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Abstract
  We present a new output encoding problem as follows:
Given a specification table, such as a truth table or a finite
state machine state table, where some of the outputs are
specified in terms of 1’s, 0’s and don’t cares,and others are
specified symbolically,  and assuming that  theminimum
number of bits are used to encode the symbolic outputs
( log2n  bits for n symbolic outputs), determine a binary
code foreach symbol of the symbolically specified output
columnsuch that the total number of output functions to
be implemented after encoding the symbolic outputs and
compacting  the  columns is  minimum.  There  areseveral
applications of this  output  encoding  problem,  one  of
which is to reduce the area overhead while implementing
scan or  pseudo-random BIST  in  a  circuit  with  one-hot
signals. We develop an exact algorithm to solve the above
problem and present experimental data to validate the claim
that our encoding strategy helps to reduce the area of  a
synthesized circuit.

1 . INTRODUCTION
         Column compaction plays a major role in the synthesis
of digital systems [1]. Incolumn compaction, the number
of output functions for a given specification is reduced by
merging outputs which are logically equivalent, or can be
made equivalent through assignment ofdon’t cares.  Two
examples of output column compaction are shown in Fig.
1. Given a set of output columns, the problem of finding
the smallest set that can be obtained by compacting the
given set  is  related to themaximumclique partitioning
problem, which  is  an  NP-Complete  problem  [2].  This
smallest set of compacted outputs is called theminimum
cardinality output column cover.  Column compaction can
greatly reduce circuit area; this is not only true for the PLA
implementation of the circuit [3] but also for  multi-level
logic circuits.
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Figure 1 .  Examples of column compaction.

The different types of encoding problems, studied in the
past,  are thefinite state machine  (FSM)  state  encoding
problem and theinput and theoutput encoding problem.
Techniques for FSM state encoding have been discussed in
[4,  5, 6,  7,  8,  9,  10].  The  input  encoding  problem has
been  reported  in  [11,  12].  One version  of  the  output

encoding problem, with a goal to reduce the number of
product terms of a logic function, has been discussed in
[13]. Another version of the output  encoding problem is
discussed in [14].  A  heuristic  solution  to  the  output
encoding  problem  which  uses column  compaction  to
reduce the number of outputs after the symbols are encoded
is given in [15]. However, this algorithm does notconsider
any existing  non-symbolic  (binary)  outputs  when
determining the encoding for the symbols of the symbolic
output column.
  In this paper,  we present an output  encoding  problem
whose objective is different from those mentioned above.
The input  to  our  problem is  a  specification  table  of  a
combinational (or sequential)  circuit  in terms of a  truth
table (or  state table)  such that  some of the  outputs  are
specified in terms of 0’s, 1’s anddon’t cares while  the
other outputs are symbolically specified.  The problem is
to  encode the symbols  in  the symbolic output  column,
using  log2n  bits  for  n  symbolic  outputs, so that after
encoding,  the  cardinality  of  the  output  columncover
computed using column compaction is minimum. Section
2 explains the motivation behind studying this type of an
output encoding problem.  Section 3 presents our  output
encoding algorithm for the case in which the specification
table does not contain anydon’t cares in its output part. In
Sec. 4, we extend the algorithm of Sec. 3 to handledon’t
cares in  the  outputs  of  the  specification. Experimental
results are reported in Sec. 5 followed by conclusion in
Sec. 6.

2 . MOTIVATION
  Consider  the  specification  shown  in  Table  1. Output
columnsc1, c2, c3 andc4 of Table 1 are specified in terms
of 1’s, 0’s and don’t cares — they constitute theB-set,  the
bound set. The last output column of Table 1 is symbolic
— it is referred to as theS-column,  the symbolic column.
In  this  paper,  we  will consider  specification  tables
containing a  single  symbolic  output  column (S-column)
for  simplicity.  We  can handle  cases  with  multiple
symbolic output  columns  by  choosing  an  appropriate
ordering of the symbolic outputs and repeatedly applying
the algorithm reported in this paper.
  For Table 1, since we have seven distinct symbols in the
S-column, we  need  3  bits  to  encode  them.  Table  2(a)
shows one possible  encoding of  the symbols in  the  S-
column  and  Table  2(b)  shows the  truth  table  for  the
corresponding  function  to  be realized  after  column
compaction.  In Table 2(b),  c5, c6 and  c7 represent  the
symbolic outputs.
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Table 1 . Truth table with symbolic output.

Input Encoded Output
c1 c2 c3 c4

Symbolic
output

10101 1  0  1  0 X1
01100 0  0  1  0 X2
10001 1  0  0  1 X3
01111 -  1  -  0 X2
11110 0  -  0  - X4
01010 1  1  -  0 X5
11111 1  0  -  0 X1
1110- 0  -  1  1 X6
11011 1  0  1  1 X7
01001 0  1  0  1 X4

Table 2 ( a ).  Encoding.Table� 2 ( b ). Compacted Truth Table.
Signals Encoding Input Outputs

c1 c2 c3 c4 c5 c6 c7
X1 100 10101 1   0   1   0 1   0   0
X2 111 01100 0   0   1   0 1   1   1
X3 101 10001 1   0   0   1 1   0   1
X4 011 01111 -   1     -   0 1   1   1
X5 010 11110 0   -   0   - 0   1   1
X6 110 01010 1   1   -   0 0   1   0
X7 001 11111 1   0   -   0 1   0   0

1110- 0   -   1   1 1   1   0
11011 1   0   1   1 0   0   1
01001 0   1   0   1 0   1   1

    Table 3 ( a ) . Encoding. 3 ( b ) . Compacted Truth Table.
Signals Encoding Input Output

c1 c2 c3 c4
X1 110 10101 1  0  1  0
X2 010 01100 0  0  1  0
X3 101 10001 1  0  0  1
X4 001 01111 0  1  1  0
X5 100 11110 0  -  0  1
X6 011 01010 1  1  0  0
X7 111 11111 1  0  1  0

1110- 0  -  1  1
11011 1  0  1  1
01001 0  1  0  1

  It  is possible to reduce the number of  output  columns
after column  compaction  if  we  encode  the  symbols  of
Table 1 asshown in Table 3(a). The column compacted
truth table is shown in Table 3(b). In Table 3(b), columns
c1, c2 and c4 represent the symbolic outputs.
  This output encoding problem  has  many  applications.
Digital  systems are  often  specified  in  terms  of  a
combination of binary valued and symbolic  signals.  This
problem is applicable to reduce the area of scan-based [16]
designs  containing  one-out-of-n (one-hot)  signals,  as
described  in  [17].  This  algorithm can  serve  as  a  pre-
processing step for FSM state encoding.

 3. ENCODING ALGORITHM  FOR FULLY
SPECIFIED OUTPUTS

  In this section, we present our output encoding algorithm
with the assumption that the output columns belonging to
the B-set are fully specified with 1’s and 0’s for  simplicity.
We consider the example of  Table 4 for  illustration.  We
describe the three basic steps of our algorithm as follows:

 Step 1 : Find Inconsistent Columns: Find all pairs
of rows, p andq, in Table 4 for which the S-column has
the same value andci ∈  B-set has different values. Thenci
is said to beinconsistent.  For this example,  the B-set  is
{c1, c2, c3, c4, c5, c6}. Here, c1 has a 1 in the second row
and a 0 in the 4th row; but the S-column has X2 in  both
of these rows. Hence, c1 is  inconsistent.  Column  c3 is
also inconsistent for symbolic output X3.
Step 2 : Create reduced consistent output table:
Remove inconsistent columns from the specification table
to obtain theconsistent output table (COT). Merge equal
rows of  COT to obtainreduced consistent output table
(RCOT). Table 5 is the RCOT for Table 4. Since there are
6 symbolic outputs, we usem = 3 bits to encode them.
Step 3 : i -column counting check: Any  set  of i
columns of the  RCOT  (i  ≤ m)  having  any  of  the  2i

possible  binary values of  lengthi  appearing  more  than
2m-i  times in the rows of the RCOT cannot reduce thesize
of the output  column cover after  encoding the symbols.
All sets of i columns that satisfy thisi -column counting
check form elements ofcolumn-count-set-i (CCS-i ).  For
Table 5, CCS-1 = {{c 2}, {c5}, {c6}}, CCS-2 = {{c2, c5},
{c5, c6}, {c 2, c6}}, CCS-3 = NULL. {c4} is not included
in CCS-1 because the number of 1’s in the c4 column is 5
(greater than 4). We terminate this step when either a CCS
set is NULL or CCS-m has been generated.

Table 4 . Specification  Table.             Table 5 .  The RCOT.
c1 c2 c3 c4 c5 c6 Symbol c2 c4 c5 c6 Symbol
0 0 1 1   1   0 X1 0   1   1   0 X1
1 0 0 1   0   1 X2 0   1   0   1 X2
1 0 0 1   1   1 X3 0   1   1   1 X3
0 0 0 1   0   1 X2 1   1   0   0 X4
0 1 1 1   0   0 X4 1   1   1   0 X5
0 1 0 1   1   0 X5 1   0   0   0 X6
1 0 1 1   1   1 X3
1 1 0 0   0   0 X6
1 0 1 1   1   1 X3
1 0 0 1   0   1 X2
   For Table 4, we can encode the symbols using three bits
in such a way that two of the three columns, representing
the  symbolic  outputs,  can  be merged  with  the  existing
output columns by column compaction.  We choose any
member of CCS-2, say, {c2, c5}. The first two bits in the
encoding of a particular symbol will have the same pattern
as the one present under the columns c2 and c5 in the row
corresponding to that symbol in the RCOT. We determine
the third bit such that the codes assigned to  the symbols
are distinct. Thus, referring to Table 4, X1 can be encoded
as 010, X2 as 000, X3 as 011, X4 as 100, X5 as 110 and
X6 as 101. It is straightforward to prove the optimality of
our solution [18]. It should be noted that if we allowed 4
bits to encode the symbolic outputs of  Table  4,  then all
output  columns corresponding to the four encoding  bits
could be merged with c2, c4, c5 and c6. In that case, we
can iterate step 3 incrementing the number of encodingbits
until all the encoding bit outputs can be merged with the



existing outputs or we reach a point where we have tried to
encoden symbolic outputs usingn bits.

4 . ENCODING ALGORITHM  FOR
INCOMPLETELY  SPECIFIED  OUTPUTS

The basic steps of the algorithm described in Sec. 3 can be
extended to handle don’t cares in the B-set.

Table 6 . Specification  Table.       Table 7 . The RCOT.
c1 c2 c3 c4 c5 c6 Symbolic c2 c3 c4 c5 c6 Symbolic

0   -   1   0   -   0 X1 -   1   0   -   0 X1
1    0   -   -   -   - X2 0   1   0   -   1 X2
1   -   -   -   1   - X3 -   1   1   1   - X3
0    -   -   -   -    1 X2 0   1   0   0   0 X4
0   1   0   0   0   0 X4 1   1   0   -   - X5
0   1   1   0   -   - X5 1   1   0   0   0 X6
-   -   1   1   -   - X3
1   1   1   0   0   0 X6
-   -   -   1   1   - X3
-   -   1   0   -   - X2

  Consider the specification shown in Table 6. The RCOT
is shown in Table 7. The CCS-1 set is {{c2}, {c5}, {c6}}.
For calculating CCS-2 and CCS-3 we must ensure that the
count of thefully specified binary  strings (binary  strings
containing no don’t cares) only need to satisfy the bounds
discussed in step 3 of the algorithm in Sec. 3. Thus,  CCS-
2 is {{c2, c5}, {c2, c6} and {c5, c6}}. CCS-3 is a null set
and we choose {c2, c5}, a member of CCS-2, forproviding
the first two bits in the encoding of the symbols using 3
bits.  Next, we solve the problem of assigning 0’s and 1’s
to thedon’t cares in columns c2 and c5 so that the output
columns representing the symbolic outputs can be merged
with c2 and c5. We formulate the problem as a bipartite
graph matching problem [2]. We form a weighted bipartite
graph as follows: Set V1 contains vertices corresponding
to each symbolic output with a label  equal  to the string
formed by the entries in the  row  corresponding  to  that
symbolic output under columns c2 and c5 of Table 7. Set
V2 contains 4 vertices each having a label that is a distinct
binary pattern of length 2. For each u ∈  V1 and v ∈  V2
we have an edge (u, v) of weight 1 if and only if the label
of v contains 1(0) in all positions in which the label of u
contains 1(0). We add two more vertices to the graph —
thesource and thesink. There is an edge of weight 1 from
the source vertex to each member of V1. There is an edge
of weight 23-2 = 2 from each member of V2 to the sink.
   The graph along with the source and the sink nodes and
the  edge  weights  is  shown in  Fig.  2.  We  solve  the
maximum network flow problem on the graph using the
Ford-Fulkerson method [19].  The  solid  edges  show  the
final mapping. The first two bits in the encoding ofX1,
X2, X3, X4, X5 andX6  are 00, 01, 01, 10, 11 and 10,
respectively. Hence, one encoding ofX1, X2, X3, X4, X5
andX6  is 001, 010, 011, 100, 111 and 101, respectively.
Note that there may be multiple solutions to this bipartite
graph matching  problem.  Hence,  our  algorithm  can  be
further refined by selecting a mapping of members of V1
to the members of V2 based on some heuristic following

the observations developed in [13] and [14].
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Figure 2 .  The Graph for the Maximum Flow Problem.

5.  EXPERIMENTAL  RESULTS
  In this section, we present experimental results. We added
a symbolic  output  column  to  the  MCNC  FSM
benchmarks  and varied  the  number  of symbols  in  the
symbolic output column; depending on the symbol count,
the number of encoding bits required were either 3 or 4.

 Table 8 . Area  results for  our  output  encoding  algorithm
(best case) and the worst case which never merges any output
column.

FSM 3 bits for encoding 4 bits for encoding
Name Our algo. Worst Case Our algo. Worst Case
bbara *205 225 *285 346
bbsse 316 364 316 378
bbtas *98 99 *103 147
dk14 223 266 223 294
dk15 206 208 206 257
dk17 *182 191 *231 304
ex1 721 750 721 781
ex6 254 312 254 405
mc 93 96 93 96

opus 235 260 235 356
tav 73 143 73 188
tma 444 543 444 548

*: These are the cases where all  the output columns could not
be merged by our algorithm because the cardinality  of  the B-
set  is less  than  the  number  of  bits  needed  to  encode  the
symbols.

  We entered symbolic values in  the S-column to  ensure
that  there exists an output  encoding,  for  which  all  the
columns generated due to  the  encoding  of  the  symbols
could be merged with the existing outputs (members of the
B-set), assuming that the number of encoding bits did not
exceed  the  number  of existing  non-symbolic  (binary)
output columns.  We  applied  our  output  encoding
algorithm to  encode the  symbolic  output  columns, then
compacted the outputs using column compaction. We then



optimized  these specifications  usingsis [20].  For
comparison  purposes, we  then  encoded  the  symbolic
outputs such that none of the outputs corresponding to the
encoding bits could be merged by column compaction with
the pre-existent outputs (members of the B-set). This is the
worst-case encoding. The results are shown in  Table  8.
Although our scheme works for both combinational and
sequential logic specifications, we used FSM benchmarks
because we are investigating FSM synthesis techniques for
one-hot  signals,  as  mentioned in  Sec.  2  [17]. For  both
cases, we used NOVA [10] to encode the FSM states and
used the recommendedruggedscript to perform multi-level
logic optimization. Finally, we used the LSI Logic  g10p
library [21] for  technology mapping.  Table  8  shows the
area values (in  terms  of  LSI  Logic  g10p  cell  units)
obtained  using  our  output  encoding algorithm  and  the
worst-case output encoding where none  of  the  encoding
bits  could  be  merged  with  the already  existent  non-
symbolic output columns by compaction.

6.  CONCLUSION
  In this paper, we have presented a new output encoding
algorithm whose objective is to encode the symbols in the
symbolic  output column of  the specification table using
 log2n  bits for n symbolic outputs in such a way that the
number of output functions, after performing the encoding
and subsequent output column compaction,  is  minimum.
An application of this algorithm is to generate a low-area
circuit that always maintains a one-hot encoding on certain
signals, even during scan or BIST operations asdiscussed
in  [17].  This  algorithm  can  also  be  used  as a  pre-
processing step  for  FSM  state  encoding.  Although  the
algorithm produces a minimum solution and the worstcase
running time is exponential in the number of bits used to
encode  the  symbolic  outputs, our  algorithm  achieves
significant speedup  through  iterative  refinement  by
removing from consideration inconsistent output columns
or  sets  of  output  columns. As  the  experimental  results
show,  the circuits  generated  using  our  output  encoding
algorithm have significantly less area (0.9 % to 49 % for 3
bits,  8  % to  61  % for 4  bits)  than  worst-case  circuits
generated without considering output column compaction
during the encoding of the symbols. In this paper, we have
considered specifications with  a  single  symbolic  output
column.  In case of multiple symbolic output columns, we
can  integrate  our  technique  with  the  outputencoding
algorithm reported in [15] to achieve a minimum number
of output columns in the final table.
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