
A DataFlow FaultCoverageMetric For Validationof
Behavioral HDL Descriptions

QiushuangZhangandIan G. Harris
Departmentof ElectricalandComputerEngineering

Universityof Massachusetts
Amherst,MA 01003

qzhang@ecs.umass.edu,harris@ecs.umass.edu

Abstract—
Behavioral HDL descriptions are commonly used to capture

the high-level functionality of a hardware circuit for simulation
and synthesis. The manual processof creating a behavioral
description is error prone, so significant effort must be made to
verify the correctnessof behavioral descriptions. Simulation-
based validation and formal verification are both techniques
used to verify correctness. We investigate validation because
formal verification techniquesarefr equently intractable for large
designs.The first step toward a behavioral validation technique
is the developmentof a validationfault coverage metricwhich can
be usedto evaluate the lik elihood of designdefectdetectionwith
a given testsequence.

We proposea validation fault coveragemetric which is based
on an analysisof the control data flow description associatedwith
the behavior. The proposedmetric identifies a subsetof paths
thr ough the data flow which must be traversed during testing
to detect faults. The proposedmetric is a tractable compromise
betweenthe statementcoveragemetric which requiresonly that
eachstatementbe executed,and the path coveragemetric which
requires that all data flow paths be executed. Data flow paths
are identified basedon the relative code locations of definitions
and usesof variables which may be assignedincorr ectly due to a
designerror. We proposean efficient method to computeall data
flow paths which must be traversed, and we generatecoverage
results for several benchmark VHDL circuits for comparison to
other approaches.

I . INTRODUCTION

Design validation by simulation-basedtechniquesis the most
commonapproachtoverificationdueto thecomputationalcomplexity
of formal techniques. Validation entails the generationof a test
patternsequencewhich is appliedto thedesignduringsimulationto
trigger erroneousbehavior. A key problemin behavioral validation
is how to measurethe quality of test vectors. Unlike in the area
of manufacturing testing, there doesnot yet exist a metric which
is widely acceptableby the validation community. Somemetrics
aretaken from softwaretesting,suchasstatementcoverage,branch
coverageandpathcoverage.Statementcoverageandbranchcoverage
metricsareoverly simplisticandcannotrevealsophisticatedhardware
descriptionlanguage(HDL) faults.Pathcoverageis a morestringent
metric, however the requirementthat all control pathsbe explored
makesthis metricvery pessimistic.

A validation fault model has beendevelopedat the finite state
machinelevel [1] whichassumesthateacherroraffectseitherasingle
statetransitionor a singletransitionoutput. A behavioral level fault
modelhasbeenproposedin [2] and[3] whichassumesthatany single
variable assignmentin a behavioral descriptionmay be incorrect.

Mutation analysishasbeenusedfor hardwarevalidationpreviously
in [4] by convertinga VHDL programinto a functionallyequivalent
FortranprogramandthenusingtheMothratool for softwaremutation
analysis[5].

Complex hardware systems are commonly described by a
behavioral hardwaredescriptionasafirst stepin thesynthesisprocess.
A designerror in a behavioral descriptionmust be activated and
propagatedto a primary output by a test sequencein order to be
detected.Theactivationandpropagationof a behavioral designerror
is associatedwith asubpathof thecontroldataflow graphwhichstarts
with thenodewherethefault is activated,andendsat a nodeleading
to a primary output. A major difficulty in behavioral validation is
theidentificationof a minimal setof subpathsof thedataflow which
must be executedto detectall validation faults. Several validation
fault coveragemetrics have beenproposedpreviously in the area
of software testingwhich identify pathsbasedon their length. For
example,statementcoveragerequiresthatall statementsareexecuted,
effectively executingall pathsof length1. At anotherextreme,path
coveragerequiresthatall pathsof maximumlengthbeexecuted.Path
lengthhasbeenusedpreviouslybecauseit limits thecomplexity of the
validationprocess,but it is only grosslycorrelatedto fault detection.
Informationembeddedin thedataflow graphcanbeusedtoscreenout
a largenumberof unnecessarysubpaths,independentof pathlength.

A large body of researchin software testinghasstudiedthe use
of dataflow analysisin this context. The primary goal of dataflow
analysisis the identificationof pathsin which a variableis assigned
to a value which may be faulty, and that variable is then usedto
perform an operation. Several test adequacy criteria basedon data
flow analysishave beendeveloped[6], [7], [8], [9], [10] basedon
theseideas. The basiccriteria include all definitionscriterion, all
usescriterion and all definition-use-pathscriterion. Thesecriteria
are concernedmainly with the simplest type of data flow paths
that start with a definition of a variable and end with a use of
the samevariable. We have adaptedsome of these techniques
for the validation fault coverageanalysisof behavioral hardware
descriptions.The mostsignificantdifferencebetweensoftwareand
hardwaredescriptionsis theneedto modelthepassageof realtime in
hardware.This is performedin a behavioral HDL throughtheuseof
time-varyingsignalsandconcurrency constructssuchastheprocess
in VHDL. Data flow analysisfor hardware must considerthe data
flow relationshipsbetweenmultiple processes,andbetweendifferent
instantiationsof thesameprocess.

We proposea validation fault coverage metric for behavioral
VHDL basedon data flow analysiswhich evaluatesthe data flow
coverageachieved by usinga giventestpatternsequence.Dataflow
analysisis anefficient methodto revealdesignfaults. Our approach
consistsof threesteps:First, we generatetheflow graphof anHDL
description.Second,we selecta subsetof dataflow pathswhich are
requiredto be executed. Third, the HDL descriptionis simulated



with thecandidatetestpatternsto determinethe fractionof required
subpathswhich areexecuted.

The remainderof this paperis organizedas follows: Section2
introducesour dataflow metric for HDL descriptionsand presents
ourapproachto evaluatedataflow coverage.Section3 and4 presents
theresultsandconclusionsrespectively.

I I . DATA FLOW ANALYSIS FOR HDL DESCRIPTIONS

A. Definition

Data flow analysisfor HDL descriptionsis concernedwith the
occurrencesof signalsand variablesin a HDL description. Each
signal or variable occurrencein a VHDL descriptionis classified
as either a definition occurrenceor a useoccurrenceaccordingthe
classificationin softwaretesting.A definitionoccurrenceof a signal
or variabledescribesa statementwherea valueis boundto thesignal
or variable. A useoccurrenceof a signal or variable describesa
statementwhich refersto the value of the signal or variable. This
occurrenceinformation is addedto the flow graph representation
as a preprocessingstepto facilitate dataflow analysis. A number
of conventions of flow graph models can be used. In the flow
graph model we use, each node representsa single statementin
the descriptionandedgesrepresentstatementexecutionorder. The
flow graph representsnot only the computationinformation, but
also relative timing andconcurrency information using the process
statement.

Concurrency addscomplexity to dataflow analysisof hardware
whencomparedto dataflow analysisof sequentialsoftwareprograms.
In general, an HDL description has both concurrentstatements
(e.g. signal assignment)and sequentialstatements(e.g. variable
assignment),timing information (e.g. X ����� 1� after 1 ns;), and
suspendingandresumingcontrol (e.g. ”wait” statement,sensitivity
list). Thesefeaturesallow complex relationshipsbetweenoperation
executiontimes. For example,a sequentialstatementexecutesand
finishes instantly, an assignmentto a signal X (X ��� � 1� after 1
ns;) takes 1 ns to finish, a ”wait until” statementtakes a variable
amountof time to finish. This timing information is unique in an
HDL descriptionand must be representedin the flow graph. In a
multiple processesdescription,inter-processcommunicationfurther
complicatesthe data flow. Since the execution of a processmay
resumeotherprocessesdynamically, adupair canlie in two different
processes,and definition occurrenceand use occurrencecan take
place simultaneously, etc.. All this timing information which is
uniqueto anHDL descriptionmustberepresentedin theflow graph.

Example1: This example shows the flow graph of a VHDL
descriptionwith simple timing information. A signal assignment
statementdoesnot finish instantly, it takes sometime to complete
theassignment.In this example,sinceno delaytime specifiedin the
statements,theassignmentwill finishat theendof simulationcycle in
which eachprocessexecutesuntil next ”wait” statement.TheVHDL
descriptionis asfollows:

PROCESS BEGIN
1 wait until clock’event and clock = ’1’;
2 if(B = ’0’) then
3 Zout <= P + Q;
4 else
5 Zout <= P - Q;
6 end if;

7 if(A = ’0’) then
8 P <= C + D;
9 else

10 P <= C - D;
11 end if;
END PROCESS;

Figure1 shows thedataflow representationwith timing information
of thedescription.Theoccurrencesof signalsareomittedexceptthat
of signalP. The signalsA, B, Q andclock areprimary inputsand
Zout is primaryoutput.Therearetwo typesof nodesandtwo typesof
edgesin thegraph.Thesquarenodesrepresentsa timepointatwhich
statementsfinish, so we refer squarenodesas timing nodeswhich
executeandfinish instantly, like sequentialstatements.The circular
nodesarereferredascomputationnodes,eachof which corresponds
to a statementin the description.The solid edgesin the flow graph
representsequentialexecutionorder;theheadnodeof theedgebegins
to executeafter the tail nodecompletelyfinishes.Thedashededges
representconcurrentexecution sequence;the headnode begins to
executejust after the tail nodebegins to executeanddoesnot finish
immediately. In this example,no delay information is given to the
assignmentstatements,so the executionof assignmentsfinish at the
endof thecurrentsimulationcycle, thengo to next ”wait” statement.
Thenode”End SimulationCycle” is a timing node.

1

2

elsethen

Process Begin

��� ������
3 5

7

elsethen

10����	
8

����	

End Process

End
Simulation

Cycle

Fig. 1. Flow graphin example1.

Basedontheflow graphmodelintroducedabove,adefinitionclear
path with respectto signalor variableX is a pathin the flow graph
without definition occurrenceof X. A definition-use(du) pair of
signalor variableX consistsof a definition anda useof variableX
whichareconnectedby adefinitionclearpathwith respectto X, from
thedefinitionto theuse.If a du pair is exercisedin thedefinition-use
sequenceby sometestpatterns,thenwe saythis du pair is covered
by the testpatterns.All definition-use(du) pairs metric [6] requires
thatall dupairsbecoveredby thetestpatterns,i.e. everydefinitionto
everyuseof thatdefinitionshouldbeexercised.In Figure1, thereare
four du pairsof variableP, (8 
 3), (8 
 5), (10 
 3) and(10 
 5),
andthesedupairsarerequiredto beexecutedby all dupairsmetric.

Comparedto the pathcoveragemetric, all du pairscoveragehas
weaker fault detectionability, but requiresmuchsmallernumberof
testcasesbecausedu pairsarenot redundantlyexecuted.Compared
to branchandstatementcoverage,all du pairscoveragehasstronger



�� ����������� ��� �������
��� ��� � � �"!$#&%��('&)�*�� +&) ��,����-

 ��,� +

�(+&.�� /�-

�+0.�1�� ���2������-

3 � /�!�465")�7&�(+
8 %��'0)* 4:9�-
; �� ���
9&5 %��('&)* 46<(-
9�9
9&<=�(� ���
9&> � /�!�?6<")�70�+
9&@ %��('&)* 46>(-
9&A �(� �2�
9&B %��('&)* 46@(-
9 3 �(+&.�� /�-
9 8 �(+&.�� /�-

BC� /�%D4:E 5E�)�70�+

AF�+&.G� /�-
@ !H* 4I� +0<-
>=�� �2�

9=� /�J�4:E 5E�)�70�+

elsethen

elsethen elsethen

elsethen

Process Begin

End Process

1

2 4

6

10 16

7 13

8 14

wait

< !H* 4I� +�9�-LK�K�,�����. � �� ��� �+L!H* 46<�M�� +�9�-

!N*�'

!N*&.!N*&.

!N*�'

Fig. 2. VHDL descriptionandtheflow graphin example2.

fault detection ability, but requires more test casesthan branch
andstatementcoveragebecausea du pair may consistsof multiple
branchesandstatements.All du pairscoveragerepresentsa tractable
tradeoff betweentestcomplexity andeffectiveness.

B. ValidationFault Assumption

Any validationfaultcoveragemetricmusttargetsomesetto design
faults for detection. The targetedfault set impactsthe complexity
of the fault metric, as well as the accuracy of the fault metric.
Statementcoverageassumesthe faults occur at a single statement,
branchcoverageassumesthe faultsoccurat a singlebranch. In the
dataflow graphmodelof aHDL description,a faultcanbeassociated
with a setof pathswhich allow the fault to bedetected.All du pairs
metric assumesa fault effect occurringat a variabledefinition may
only by propagatedby a subsetof use nodes. In order to ensure
propagationof all faults,all dupairsmustbeexecuted.

Example2 is shown in Figure2. ThevariableX hasfour du pairs,
(2 
 7), (2 
 13), (4 
 7) and(4 
 13). A fault is injectedat node
2, wherethe correctversionof node2 is ”X : � 2 O in1;”. This fault
will affect only du pair (2 
 13), so it canbe detectedonly by the
executionof thespecificdu pair (2 
 13) via thehighlightedpathin
theflow graphin Figure2. Executionof theotherthreedu pairscan
cover all statementandall branches,but cannotdetectthefault. This
examplealsoillustratesthatall dupairsmetricis strongerthanbranch
coverageandstatementcoverage.

C. Approach to all du pairs coverage.

Our approachto all du pairscoverageconsistsof threesteps:
1. Data flow representation.This stepis to generatethe dataflow
representationof a HDL description.Timing informationshouldbe
representedon the flow graph. At this stage,our implementation
canonly dealwith a subsetof VHDL language,suchas IF, CASE,

LOOPstatements,signalandvariableassignmentswithoutdelayand
sensitivity lists. Flow graphsof asingleprocessdescriptionis similar
to the graphin Figure1 except the ’wait’ nodeis at the endof the
process.A concurrentstatementwill haveasolidedgedirectedto the
’End SimulationCycle’ nodeanda dashededgepointing to thenext
statementwithout finishing the currentstatement.’wait’ statements
are the points at which processessuspendand resume,and act as
inter-processcontrol points. Sensitivity lists of multiple processes
control theexecutionsequencebetweentheprocesses.If a signalon
thesensitivity list of processB is assignedin processA, theexecution
of processA will causetheexecutionof processB.
2. du pairs identification. After generationof the flow graphof a
description,all dupairsareidentified.Therearenodupairsinvolving
input andoutputsignalssinceinputscannotbeassigneda valueand
outputscan not be usedinsidedescriptions. In a single process,if
thereis a definition clear path betweena du pair, then this du pair
is valid. Note that the outgoingedgeof definition nodemust be a
solid edgewhich meansthatthedefinitionis complete.In a multiple
processesflow graph,a du pair may lie betweentwo processes.To
identify theseinter-processdu pairs,we first find thesynchronization
pointsbetweenprocesses,includinga commonsignalsin sensitivity
lists. The searchfor du pairs continuesin a similar mannerto the
singleprocessversionby treatingthesynchronizationpointsasedges
betweenthedataflow graphsof thecommunicatingprocesses.
3. Coverage determination. Thebehavioral descriptionis simulated
with candidatetestpatternsto determinewhichdupairsareexercised.
Timing information adds difficulties to this step becausefirst
executiondoesnot necessarilyimply first completion. A du pair is
coveredonly if thedefinitionis completebeforeits use.



benchmark # of statements # of du pairs du pairs cov. statementcov.

ARMS COUNTER 32 69 0.87 1
BARCODE 44 68 0.69 0.95

TLC 38 47 1 1
BUS ARBITER 24 45 0.78 1

FIFO 59 92 0.86 1

TABLE I

EXPERIMENTAL RESULTS OF ALL-USES METRIC COMPARED WITH STATEMENT COVERAGE

I I I . EXPERIMENT RESULTS

We have evaluatedour data-flow fault model by computingthe
all du pairs coverage of several behavioral VHDL descriptions
and comparing the coverage to statementcoverage. The first
three examples are ARMS COUNTER, BARCODE and TLC
from the HlSynth92 benchmarksuite. FIFO comes from web
site of www.vhdl-online.desponsoredby University of Erlangen-
Nurnberg. ARMS COUNTER, BUS ARBITER and FIFO are
multiple processesdescriptions.The coverageresultsareshown in
table I. Columns2 and3 containthe numberof statementswhich
containssignalsor variablesdefinitionsor uses,andthenumberof du
pairsrespectively. All du pairsmetric resultsarelisted in column4
andstatementcoverageresultsarelistedin column5.

To comparestatementcoverageandall dupairscoverage,weselect
sufficientpseudo-randomtestpatternsto makethestatementcoverage
closeto 1. In theARMS COUNTER,BARCODE,BUS ARBITER
andFIFO examples,theall dupairscoverageis lower thanstatement
coveragewhich meanssome test casesare not exercisedby test
patterns. If faultsare in theseun-exercisedflows, thenthey cannot
bedetectedby thetestpatterns.In theTLC example,thecoverageof
both metricsare1. This is a specialcasein which mostsignalsare
usedonly in onestatement,so thenumberof du pairsis closeto the
numberof statements.Thereforewhenall statementsareexercised,
theall dupairsareexercisedaswell.

Theaverageall du pairscoverageover five examplesis 0.84while
averagestatementcoverageis 0.99,which meansthatafterstatement
coveragegoal achieved, approximately16% du pairs are left un-
executed.Examiningtheseexamples,we find thattheseun-executed
dupairsareprimarily cornercasesassociatedwith hard-to-testdesign
faults. For example,in the FIFO benchmark,the casein which the
readsignalis assertedafter the resetsignalis assertedis ignoredby
thestatementcoveragemetric.Sincethis caseis associatedwith a du
pair, theall du pairmetricreflectsthatthis caseis executed.

IV. SUMMARY

We use data flow testing techniquesto define a fault coverage
metric which enables efficient evaluation of test patterns for
behavioral hardwarevalidation. Theuseof theall du pairsmetric is
basedon dataflow analysisandshows strongpotentialin examining
dataflow faults. However, more investigationis neededto identify
infeasibledu pairs,andto considerobservability issueson long data
flow paths.Weprovideall dupairscoverageresultsfor severalVHDL
benchmarksto demonstratetheutility of theapproach.

REFERENCES

[1] A Gupta, S. Malik, and P. Ashar, “Toward formalizing a
validationmethodologyusingsimulationcoverage”, in Design
AutomationConference, pp.740–745,1997.

[2] F. Fallah, P. Ashar, and S. Devadas, “Simulation vector

generationfrom hdl descriptionsfor observability enhanced-
statementcoverage”, in Proceedingsof the 36th Design
AutomationConference, pp.666–671,1999.

[3] S. Devadas,A. Ghosh,and K. Keutzer, “An observability-
basedcode coveragemetric for functional simulation”, in
InternationalConferenceon Computer-AidedDesign, pp.418–
425,1996.

[4] G. Al Hayek and C. Robach, “From specificationvalidation
to hardware testing: a unified method”, in InternationalTest
Conference, pp.885–893,1996.

[5] K. N. King and A. J. Offutt, “A fortran languagesystem
for mutation-basedsoftware testing”, Software Practice and
Engineering, vol. 21,pp.685–718,1991.

[6] S RappsandE. J.Weyuker, “Selectingsoftwaretestdatausing
dataflow information”, IEEE Trans.on Software Engineering,
vol. SE-11,pp.367–375,April 1985.

[7] P. G. Frankl andJ. E. Weyuker, “An applicablefamily of data
flow testingcriteria”, IEEE Trans.on Software Engineering,
vol. SE-14,pp.1483–1498,Oct.1988.

[8] S. C. Ntafos, “A comparisonof some structural testing
strategies”, IEEE Trans.on Software Engineering, vol. SE-14,
pp.868–874,1988.

[9] J. Laski andB. Korel, “A dataflow orientedprogramtesting
strategy”, IEEE Trans.on Software Engineering, vol. SE-9,pp.
33–43,1983.

[10] L. A. Clarke,A. Podgurski,D. J.Richardson,andS.J.Zeil, “A
formal evaluationof dataflow path selectioncriteria”, IEEE
Trans. on Software Engineering, vol. SE-15, pp. 1318–1332,
1989.


	Main Page
	ICCAD2000
	Front Matter
	Table of Contents
	Session Index
	Author Index
	Call for Papers


