
	ICCAD2000
	Front Matter
	Table of Contents
	Session Index
	Author Index
	Call for Papers

