
An Output Encoding Problem and a Solution Technique

Subhasish Mitra, LaNae J. Avra and Edward J. McCluskey

Center for Reliable Computing
Departments of Electrical Engineering and Computer Science

Stanford University, Stanford, California 94305

Abstract
 We present a new output encoding problem as follows:
Given a specification table, such as a truth table or a finite
state machine state table, where some of the outputs are
specified in terms of 1’s, 0’s and don’t cares,and others are
specified symbolically, and assuming that theminimum
number of bits are used to encode the symbolic outputs
( log2n bits for n symbolic outputs), determine a binary
code foreach symbol of the symbolically specified output
columnsuch that the total number of output functions to
be implemented after encoding the symbolic outputs and
compacting the columns is minimum. There areseveral
applications of this output encoding problem, one of
which is to reduce the area overhead while implementing
scan or pseudo-random BIST in a circuit with one-hot
signals. We develop an exact algorithm to solve the above
problem and present experimental data to validate the claim
that our encoding strategy helps to reduce the area of a
synthesized circuit.

1 . INTRODUCTION
 Column compaction plays a major role in the synthesis
of digital systems [1]. Incolumn compaction, the number
of output functions for a given specification is reduced by
merging outputs which are logically equivalent, or can be
made equivalent through assignment ofdon’t cares. Two
examples of output column compaction are shown in Fig.
1. Given a set of output columns, the problem of finding
the smallest set that can be obtained by compacting the
given set is related to themaximumclique partitioning
problem, which is an NP-Complete problem [2]. This
smallest set of compacted outputs is called theminimum
cardinality output column cover. Column compaction can
greatly reduce circuit area; this is not only true for the PLA
implementation of the circuit [3] but also for multi-level
logic circuits.
0 0
1 1
1 1
0 0

0
1
1
0

0 -
- 1
1 1
0 -

0
1
1
0

Figure 1 . Examples of column compaction.

The different types of encoding problems, studied in the
past, are thefinite state machine (FSM) state encoding
problem and theinput and theoutput encoding problem.
Techniques for FSM state encoding have been discussed in
[4, 5, 6, 7, 8, 9, 10]. The input encoding problem has
been reported in [11, 12]. One version of the output

encoding problem, with a goal to reduce the number of
product terms of a logic function, has been discussed in
[13]. Another version of the output encoding problem is
discussed in [14]. A heuristic solution to the output
encoding problem which uses column compaction to
reduce the number of outputs after the symbols are encoded
is given in [15]. However, this algorithm does notconsider
any existing non-symbolic (binary) outputs when
determining the encoding for the symbols of the symbolic
output column.
 In this paper, we present an output encoding problem
whose objective is different from those mentioned above.
The input to our problem is a specification table of a
combinational (or sequential) circuit in terms of a truth
table (or state table) such that some of the outputs are
specified in terms of 0’s, 1’s anddon’t cares while the
other outputs are symbolically specified. The problem is
to encode the symbols in the symbolic output column,
using  log2n bits for n symbolic outputs, so that after
encoding, the cardinality of the output columncover
computed using column compaction is minimum. Section
2 explains the motivation behind studying this type of an
output encoding problem. Section 3 presents our output
encoding algorithm for the case in which the specification
table does not contain anydon’t cares in its output part. In
Sec. 4, we extend the algorithm of Sec. 3 to handledon’t
cares in the outputs of the specification. Experimental
results are reported in Sec. 5 followed by conclusion in
Sec. 6.

2 . MOTIVATION
 Consider the specification shown in Table 1. Output
columnsc1, c2, c3 andc4 of Table 1 are specified in terms
of 1’s, 0’s and don’t cares — they constitute theB-set, the
bound set. The last output column of Table 1 is symbolic
— it is referred to as theS-column, the symbolic column.
In this paper, we will consider specification tables
containing a single symbolic output column (S-column)
for simplicity. We can handle cases with multiple
symbolic output columns by choosing an appropriate
ordering of the symbolic outputs and repeatedly applying
the algorithm reported in this paper.
 For Table 1, since we have seven distinct symbols in the
S-column, we need 3 bits to encode them. Table 2(a)
shows one possible encoding of the symbols in the S-
column and Table 2(b) shows the truth table for the
corresponding function to be realized after column
compaction. In Table 2(b), c5, c6 and c7 represent the
symbolic outputs.

0-89791-993-9/97 $10.00  1997 IEEE

Table 1 . Truth table with symbolic output.

Input Encoded Output
c1 c2 c3 c4

Symbolic
output

10101 1 0 1 0 X1
01100 0 0 1 0 X2
10001 1 0 0 1 X3
01111 - 1 - 0 X2
11110 0 - 0 - X4
01010 1 1 - 0 X5
11111 1 0 - 0 X1
1110- 0 - 1 1 X6
11011 1 0 1 1 X7
01001 0 1 0 1 X4

Table 2 (a). Encoding.Table� 2 (b). Compacted Truth Table.
Signals Encoding Input Outputs

c1 c2 c3 c4 c5 c6 c7
X1 100 10101 1 0 1 0 1 0 0
X2 111 01100 0 0 1 0 1 1 1
X3 101 10001 1 0 0 1 1 0 1
X4 011 01111 - 1 - 0 1 1 1
X5 010 11110 0 - 0 - 0 1 1
X6 110 01010 1 1 - 0 0 1 0
X7 001 11111 1 0 - 0 1 0 0

1110- 0 - 1 1 1 1 0
11011 1 0 1 1 0 0 1
01001 0 1 0 1 0 1 1

 Table 3 (a) . Encoding. 3 (b) . Compacted Truth Table.
Signals Encoding Input Output

c1 c2 c3 c4
X1 110 10101 1 0 1 0
X2 010 01100 0 0 1 0
X3 101 10001 1 0 0 1
X4 001 01111 0 1 1 0
X5 100 11110 0 - 0 1
X6 011 01010 1 1 0 0
X7 111 11111 1 0 1 0

1110- 0 - 1 1
11011 1 0 1 1
01001 0 1 0 1

 It is possible to reduce the number of output columns
after column compaction if we encode the symbols of
Table 1 asshown in Table 3(a). The column compacted
truth table is shown in Table 3(b). In Table 3(b), columns
c1, c2 and c4 represent the symbolic outputs.
 This output encoding problem has many applications.
Digital systems are often specified in terms of a
combination of binary valued and symbolic signals. This
problem is applicable to reduce the area of scan-based [16]
designs containing one-out-of-n (one-hot) signals, as
described in [17]. This algorithm can serve as a pre-
processing step for FSM state encoding.

 3. ENCODING ALGORITHM FOR FULLY
SPECIFIED OUTPUTS

 In this section, we present our output encoding algorithm
with the assumption that the output columns belonging to
the B-set are fully specified with 1’s and 0’s for simplicity.
We consider the example of Table 4 for illustration. We
describe the three basic steps of our algorithm as follows:

 Step 1 : Find Inconsistent Columns: Find all pairs
of rows, p andq, in Table 4 for which the S-column has
the same value andci ∈ B-set has different values. Thenci
is said to beinconsistent. For this example, the B-set is
{c1, c2, c3, c4, c5, c6}. Here, c1 has a 1 in the second row
and a 0 in the 4th row; but the S-column has X2 in both
of these rows. Hence, c1 is inconsistent. Column c3 is
also inconsistent for symbolic output X3.
Step 2 : Create reduced consistent output table:
Remove inconsistent columns from the specification table
to obtain theconsistent output table (COT). Merge equal
rows of COT to obtainreduced consistent output table
(RCOT). Table 5 is the RCOT for Table 4. Since there are
6 symbolic outputs, we usem = 3 bits to encode them.
Step 3 : i -column counting check: Any set of i
columns of the RCOT (i ≤ m) having any of the 2i

possible binary values of lengthi appearing more than
2m-i times in the rows of the RCOT cannot reduce thesize
of the output column cover after encoding the symbols.
All sets of i columns that satisfy thisi -column counting
check form elements ofcolumn-count-set-i (CCS-i). For
Table 5, CCS-1 = {{c 2}, {c5}, {c6}}, CCS-2 = {{c2, c5},
{c5, c6}, {c 2, c6}}, CCS-3 = NULL. {c4} is not included
in CCS-1 because the number of 1’s in the c4 column is 5
(greater than 4). We terminate this step when either a CCS
set is NULL or CCS-m has been generated.

Table 4 . Specification Table. Table 5 . The RCOT.
c1 c2 c3 c4 c5 c6 Symbol c2 c4 c5 c6 Symbol
0 0 1 1 1 0 X1 0 1 1 0 X1
1 0 0 1 0 1 X2 0 1 0 1 X2
1 0 0 1 1 1 X3 0 1 1 1 X3
0 0 0 1 0 1 X2 1 1 0 0 X4
0 1 1 1 0 0 X4 1 1 1 0 X5
0 1 0 1 1 0 X5 1 0 0 0 X6
1 0 1 1 1 1 X3
1 1 0 0 0 0 X6
1 0 1 1 1 1 X3
1 0 0 1 0 1 X2
 For Table 4, we can encode the symbols using three bits
in such a way that two of the three columns, representing
the symbolic outputs, can be merged with the existing
output columns by column compaction. We choose any
member of CCS-2, say, {c2, c5}. The first two bits in the
encoding of a particular symbol will have the same pattern
as the one present under the columns c2 and c5 in the row
corresponding to that symbol in the RCOT. We determine
the third bit such that the codes assigned to the symbols
are distinct. Thus, referring to Table 4, X1 can be encoded
as 010, X2 as 000, X3 as 011, X4 as 100, X5 as 110 and
X6 as 101. It is straightforward to prove the optimality of
our solution [18]. It should be noted that if we allowed 4
bits to encode the symbolic outputs of Table 4, then all
output columns corresponding to the four encoding bits
could be merged with c2, c4, c5 and c6. In that case, we
can iterate step 3 incrementing the number of encodingbits
until all the encoding bit outputs can be merged with the

existing outputs or we reach a point where we have tried to
encoden symbolic outputs usingn bits.

4 . ENCODING ALGORITHM FOR
INCOMPLETELY SPECIFIED OUTPUTS

The basic steps of the algorithm described in Sec. 3 can be
extended to handle don’t cares in the B-set.

Table 6 . Specification Table. Table 7 . The RCOT.
c1 c2 c3 c4 c5 c6 Symbolic c2 c3 c4 c5 c6 Symbolic

0 - 1 0 - 0 X1 - 1 0 - 0 X1
1 0 - - - - X2 0 1 0 - 1 X2
1 - - - 1 - X3 - 1 1 1 - X3
0 - - - - 1 X2 0 1 0 0 0 X4
0 1 0 0 0 0 X4 1 1 0 - - X5
0 1 1 0 - - X5 1 1 0 0 0 X6
- - 1 1 - - X3
1 1 1 0 0 0 X6
- - - 1 1 - X3
- - 1 0 - - X2

 Consider the specification shown in Table 6. The RCOT
is shown in Table 7. The CCS-1 set is {{c2}, {c5}, {c6}}.
For calculating CCS-2 and CCS-3 we must ensure that the
count of thefully specified binary strings (binary strings
containing no don’t cares) only need to satisfy the bounds
discussed in step 3 of the algorithm in Sec. 3. Thus, CCS-
2 is {{c2, c5}, {c2, c6} and {c5, c6}}. CCS-3 is a null set
and we choose {c2, c5}, a member of CCS-2, forproviding
the first two bits in the encoding of the symbols using 3
bits. Next, we solve the problem of assigning 0’s and 1’s
to thedon’t cares in columns c2 and c5 so that the output
columns representing the symbolic outputs can be merged
with c2 and c5. We formulate the problem as a bipartite
graph matching problem [2]. We form a weighted bipartite
graph as follows: Set V1 contains vertices corresponding
to each symbolic output with a label equal to the string
formed by the entries in the row corresponding to that
symbolic output under columns c2 and c5 of Table 7. Set
V2 contains 4 vertices each having a label that is a distinct
binary pattern of length 2. For each u ∈ V1 and v ∈ V2
we have an edge (u, v) of weight 1 if and only if the label
of v contains 1(0) in all positions in which the label of u
contains 1(0). We add two more vertices to the graph —
thesource and thesink. There is an edge of weight 1 from
the source vertex to each member of V1. There is an edge
of weight 23-2 = 2 from each member of V2 to the sink.
 The graph along with the source and the sink nodes and
the edge weights is shown in Fig. 2. We solve the
maximum network flow problem on the graph using the
Ford-Fulkerson method [19]. The solid edges show the
final mapping. The first two bits in the encoding ofX1,
X2, X3, X4, X5 andX6 are 00, 01, 01, 10, 11 and 10,
respectively. Hence, one encoding ofX1, X2, X3, X4, X5
andX6 is 001, 010, 011, 100, 111 and 101, respectively.
Note that there may be multiple solutions to this bipartite
graph matching problem. Hence, our algorithm can be
further refined by selecting a mapping of members of V1
to the members of V2 based on some heuristic following

the observations developed in [13] and [14].
X1

— —

X2
0 —

X3

X4

X5

X6

— 1

1 0

1 —

1 0

Source
Sink

0 0

0 1

1 0

1 1

2

2

2

2

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

Figure 2 . The Graph for the Maximum Flow Problem.

5. EXPERIMENTAL RESULTS
 In this section, we present experimental results. We added
a symbolic output column to the MCNC FSM
benchmarks and varied the number of symbols in the
symbolic output column; depending on the symbol count,
the number of encoding bits required were either 3 or 4.

 Table 8 . Area results for our output encoding algorithm
(best case) and the worst case which never merges any output
column.

FSM 3 bits for encoding 4 bits for encoding
Name Our algo. Worst Case Our algo. Worst Case
bbara *205 225 *285 346
bbsse 316 364 316 378
bbtas *98 99 *103 147
dk14 223 266 223 294
dk15 206 208 206 257
dk17 *182 191 *231 304
ex1 721 750 721 781
ex6 254 312 254 405
mc 93 96 93 96

opus 235 260 235 356
tav 73 143 73 188
tma 444 543 444 548

*: These are the cases where all the output columns could not
be merged by our algorithm because the cardinality of the B-
set is less than the number of bits needed to encode the
symbols.

 We entered symbolic values in the S-column to ensure
that there exists an output encoding, for which all the
columns generated due to the encoding of the symbols
could be merged with the existing outputs (members of the
B-set), assuming that the number of encoding bits did not
exceed the number of existing non-symbolic (binary)
output columns. We applied our output encoding
algorithm to encode the symbolic output columns, then
compacted the outputs using column compaction. We then

optimized these specifications usingsis [20]. For
comparison purposes, we then encoded the symbolic
outputs such that none of the outputs corresponding to the
encoding bits could be merged by column compaction with
the pre-existent outputs (members of the B-set). This is the
worst-case encoding. The results are shown in Table 8.
Although our scheme works for both combinational and
sequential logic specifications, we used FSM benchmarks
because we are investigating FSM synthesis techniques for
one-hot signals, as mentioned in Sec. 2 [17]. For both
cases, we used NOVA [10] to encode the FSM states and
used the recommendedruggedscript to perform multi-level
logic optimization. Finally, we used the LSI Logic g10p
library [21] for technology mapping. Table 8 shows the
area values (in terms of LSI Logic g10p cell units)
obtained using our output encoding algorithm and the
worst-case output encoding where none of the encoding
bits could be merged with the already existent non-
symbolic output columns by compaction.

6. CONCLUSION
 In this paper, we have presented a new output encoding
algorithm whose objective is to encode the symbols in the
symbolic output column of the specification table using
 log2n bits for n symbolic outputs in such a way that the
number of output functions, after performing the encoding
and subsequent output column compaction, is minimum.
An application of this algorithm is to generate a low-area
circuit that always maintains a one-hot encoding on certain
signals, even during scan or BIST operations asdiscussed
in [17]. This algorithm can also be used as a pre-
processing step for FSM state encoding. Although the
algorithm produces a minimum solution and the worstcase
running time is exponential in the number of bits used to
encode the symbolic outputs, our algorithm achieves
significant speedup through iterative refinement by
removing from consideration inconsistent output columns
or sets of output columns. As the experimental results
show, the circuits generated using our output encoding
algorithm have significantly less area (0.9 % to 49 % for 3
bits, 8 % to 61 % for 4 bits) than worst-case circuits
generated without considering output column compaction
during the encoding of the symbols. In this paper, we have
considered specifications with a single symbolic output
column. In case of multiple symbolic output columns, we
can integrate our technique with the outputencoding
algorithm reported in [15] to achieve a minimum number
of output columns in the final table.

7. ACKNOWLEDGMENT
This work was supported by the Advanced Research
Projects Agency under prime contract No.¬DABT63-94-C-
0045. Thanks to Robert B. Norwood and Jonathan T. Y.
Chang of Center for Reliable Computing, Stanford
University, for their comments regarding this work.

8. REFERENCES
[1] Wei, R. and C Tseng, “Column Compaction and Its
Application to The Control Path Synthesis,”Proc. ICCAD-87,
pp. 320-323, 1987.

[2] Cormen, T. H., et. al.,Introduction to Algorithms, The
MIT Press and McGraw-Hill, 1989.

[3] Brayton, R. K., et. al.,Logic Minimization Algorithms for
VLSI Synthesis, Kluwer Publishers, 1984.

[4] Ashar, P., S. Devadas and A. R. Newton,Sequential Logic
Synthesis, Kluwer Academic Publishers, 1991.

[5] Dolotta, T. A., and E. J. McCluskey, “The Coding of
Internal States of Sequential Circuits,”IEEE Trans. Comput.,
EC-13, pp. 549-562, Oct. 1964.

[6] De Micheli, G., et. al., “Optimal State Assignment for
Finite State Machines,”IEEE Trans. on CAD. , CAD 4(3), 269-
285, July 1985.

[7] Du, X., et. al. “MUSE: A MUltilevel Symbolic Encoding
Algorithm for State Assignment,”IEEE Trans. on CAD, 10(1),
pp. 28-38, Jan. 1991.

[8] Lin, B. and A. R. Newton, “Synthesis of Multiple Level
Logic from Symbolic High-Level DescriptionLanguages,”
VLSI 89, pp. 187-196, Elsevier, 1990.

[9] Tumbush, G. L. and J. E. Brandeberry, “A StateAssignment
Technique for Sequential Machines using J-KFlip-Flops,”
IEEE Trans. Comput., pp. 85-86, Jan. 1974.

[10] Villa, T. and A. Sangiovanni-Vincentelli, “NOVA:State
Assignment of Finite State Machines for Optimal Two-Level
Logic Implementation”,IEEE Trans. on CAD, 9(9), pp. 905-
924, Sept. 1990.

[11] Buijs, F., et. al., “Synthesis of Multi-Level Logic with
one symbolic input,”EDAC-91, pp. 60-64, 1991.

[12] Yang, S., et. al., “Optimum and Sub-optimum Algorithms
for Input Encoding and Its Relation to LogicMinimization,”
IEEE Trans. on CAD, 10(1), pp. 4-12, Jan. 1991.

[13] Devadas, S. and A. R. Newton, “Exact Algorithms for
Output Encoding, State Assignment and Four Level boolean
Minimization,” IEEE Trans. on CAD, 10(1), pp. 13-27, Jan.
1991.

[14] Saldanha, A. and R. H. Katz, “PLA Optimization Using
Output Encoding,” ICCAD, pp. 478-481, 1988.

[15] Binger, D. and D. W. Knapp, “Encoding Multiple Outputs
for Improved Column Compaction,”Proc. ICCAD-91, pp.
230-233, 1991.

[16] McCluskey, E. J.,Logic Design Principles with
Emphasis on Testable Semicustom circuits, Prentice-Hall,
Eaglewood Cliffs, NJ, USA, 1986.

[17] Mitra, S., L. J. Avra and E. J. McCluskey, “Scan
Synthesis for One-hot Signals”,Proc. ITC, Nov. 1997.

[18] Mitra, S., L. J. Avra and E. J. McCluskey, “An Output
Encoding Problem and a Solution Technique”, Technical
Report, Center for Reliable Computing, StanfordUniversity,
CRC TR 97-1, 1997.

[19] Ford, L. R. and D. R. Fulkerson,Flows in Networks,
Princeton University Press, 1962.

[20] Sentovich, E.,et. al., “SIS: A System for Sequential
Circuit Synthesis”, ERL Memo. No. UCB/ERL M92/41,
Department of EECS, UC Berkeley, CA 94720.

[21] G10-pCell-Based ASIC Products Databook, LSI Logic,
May 1996.

	CD-ROM Home Page
	ICCAD97
	Front Matter
	Table of Contents
	Session Index
	Author Index

