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Abstract
Power efficient design of real-time embedded systems based

on programmable processors becomes more important as system
functionality is increasingly realized through software. This pa-
per presents a power optimization method for real-time embedded
applications on a variable speed processor. The method com-
bines off-line and on-line components. The off-line component
determines the lowest possible maximum processor speed while
guaranteeing deadlines of all tasks. The on-line component dy-
namically varies the processor speed or bring a processor into a
power-down mode according to the status of task set in order to
exploit execution time variations and idle intervals. Experimen-
tal results show that the proposed method obtains a significant
power reduction across several kinds of applications.

1 Introduction
Recently, power consumption has been a critical design con-

straint in the design of digital systems due to widely used portable
systems such as cellular phones and PDAs, which require low
power consumption with high speed and complex functionality.
The design of such systems often involves reprogrammable pro-
cessors such as microprocessors, microcontrollers, and DSPs in
the form of off-the-shelf components or cores. Furthermore, an
increasing amount of system functionality tends to be realized
through software, which is leveraged by the high performance of
modern processors. As a consequence, reduction of the power
consumption of processors, especially in operating system (OS)
level, is important for the power-efficient design of such systems.

Broadly, there are two kinds of methods to reduce power con-
sumption of processors in OS level. The first is to bring a proces-
sor into a power-down mode, where only certain parts of the pro-
cessor such as the clock generation and timer circuits are kept run-
ning. In [1], the length of the next idle period is predicted based
on a history of processor usage. The predicted value becomes the
metric to determine whether it is beneficial to enter power-down
modes or not. This method focuses on event-driven applications
such as user-interfaces where the latency caused by the mismatch
between the predicted value and the actual value can be toler-
ated. Another method is to use a variable speed processor (VSP),
which can change its speed by varying the clock frequency along
with the supply voltage when the required performance on the
processor is lower than the maximum. A scheduling method for
event-driven applications to reduce power consumption of a VSP
was proposed in [2]. There are also several scheduling methods
for real-time systems [3]. Because a fixed amount of execution
time is assumed for these methods, the full potential of power
saving cannot be obtained when variations of execution time ex-
ist.

Reducing power consumption of processors is fundamentally
equivalent to exploiting idle intervals of processors. Thus, we
should first identify sources of idle intervals to efficiently reduce

the power dissipated by processors. Our approach is strongly
motivated by the fact that there are several kinds of sources for
idle intervals in a schedule of a real-time task set. Especially in
case of a priority-based preemptive scheduling, which is one of
the most widely used scheduling methods for real-time systems,
we identify three kinds of sources. The first one occurs when
a system is not tightly designed for a given processor, meaning
that there is room for design change or improvement; introducing
some more tasks, replacing certain tasks with their version-ups,
using other processors with lower performance, and so on. Even
if the system is tightly-designed, there are still idle intervals in
case of fixed-priority scheduling which are strongly dependent
upon the relative values of the periods of the tasks comprising
the system; the second source of idle intervals. The third one is
from run-time variation of execution time of each task, that is,
the execution time of each task in run-time is not constant due to
data-dependent computation, over-estimation of worst-case exe-
cution time, and so on. Each of these will be elaborated in more
detail in section 2.

To exploit these idle intervals for low-power, we propose a
power optimization method for real-time embedded applications
on a VSP with a power-down mode. The proposed method con-
sists of two components: off-line component based on real-time
analysis of a task set that exploits the first source of idle inter-
vals and on-line component based on priority-based real-time
scheduling that exploits both the second and the third sources.
Specifically, for a given real-time task set, we first compute the
lowest possible maximum processor speed such that at least one
of deadlines are violated if the processor is running below that
speed. With the maximum speed of the VSP set to the computed
value, we then dynamically varies the speed of the VSP or bring
the VSP into a power-down mode to exploit execution time vari-
ation of each task and idle intervals present in the schedule. Note
that all kinds of idle intervals can be exploited by on-line com-
ponent only [4]. However, we show that combined off-line and
on-line components bring about more power-saving.

The remainder of the paper is organized as follows. In section
2, we present the system model for power optimization, off-line
component, and on-line component. In section 3, experimental
results are presented to evaluate the proposed method. Finally, a
conclusion follows in section 4.

2 Power Optimization Method

2.1 System Model

For a processor model, we assume a VSP similar to [5]. The
reference clock frequency, denoted as fre f , and the reference sup-
ply voltage, denoted as Vre f , of the VSP is 100 MHz and 3.3 V,
respectively. The clock frequency can be varied from 100 MHz
down to 8 MHz with a step size of 1 MHz. The supply voltage is



Table 1. An example task set

Ti Di Ci Priority
τ1 50 50 5 1
τ2 80 80 10 2
τ3 100 100 20 3

3.3 V for 100 MHz clock and, for lower clock frequency, follows

td = k
Vdd

(Vdd �Vt)α
; (1)

where td is the circuit delay, k is a constant, α is a constant satis-
fying 1 < α < 2, and Vt is the threshold voltage. We assume that
there is only one power-down mode available. The average power
consumed by the processor when it is in power-down mode is 5%
of the fully active mode and it takes 10 clock cycles to return
from the power-down mode to the fully active mode. The proces-
sor model described above is only for the purpose of simulation
which is to be presented in section 3. Therefore, our method can
be applied for other processor models, for example of a proces-
sor with only two speed levels, though the result of power saving
may be different.

The real-time embedded application is scheduled according to
priority-based preemptive scheduling algorithm. There are two
kinds of algorithms based on priority assignment: fixed-priority
(or static-priority) algorithms such as rate-monotonic (RMS) [6]
and deadline-monotonic (DMS) [7] and dynamic-priority algo-
rithms such as earliest deadline first (EDF) [6]. A priority-based
scheduling is quite simple to implement in most kernels, and it
typically requires little if any extra hardware support. Also, there
are many analytical methods to check the schedulability of the
system. The real-time embedded application is modeled as a set
of tasks, τ = fτ1;τ2; : : : ;τng, which are numbered in order of de-
creasing priority in case of fixed-priority scheduling (FPS). The
parameters of τi include its period (the minimum inter-arrival
time between successive requests in case of a sporadic task) Ti,
deadline Di, and worst case execution time (WCET) Ci. A task
set is called feasible if deadline of each task is satisfied at all
times. Note that Ci is measured or estimated when the VSP is
running in maximum reference speed ( fre f and Vre f ).

To minimize energy consumption while guaranteeing the fea-
sibility of a task set, we first determine the lowest possible speed
such that the task set is feasible if the VSP is running in that speed
entirely, and will be infeasible if running in lower speed. This can
be done with off-line method as illustrated in the next subsection.
Note that worst-case scenario (all tasks execute in WCET at all
times) must be assumed in off-line method. However, during op-
eration of the system, the execution time of each task frequently
deviates from its WCET, sometimes by a large amount. In many
cases, the possibility of a task running at its WCET is usually very
low. These execution time variation cannot be exploited with off-
line method alone. Furthermore, with fixed-priority scheduling,
there are still idle intervals remained even if the VSP is running
in the lowest possible speed entirely. To exploit these execution
time variation and idle intervals, we use an on-line method, where
we dynamically vary the speed of the VSP or bring the VSP into
a power-down mode according to the status of the task set.

Example 1 Consider the three tasks given in Table 1. Rate mono-
tonic priority assignment is a natural choice because periods (Ti)
are equal to deadlines (Di). Priorities are assigned in row order
as shown in the fifth column of the table. Assume all tasks are
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Figure 1. A schedule for the example task set. (a) When tasks always run at their
WCETs. (b) When tasks always run at their WCETs on a processor with the
speed lowered by half. (c) When the execution times of some task instances
are smaller than their WCETs.

released simultaneously at time 0. A typical schedule, which as-
sumes that tasks run at their WCETs (Ci), is shown in Figure 1(a).
If the speed of the processor is lowered by half or if the proces-
sor with half performance is used meaning that Ci is doubled, the
schedule becomes as shown in Figure 1(b). It is noted that the
task set scheduled in Figure 1(b) just meets its feasibility. For
example, if τ2 were to take a little longer to complete, τ3 would
miss its deadline at time 100. Even though the system is tightly
constructed, there are still idle intervals, as can be seen in the fig-
ure. When some task instances are completed earlier than their
WCETs, there are more idle intervals as shown in Figure 1(c). 2

2.2 Computation of Maximum Speed
For a given task set, in order to determine the lowest possi-

ble maximum processor speed (thus the lowest possible maximum
clock frequency, denoted as fmax, and the lowest possible maxi-
mum supply voltage, denoted as Vmax), the analysis of the schedu-
lability of the task set is required. We first present the approach
for fixed-priority algorithms and then the approach for dynamic-
priority algorithms.

The schedulability analysis for fixed-priority scheduling is
based on the critical instant theorem [6] which says that if a task
meets its deadline whenever the task is requested simultaneously
with requests for all higher priority tasks, then the deadline will
always be met for all task phasings. Lehoczky et al. [8] shows
that the analysis is needed only at discrete time points, called
scheduling points. The set of time points for task τi is defined
by

Si = fkTjj j = 1;2; : : : ; i;k = 1; : : : ;b
Ti

Tj
cg; (2)

when Ti = Di. If Di is different from Ti, (2) can be modified as

S0i = (Si �ftjt 2 Si;t > Dig)[fDig: (3)

τi can be scheduled without violating its deadline, if there exist
one or more scheduling points t 2 Si, which satisfy

i

∑
k=1

Ckd
t

Tk
e � t: (4)

Now, it is assumed that elements of Si are sorted in ascending
order. Si; j is defined as the jth element of Si, that is, jth schedul-
ing point of τi. Thus, for each scheduling point Si; j , τi just meets
its scheduling point if it satisfies

i

∑
k=1

1
ηi; j

Ckd
Si; j

Tk
e= Si; j; (5)

where ηi; j is speed scaling factor for τi at Si; j . For example,
ηi; j =

1
2 means that the speed of the processor is reduced by half



thus execution times of tasks are doubled. Solving for ηi; j gives

ηi; j =
∑i

k=1Ckd
Si; j

Tk
e

Si; j
: (6)

Because τi is schedulable if it completes its execution before or
at any scheduling points and the minimum possible speed scaling
factor is needed for τi for minimum power consumption, speed
scaling factor for τi, denoted by ηi, is given by ηi = min j ηi; j .
In order to get a feasible task set, all tasks are required to be
schedulable. Thus, speed scaling factor for the task set, denoted
by η, is given by

η = max
i

ηi: (7)

Note that if η is larger than 1, the original task set is already in-
feasible meaning that it cannot be scheduled with fixed-priority
scheduling even with fre f and Vre f . Hence, fmax (correspond-
ingly Vmax) is obtained by1

fmax = η fre f : (8)

For dynamic-priority scheduling, especially for EDF schedul-
ing with Di = Ti, a task set is feasible if and only if the processor
utilization is less than or equal to 1 [6]. Thus, η is straightforward
to compute because it is equal to the processor utilization, given
by

η = ∑
8τi2τ

Ci

Ti
: (9)

It should be noted that there are no idle intervals meaning that the
power consumption of the processor is minimized if the processor
is running entirely in the speed obtained with (9) provided that
fractional value is possible for fmax, and each task always execute
in constant execution time of WCET. When Di < Ti, we can use
Di instead of Ti in the denominator of the right hand side of (9),
called total density in this case instead of processor utilization.
Note that, however, η obtained in this way is conservative in that
the task set is feasible with EDF if the total density is equal to or
less than 1 but the opposite does not hold.

Example 2 Consider again the three tasks given in Table 1 with
rate monotonic priority assignment. From (2), the set of schedul-
ing points for each task is given by

S1 = fT1g; S2 = fT1;T2g; S3 = fT1;T2;T3g:

We compute η using (7), which yields

η1 = min(
C1
T1

) = 0:1;

η2 = min(
C1 +C2

T1
;

2C1 +C2
T2

) = 0:25;

η3 = min(
C1 +C2 +C3

T1
;

2C1 +C2 +C3
T2

;

2C1 +2C2 +C3
T3

) = 0:5;

η = max(η1 ;η2;η3) = 0:5:

Thus, we can reduce the maximum speed by as much as half or
can use the processor with half performance (see Figure 1(b)). 2

2.3 Low-Power Priority-Based Real-Time Scheduling
Even if the processor is running in the speed obtained with the

method of the previous subsection, there are still idle intervals
that arise from two sources (see Example 1). The first source is
idle intervals inherently present in fixed-priority scheduling (thus

1Actually, we should take dη fre f e for fmax because discrete levels of frequencies are assumed.

We also need clamping operation so that fmax falls between 8 MHz and 100 MHz.

RUN state ACTIVE state

DELAY state

Determine the action for the processor:
slow down, power down, or normal

Update executed time

Update the next release time

Figure 2. Diagram of task state transition.

it is not the case with EDF) because of different period of each
task. The second one is run-time variation of execution time of
each task. In more specific, although constant execution time of
WCET should be assumed in the method of the previous subsec-
tion, the execution time of each task in run-time is not constant
due to data-dependent computation, over-estimation of WCET,
and so on. To exploit these idle intervals, we rely on a power-
efficient version of priority-based real-time scheduing method
[4], which we call lpps for brevity.

It is based on the implementation model of priority-based
scheduling in the kernel [9]. The priority-based scheduling can
be implemented by maintaining two queues, one called run queue
and the other called delay queue. The run queue holds tasks that
are waiting to run and the tasks in the queue are ordered by prior-
ity. The task that is running on the processor is called the active
task. The delay queue holds tasks that have already run in their
periods and are waiting for their next periods to start again. They
are ordered by the time at which their release is due. When the
scheduler is invoked, it searches the delay queue to see if any
tasks should be moved to the run queue. If some of the tasks in
the delay queue are moved to the run queue, the scheduler com-
pares the active task to the task at the head of the run queue. If
the priority of the active task is lower, a context switch occurs.
These processes can be described by a diagram of task state tran-
sition shown in Figure 2, where each arc is annotated with actions
required for lpps.

During the state transition from RUN to ACTIVE as shown
in Figure 2, we determine the action required for the processor:
lower the speed of the VSP, bring the processor to a power-down
mode, or execute in full speed. We take the first two actions when
run queue is empty. Specifically, we vary the speed of the VSP
when there is only one task that needs the processor (when active
task is present but run queue is empty) and its required execution
time is less than its allowable time frame2, and bring the proces-
sor to a power-down mode when there is no task that needs the
processor (when all tasks reside in delay queue). With these run-
time actions taken on the processor, idle intervals, which arise
during run-time, can be exploited for power reduction.

3 Experimental Results
To evaluate the proposed method, we perform simulations

with several examples and compare the average power consump-
tion with the proposed method against that with the conven-
tional priority-based scheduling. In the conventional priority-
based scheduling, the processor is assumed to execute NOP in-
structions, when it is not being occupied by any tasks. The aver-
age power consumed by a NOP instruction is assumed to be 20%
of that consumed by a typical instruction [10]. We also compare
the result with that of [4].

2min(active task.deadline, delay queue.head.release time) � current time.



Table 2. Maximum frequency and voltage computed for each application. fre f =

100 MHz and Vre f = 3:3 V.

FPS EDF

fmax Vmax fmax Vmax

avionics 91 MHz 3.1 V 86 MHz 3.0 V

ins 75 MHz 2.7 V 74 MHz 2.7 V

flight control 84 MHz 2.9 V 68 MHz 2.5 V

cnc 54 MHz 2.2 V 49 MHz 2.0 V

We collect four applications for experiments: an avionics
task set [11], an ins [12], a flight control [13], and a cnc
machine controller [14]. For each task comprising an application,
three timing parameters (Ti, Di, and Ci) are given. Because the
statistics of the actual execution times of instances of the tasks
are not available, it is assumed that the execution time of each
instance of a task is drawn from a random Gaussian distribution
with mean of m = BCET+WCET

2 , where BCET indicates the best
case execution time, and standard deviation of σ= WCET�BCET

6
3.

Then, the BCET is varied from 10% to 100% of the WCET for
each task.

First, fmax and Vmax are obtained for each application using
(7) and (9), which are summarized in Table 2. Clearly, they are
smaller with EDF than with FPS, because EDF sets the lower
bound for fmax and Vmax. In case of ins, fmax with FPS is very
close to that with EDF meaning that very high processor utiliza-
tion is possible even with FPS. This is because most periods of
tasks in ins is harmonic, that is, period of each task is divisible
with each other.

Next, with the maximum speed of the VSP set to the corre-
sponding value shown in Table 2, each task set is simulated with
lpps. The results are shown in Figure 3, where lpps/RMS in-
dicates that RMS is used for basic scheduling algorithm of lpps
and lpps/EDF similarly for EDF. The vertical axis indicates av-
erage power reduction with each method compared to the con-
ventional priority-based scheduling (see Figure 1). Note that the
power gain from off-line method is independent on the horizon-
tal axis because worst-case scenario is assumed in that method.
The power gain from on-line method increases as the BCET gets
smaller (variation of execution time gets larger). This is because
the chances both for dynamically varying the speed of the VSP
and for bringing the VSP into a power-down mode increases as
the variation of execution times increases. The largest gain is ob-
tained in cnc. This can be understood from Table 2 because cnc
can be operated in the lowest speed, meaning that its processor
utilization in reference speed is the lowest. Compared to on-line
method alone, we can obtain more power saving with combined
off-line and on-line methods.

4 Conclusion
In this paper, we propose a power optimization method for

a real-time embedded application on a variable speed processor.
The method consists of two components. First, we determine the
lowest possible processor speed such that the task set is feasible if
the processor is running in that speed entirely, and will be infea-
sible if running in lower speed. Then, to exploit execution time
variation and idle intervals, we relies on low-power priority-based
real-time scheduling, which dynamically varies the speed of the

3In a random Gaussian distribution, the probability that a random variable x takes on a value in
the interval [m�3σ;m+3σ] is approximately 99.7%. Thus, if we set WCET to be equal to m+3σ,
almost all generated values fall between BCET and WCET. Let m+3σ = WCET and solving for
σ with the help of equation for m, we get equation for σ. After the generation of execution times,
we apply clamping operation so that the generated value does not exceed WCET.

0

10

20

30

40

50

60

70

80

90

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

BCET/WCET

%
 r

ed
uc

tio
n

lpps/RMS
lpps/EDF
[4] with RMS
[4] with EDF

0

10

20

30

40

50

60

70

80

90

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

BCET/WCET
%

 r
ed

uc
tio

n

lpps/RMS
lpps/EDF
[4] with RMS
[4] with EDF

0

10

20

30

40

50

60

70

80

90

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

BCET/WCET

%
 r

ed
uc

tio
n

lpps/RMS
lpps/EDF
[4] with RMS
[4] with EDF

0

10

20

30

40

50

60

70

80

90

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

BCET/WCET

%
 r

ed
uc

tio
n

lpps/RMS
lpps/EDF
[4] with RMS
[4] with EDF

(a) (b)

(c) (d)

Figure 3. Simulation results of (a) avionics, (b) ins, (c) flight control, and
(d) cnc.

VSP or brings the processor into a power-down mode. Experi-
mental results show that the proposed method obtains a signifi-
cant power reduction across several applications.
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